1 /* -----------------------------------------------------------------------------
2 Software License for The Fraunhofer FDK AAC Codec Library for Android
3
4 © Copyright 1995 - 2018 Fraunhofer-Gesellschaft zur Förderung der angewandten
5 Forschung e.V. All rights reserved.
6
7 1. INTRODUCTION
8 The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software
9 that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding
10 scheme for digital audio. This FDK AAC Codec software is intended to be used on
11 a wide variety of Android devices.
12
13 AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient
14 general perceptual audio codecs. AAC-ELD is considered the best-performing
15 full-bandwidth communications codec by independent studies and is widely
16 deployed. AAC has been standardized by ISO and IEC as part of the MPEG
17 specifications.
18
19 Patent licenses for necessary patent claims for the FDK AAC Codec (including
20 those of Fraunhofer) may be obtained through Via Licensing
21 (www.vialicensing.com) or through the respective patent owners individually for
22 the purpose of encoding or decoding bit streams in products that are compliant
23 with the ISO/IEC MPEG audio standards. Please note that most manufacturers of
24 Android devices already license these patent claims through Via Licensing or
25 directly from the patent owners, and therefore FDK AAC Codec software may
26 already be covered under those patent licenses when it is used for those
27 licensed purposes only.
28
29 Commercially-licensed AAC software libraries, including floating-point versions
30 with enhanced sound quality, are also available from Fraunhofer. Users are
31 encouraged to check the Fraunhofer website for additional applications
32 information and documentation.
33
34 2. COPYRIGHT LICENSE
35
36 Redistribution and use in source and binary forms, with or without modification,
37 are permitted without payment of copyright license fees provided that you
38 satisfy the following conditions:
39
40 You must retain the complete text of this software license in redistributions of
41 the FDK AAC Codec or your modifications thereto in source code form.
42
43 You must retain the complete text of this software license in the documentation
44 and/or other materials provided with redistributions of the FDK AAC Codec or
45 your modifications thereto in binary form. You must make available free of
46 charge copies of the complete source code of the FDK AAC Codec and your
47 modifications thereto to recipients of copies in binary form.
48
49 The name of Fraunhofer may not be used to endorse or promote products derived
50 from this library without prior written permission.
51
52 You may not charge copyright license fees for anyone to use, copy or distribute
53 the FDK AAC Codec software or your modifications thereto.
54
55 Your modified versions of the FDK AAC Codec must carry prominent notices stating
56 that you changed the software and the date of any change. For modified versions
57 of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android"
58 must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK
59 AAC Codec Library for Android."
60
61 3. NO PATENT LICENSE
62
63 NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without
64 limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE.
65 Fraunhofer provides no warranty of patent non-infringement with respect to this
66 software.
67
68 You may use this FDK AAC Codec software or modifications thereto only for
69 purposes that are authorized by appropriate patent licenses.
70
71 4. DISCLAIMER
72
73 This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright
74 holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
75 including but not limited to the implied warranties of merchantability and
76 fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
77 CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary,
78 or consequential damages, including but not limited to procurement of substitute
79 goods or services; loss of use, data, or profits, or business interruption,
80 however caused and on any theory of liability, whether in contract, strict
81 liability, or tort (including negligence), arising in any way out of the use of
82 this software, even if advised of the possibility of such damage.
83
84 5. CONTACT INFORMATION
85
86 Fraunhofer Institute for Integrated Circuits IIS
87 Attention: Audio and Multimedia Departments - FDK AAC LL
88 Am Wolfsmantel 33
89 91058 Erlangen, Germany
90
91 www.iis.fraunhofer.de/amm
92 amm-info@iis.fraunhofer.de
93 ----------------------------------------------------------------------------- */
94
95 /******************* Library for basic calculation routines ********************
96
97 Author(s): Manuel Jander
98
99 Description: Fixed point specific mathematical functions for x86
100
101 *******************************************************************************/
102
103 #if !defined(FIXPOINT_MATH_X86_H)
104 #define FIXPOINT_MATH_X86_H
105
106 #define FUNCTION_sqrtFixp
107
108 #include <math.h>
109
110 #ifdef FUNCTION_sqrtFixp
sqrtFixp(const FIXP_DBL op)111 static inline FIXP_DBL sqrtFixp(const FIXP_DBL op) {
112 FIXP_DBL result;
113 /* result =
114 * (FIXP_DBL)(INT)(sqrt((double)(INT)op)*46340.950011841578559133736114903);
115 */
116 result = (FIXP_DBL)(INT)(sqrt((float)(INT)op) * 46340.9492f);
117 FDK_ASSERT(result >= (FIXP_DBL)0);
118 return result;
119 }
120 #endif /* FUNCTION_sqrtFixp */
121
122 #include <math.h>
123
124 #define FUNCTION_invSqrtNorm2
125 /**
126 * \brief calculate 1.0/sqrt(op)
127 * \param op_m mantissa of input value.
128 * \param result_e pointer to return the exponent of the result
129 * \return mantissa of the result
130 */
131 #ifdef FUNCTION_invSqrtNorm2
invSqrtNorm2(FIXP_DBL op_m,INT * result_e)132 inline FIXP_DBL invSqrtNorm2(FIXP_DBL op_m, INT *result_e) {
133 float result;
134 if (op_m == (FIXP_DBL)0) {
135 *result_e = 16;
136 return ((LONG)0x7fffffff);
137 }
138 result = (float)(1.0 / sqrt(0.5f * (float)(INT)op_m));
139 result = (float)ldexp(frexpf(result, result_e), DFRACT_BITS - 1);
140 *result_e += 15;
141
142 FDK_ASSERT(result >= 0);
143 return (FIXP_DBL)(INT)result;
144 }
145 #endif /* FUNCTION_invSqrtNorm2 */
146
147 #define FUNCTION_invFixp
148 /**
149 * \brief calculate 1.0/op
150 * \param op mantissa of the input value.
151 * \return mantissa of the result with implizit exponent of 31
152 */
153 #ifdef FUNCTION_invFixp
invFixp(FIXP_DBL op)154 inline FIXP_DBL invFixp(FIXP_DBL op) {
155 float result;
156 INT result_e;
157 if ((op == (FIXP_DBL)0) || (op == (FIXP_DBL)1)) {
158 return ((LONG)0x7fffffff);
159 }
160 result = (float)(1.0 / (float)(INT)op);
161 result = frexpf(result, &result_e);
162 result = ldexpf(result, 31 + result_e);
163
164 return (FIXP_DBL)(INT)result;
165 }
166
167 /**
168 * \brief calculate 1.0/(op_m * 2^op_e)
169 * \param op_m mantissa of the input value.
170 * \param op_e pointer into were the exponent of the input value is stored, and
171 * the result will be stored into.
172 * \return mantissa of the result
173 */
invFixp(FIXP_DBL op_m,int * op_e)174 inline FIXP_DBL invFixp(FIXP_DBL op_m, int *op_e) {
175 float result;
176 INT result_e;
177 if ((op_m == (FIXP_DBL)0x00000000) || (op_m == (FIXP_DBL)0x00000001)) {
178 *op_e = 31 - *op_e;
179 return ((LONG)0x7fffffff);
180 }
181 result = (float)(1.0 / (float)(INT)op_m);
182 result = ldexpf(frexpf(result, &result_e), DFRACT_BITS - 1);
183 *op_e = result_e - *op_e + 31;
184 return (FIXP_DBL)(INT)result;
185 }
186 #endif /* FUNCTION_invFixp */
187
188 #define FUNCTION_schur_div
189 /**
190 * \brief Divide two FIXP_DBL values with given precision.
191 * \param num dividend
192 * \param denum divisor
193 * \param count amount of significant bits of the result (starting to the MSB)
194 * \return num/divisor
195 */
196 #ifdef FUNCTION_schur_div
schur_div(FIXP_DBL num,FIXP_DBL denum,INT count)197 inline FIXP_DBL schur_div(FIXP_DBL num, FIXP_DBL denum, INT count) {
198 (void)count;
199 /* same asserts than for fallback implementation */
200 FDK_ASSERT(num >= (FIXP_DBL)0);
201 FDK_ASSERT(denum > (FIXP_DBL)0);
202 FDK_ASSERT(num <= denum);
203
204 return (num == denum) ? (FIXP_DBL)MAXVAL_DBL
205 : (FIXP_DBL)(INT)(((INT64)(INT)num << 31) / (INT)denum);
206 }
207 #endif /* FUNCTION_schur_div */
208 #endif /* !defined(FIXPOINT_MATH_X86_H) */
209