1 /*
2 * Copyright (c) 2016-2020, Yann Collet, Facebook, Inc.
3 * All rights reserved.
4 *
5 * This source code is licensed under both the BSD-style license (found in the
6 * LICENSE file in the root directory of this source tree) and the GPLv2 (found
7 * in the COPYING file in the root directory of this source tree).
8 * You may select, at your option, one of the above-listed licenses.
9 */
10
11 #ifndef ZSTD_CWKSP_H
12 #define ZSTD_CWKSP_H
13
14 /*-*************************************
15 * Dependencies
16 ***************************************/
17 #include "../common/zstd_internal.h"
18
19 #if defined (__cplusplus)
20 extern "C" {
21 #endif
22
23 /*-*************************************
24 * Constants
25 ***************************************/
26
27 /* Since the workspace is effectively its own little malloc implementation /
28 * arena, when we run under ASAN, we should similarly insert redzones between
29 * each internal element of the workspace, so ASAN will catch overruns that
30 * reach outside an object but that stay inside the workspace.
31 *
32 * This defines the size of that redzone.
33 */
34 #ifndef ZSTD_CWKSP_ASAN_REDZONE_SIZE
35 #define ZSTD_CWKSP_ASAN_REDZONE_SIZE 128
36 #endif
37
38 /*-*************************************
39 * Structures
40 ***************************************/
41 typedef enum {
42 ZSTD_cwksp_alloc_objects,
43 ZSTD_cwksp_alloc_buffers,
44 ZSTD_cwksp_alloc_aligned
45 } ZSTD_cwksp_alloc_phase_e;
46
47 /**
48 * Used to describe whether the workspace is statically allocated (and will not
49 * necessarily ever be freed), or if it's dynamically allocated and we can
50 * expect a well-formed caller to free this.
51 */
52 typedef enum {
53 ZSTD_cwksp_dynamic_alloc,
54 ZSTD_cwksp_static_alloc
55 } ZSTD_cwksp_static_alloc_e;
56
57 /**
58 * Zstd fits all its internal datastructures into a single continuous buffer,
59 * so that it only needs to perform a single OS allocation (or so that a buffer
60 * can be provided to it and it can perform no allocations at all). This buffer
61 * is called the workspace.
62 *
63 * Several optimizations complicate that process of allocating memory ranges
64 * from this workspace for each internal datastructure:
65 *
66 * - These different internal datastructures have different setup requirements:
67 *
68 * - The static objects need to be cleared once and can then be trivially
69 * reused for each compression.
70 *
71 * - Various buffers don't need to be initialized at all--they are always
72 * written into before they're read.
73 *
74 * - The matchstate tables have a unique requirement that they don't need
75 * their memory to be totally cleared, but they do need the memory to have
76 * some bound, i.e., a guarantee that all values in the memory they've been
77 * allocated is less than some maximum value (which is the starting value
78 * for the indices that they will then use for compression). When this
79 * guarantee is provided to them, they can use the memory without any setup
80 * work. When it can't, they have to clear the area.
81 *
82 * - These buffers also have different alignment requirements.
83 *
84 * - We would like to reuse the objects in the workspace for multiple
85 * compressions without having to perform any expensive reallocation or
86 * reinitialization work.
87 *
88 * - We would like to be able to efficiently reuse the workspace across
89 * multiple compressions **even when the compression parameters change** and
90 * we need to resize some of the objects (where possible).
91 *
92 * To attempt to manage this buffer, given these constraints, the ZSTD_cwksp
93 * abstraction was created. It works as follows:
94 *
95 * Workspace Layout:
96 *
97 * [ ... workspace ... ]
98 * [objects][tables ... ->] free space [<- ... aligned][<- ... buffers]
99 *
100 * The various objects that live in the workspace are divided into the
101 * following categories, and are allocated separately:
102 *
103 * - Static objects: this is optionally the enclosing ZSTD_CCtx or ZSTD_CDict,
104 * so that literally everything fits in a single buffer. Note: if present,
105 * this must be the first object in the workspace, since ZSTD_customFree{CCtx,
106 * CDict}() rely on a pointer comparison to see whether one or two frees are
107 * required.
108 *
109 * - Fixed size objects: these are fixed-size, fixed-count objects that are
110 * nonetheless "dynamically" allocated in the workspace so that we can
111 * control how they're initialized separately from the broader ZSTD_CCtx.
112 * Examples:
113 * - Entropy Workspace
114 * - 2 x ZSTD_compressedBlockState_t
115 * - CDict dictionary contents
116 *
117 * - Tables: these are any of several different datastructures (hash tables,
118 * chain tables, binary trees) that all respect a common format: they are
119 * uint32_t arrays, all of whose values are between 0 and (nextSrc - base).
120 * Their sizes depend on the cparams.
121 *
122 * - Aligned: these buffers are used for various purposes that require 4 byte
123 * alignment, but don't require any initialization before they're used.
124 *
125 * - Buffers: these buffers are used for various purposes that don't require
126 * any alignment or initialization before they're used. This means they can
127 * be moved around at no cost for a new compression.
128 *
129 * Allocating Memory:
130 *
131 * The various types of objects must be allocated in order, so they can be
132 * correctly packed into the workspace buffer. That order is:
133 *
134 * 1. Objects
135 * 2. Buffers
136 * 3. Aligned
137 * 4. Tables
138 *
139 * Attempts to reserve objects of different types out of order will fail.
140 */
141 typedef struct {
142 void* workspace;
143 void* workspaceEnd;
144
145 void* objectEnd;
146 void* tableEnd;
147 void* tableValidEnd;
148 void* allocStart;
149
150 BYTE allocFailed;
151 int workspaceOversizedDuration;
152 ZSTD_cwksp_alloc_phase_e phase;
153 ZSTD_cwksp_static_alloc_e isStatic;
154 } ZSTD_cwksp;
155
156 /*-*************************************
157 * Functions
158 ***************************************/
159
160 MEM_STATIC size_t ZSTD_cwksp_available_space(ZSTD_cwksp* ws);
161
ZSTD_cwksp_assert_internal_consistency(ZSTD_cwksp * ws)162 MEM_STATIC void ZSTD_cwksp_assert_internal_consistency(ZSTD_cwksp* ws) {
163 (void)ws;
164 assert(ws->workspace <= ws->objectEnd);
165 assert(ws->objectEnd <= ws->tableEnd);
166 assert(ws->objectEnd <= ws->tableValidEnd);
167 assert(ws->tableEnd <= ws->allocStart);
168 assert(ws->tableValidEnd <= ws->allocStart);
169 assert(ws->allocStart <= ws->workspaceEnd);
170 }
171
172 /**
173 * Align must be a power of 2.
174 */
ZSTD_cwksp_align(size_t size,size_t const align)175 MEM_STATIC size_t ZSTD_cwksp_align(size_t size, size_t const align) {
176 size_t const mask = align - 1;
177 assert((align & mask) == 0);
178 return (size + mask) & ~mask;
179 }
180
181 /**
182 * Use this to determine how much space in the workspace we will consume to
183 * allocate this object. (Normally it should be exactly the size of the object,
184 * but under special conditions, like ASAN, where we pad each object, it might
185 * be larger.)
186 *
187 * Since tables aren't currently redzoned, you don't need to call through this
188 * to figure out how much space you need for the matchState tables. Everything
189 * else is though.
190 */
ZSTD_cwksp_alloc_size(size_t size)191 MEM_STATIC size_t ZSTD_cwksp_alloc_size(size_t size) {
192 if (size == 0)
193 return 0;
194 #if ZSTD_ADDRESS_SANITIZER && !defined (ZSTD_ASAN_DONT_POISON_WORKSPACE)
195 return size + 2 * ZSTD_CWKSP_ASAN_REDZONE_SIZE;
196 #else
197 return size;
198 #endif
199 }
200
ZSTD_cwksp_internal_advance_phase(ZSTD_cwksp * ws,ZSTD_cwksp_alloc_phase_e phase)201 MEM_STATIC void ZSTD_cwksp_internal_advance_phase(
202 ZSTD_cwksp* ws, ZSTD_cwksp_alloc_phase_e phase) {
203 assert(phase >= ws->phase);
204 if (phase > ws->phase) {
205 if (ws->phase < ZSTD_cwksp_alloc_buffers &&
206 phase >= ZSTD_cwksp_alloc_buffers) {
207 ws->tableValidEnd = ws->objectEnd;
208 }
209 if (ws->phase < ZSTD_cwksp_alloc_aligned &&
210 phase >= ZSTD_cwksp_alloc_aligned) {
211 /* If unaligned allocations down from a too-large top have left us
212 * unaligned, we need to realign our alloc ptr. Technically, this
213 * can consume space that is unaccounted for in the neededSpace
214 * calculation. However, I believe this can only happen when the
215 * workspace is too large, and specifically when it is too large
216 * by a larger margin than the space that will be consumed. */
217 /* TODO: cleaner, compiler warning friendly way to do this??? */
218 ws->allocStart = (BYTE*)ws->allocStart - ((size_t)ws->allocStart & (sizeof(U32)-1));
219 if (ws->allocStart < ws->tableValidEnd) {
220 ws->tableValidEnd = ws->allocStart;
221 }
222 }
223 ws->phase = phase;
224 }
225 }
226
227 /**
228 * Returns whether this object/buffer/etc was allocated in this workspace.
229 */
ZSTD_cwksp_owns_buffer(const ZSTD_cwksp * ws,const void * ptr)230 MEM_STATIC int ZSTD_cwksp_owns_buffer(const ZSTD_cwksp* ws, const void* ptr) {
231 return (ptr != NULL) && (ws->workspace <= ptr) && (ptr <= ws->workspaceEnd);
232 }
233
234 /**
235 * Internal function. Do not use directly.
236 */
ZSTD_cwksp_reserve_internal(ZSTD_cwksp * ws,size_t bytes,ZSTD_cwksp_alloc_phase_e phase)237 MEM_STATIC void* ZSTD_cwksp_reserve_internal(
238 ZSTD_cwksp* ws, size_t bytes, ZSTD_cwksp_alloc_phase_e phase) {
239 void* alloc;
240 void* bottom = ws->tableEnd;
241 ZSTD_cwksp_internal_advance_phase(ws, phase);
242 alloc = (BYTE *)ws->allocStart - bytes;
243
244 if (bytes == 0)
245 return NULL;
246
247 #if ZSTD_ADDRESS_SANITIZER && !defined (ZSTD_ASAN_DONT_POISON_WORKSPACE)
248 /* over-reserve space */
249 alloc = (BYTE *)alloc - 2 * ZSTD_CWKSP_ASAN_REDZONE_SIZE;
250 #endif
251
252 DEBUGLOG(5, "cwksp: reserving %p %zd bytes, %zd bytes remaining",
253 alloc, bytes, ZSTD_cwksp_available_space(ws) - bytes);
254 ZSTD_cwksp_assert_internal_consistency(ws);
255 assert(alloc >= bottom);
256 if (alloc < bottom) {
257 DEBUGLOG(4, "cwksp: alloc failed!");
258 ws->allocFailed = 1;
259 return NULL;
260 }
261 if (alloc < ws->tableValidEnd) {
262 ws->tableValidEnd = alloc;
263 }
264 ws->allocStart = alloc;
265
266 #if ZSTD_ADDRESS_SANITIZER && !defined (ZSTD_ASAN_DONT_POISON_WORKSPACE)
267 /* Move alloc so there's ZSTD_CWKSP_ASAN_REDZONE_SIZE unused space on
268 * either size. */
269 alloc = (BYTE *)alloc + ZSTD_CWKSP_ASAN_REDZONE_SIZE;
270 if (ws->isStatic == ZSTD_cwksp_dynamic_alloc) {
271 __asan_unpoison_memory_region(alloc, bytes);
272 }
273 #endif
274
275 return alloc;
276 }
277
278 /**
279 * Reserves and returns unaligned memory.
280 */
ZSTD_cwksp_reserve_buffer(ZSTD_cwksp * ws,size_t bytes)281 MEM_STATIC BYTE* ZSTD_cwksp_reserve_buffer(ZSTD_cwksp* ws, size_t bytes) {
282 return (BYTE*)ZSTD_cwksp_reserve_internal(ws, bytes, ZSTD_cwksp_alloc_buffers);
283 }
284
285 /**
286 * Reserves and returns memory sized on and aligned on sizeof(unsigned).
287 */
ZSTD_cwksp_reserve_aligned(ZSTD_cwksp * ws,size_t bytes)288 MEM_STATIC void* ZSTD_cwksp_reserve_aligned(ZSTD_cwksp* ws, size_t bytes) {
289 assert((bytes & (sizeof(U32)-1)) == 0);
290 return ZSTD_cwksp_reserve_internal(ws, ZSTD_cwksp_align(bytes, sizeof(U32)), ZSTD_cwksp_alloc_aligned);
291 }
292
293 /**
294 * Aligned on sizeof(unsigned). These buffers have the special property that
295 * their values remain constrained, allowing us to re-use them without
296 * memset()-ing them.
297 */
ZSTD_cwksp_reserve_table(ZSTD_cwksp * ws,size_t bytes)298 MEM_STATIC void* ZSTD_cwksp_reserve_table(ZSTD_cwksp* ws, size_t bytes) {
299 const ZSTD_cwksp_alloc_phase_e phase = ZSTD_cwksp_alloc_aligned;
300 void* alloc = ws->tableEnd;
301 void* end = (BYTE *)alloc + bytes;
302 void* top = ws->allocStart;
303
304 DEBUGLOG(5, "cwksp: reserving %p table %zd bytes, %zd bytes remaining",
305 alloc, bytes, ZSTD_cwksp_available_space(ws) - bytes);
306 assert((bytes & (sizeof(U32)-1)) == 0);
307 ZSTD_cwksp_internal_advance_phase(ws, phase);
308 ZSTD_cwksp_assert_internal_consistency(ws);
309 assert(end <= top);
310 if (end > top) {
311 DEBUGLOG(4, "cwksp: table alloc failed!");
312 ws->allocFailed = 1;
313 return NULL;
314 }
315 ws->tableEnd = end;
316
317 #if ZSTD_ADDRESS_SANITIZER && !defined (ZSTD_ASAN_DONT_POISON_WORKSPACE)
318 if (ws->isStatic == ZSTD_cwksp_dynamic_alloc) {
319 __asan_unpoison_memory_region(alloc, bytes);
320 }
321 #endif
322
323 return alloc;
324 }
325
326 /**
327 * Aligned on sizeof(void*).
328 */
ZSTD_cwksp_reserve_object(ZSTD_cwksp * ws,size_t bytes)329 MEM_STATIC void* ZSTD_cwksp_reserve_object(ZSTD_cwksp* ws, size_t bytes) {
330 size_t roundedBytes = ZSTD_cwksp_align(bytes, sizeof(void*));
331 void* alloc = ws->objectEnd;
332 void* end = (BYTE*)alloc + roundedBytes;
333
334 #if ZSTD_ADDRESS_SANITIZER && !defined (ZSTD_ASAN_DONT_POISON_WORKSPACE)
335 /* over-reserve space */
336 end = (BYTE *)end + 2 * ZSTD_CWKSP_ASAN_REDZONE_SIZE;
337 #endif
338
339 DEBUGLOG(5,
340 "cwksp: reserving %p object %zd bytes (rounded to %zd), %zd bytes remaining",
341 alloc, bytes, roundedBytes, ZSTD_cwksp_available_space(ws) - roundedBytes);
342 assert(((size_t)alloc & (sizeof(void*)-1)) == 0);
343 assert((bytes & (sizeof(void*)-1)) == 0);
344 ZSTD_cwksp_assert_internal_consistency(ws);
345 /* we must be in the first phase, no advance is possible */
346 if (ws->phase != ZSTD_cwksp_alloc_objects || end > ws->workspaceEnd) {
347 DEBUGLOG(4, "cwksp: object alloc failed!");
348 ws->allocFailed = 1;
349 return NULL;
350 }
351 ws->objectEnd = end;
352 ws->tableEnd = end;
353 ws->tableValidEnd = end;
354
355 #if ZSTD_ADDRESS_SANITIZER && !defined (ZSTD_ASAN_DONT_POISON_WORKSPACE)
356 /* Move alloc so there's ZSTD_CWKSP_ASAN_REDZONE_SIZE unused space on
357 * either size. */
358 alloc = (BYTE *)alloc + ZSTD_CWKSP_ASAN_REDZONE_SIZE;
359 if (ws->isStatic == ZSTD_cwksp_dynamic_alloc) {
360 __asan_unpoison_memory_region(alloc, bytes);
361 }
362 #endif
363
364 return alloc;
365 }
366
ZSTD_cwksp_mark_tables_dirty(ZSTD_cwksp * ws)367 MEM_STATIC void ZSTD_cwksp_mark_tables_dirty(ZSTD_cwksp* ws) {
368 DEBUGLOG(4, "cwksp: ZSTD_cwksp_mark_tables_dirty");
369
370 #if ZSTD_MEMORY_SANITIZER && !defined (ZSTD_MSAN_DONT_POISON_WORKSPACE)
371 /* To validate that the table re-use logic is sound, and that we don't
372 * access table space that we haven't cleaned, we re-"poison" the table
373 * space every time we mark it dirty. */
374 {
375 size_t size = (BYTE*)ws->tableValidEnd - (BYTE*)ws->objectEnd;
376 assert(__msan_test_shadow(ws->objectEnd, size) == -1);
377 __msan_poison(ws->objectEnd, size);
378 }
379 #endif
380
381 assert(ws->tableValidEnd >= ws->objectEnd);
382 assert(ws->tableValidEnd <= ws->allocStart);
383 ws->tableValidEnd = ws->objectEnd;
384 ZSTD_cwksp_assert_internal_consistency(ws);
385 }
386
ZSTD_cwksp_mark_tables_clean(ZSTD_cwksp * ws)387 MEM_STATIC void ZSTD_cwksp_mark_tables_clean(ZSTD_cwksp* ws) {
388 DEBUGLOG(4, "cwksp: ZSTD_cwksp_mark_tables_clean");
389 assert(ws->tableValidEnd >= ws->objectEnd);
390 assert(ws->tableValidEnd <= ws->allocStart);
391 if (ws->tableValidEnd < ws->tableEnd) {
392 ws->tableValidEnd = ws->tableEnd;
393 }
394 ZSTD_cwksp_assert_internal_consistency(ws);
395 }
396
397 /**
398 * Zero the part of the allocated tables not already marked clean.
399 */
ZSTD_cwksp_clean_tables(ZSTD_cwksp * ws)400 MEM_STATIC void ZSTD_cwksp_clean_tables(ZSTD_cwksp* ws) {
401 DEBUGLOG(4, "cwksp: ZSTD_cwksp_clean_tables");
402 assert(ws->tableValidEnd >= ws->objectEnd);
403 assert(ws->tableValidEnd <= ws->allocStart);
404 if (ws->tableValidEnd < ws->tableEnd) {
405 ZSTD_memset(ws->tableValidEnd, 0, (BYTE*)ws->tableEnd - (BYTE*)ws->tableValidEnd);
406 }
407 ZSTD_cwksp_mark_tables_clean(ws);
408 }
409
410 /**
411 * Invalidates table allocations.
412 * All other allocations remain valid.
413 */
ZSTD_cwksp_clear_tables(ZSTD_cwksp * ws)414 MEM_STATIC void ZSTD_cwksp_clear_tables(ZSTD_cwksp* ws) {
415 DEBUGLOG(4, "cwksp: clearing tables!");
416
417 #if ZSTD_ADDRESS_SANITIZER && !defined (ZSTD_ASAN_DONT_POISON_WORKSPACE)
418 /* We don't do this when the workspace is statically allocated, because
419 * when that is the case, we have no capability to hook into the end of the
420 * workspace's lifecycle to unpoison the memory.
421 */
422 if (ws->isStatic == ZSTD_cwksp_dynamic_alloc) {
423 size_t size = (BYTE*)ws->tableValidEnd - (BYTE*)ws->objectEnd;
424 __asan_poison_memory_region(ws->objectEnd, size);
425 }
426 #endif
427
428 ws->tableEnd = ws->objectEnd;
429 ZSTD_cwksp_assert_internal_consistency(ws);
430 }
431
432 /**
433 * Invalidates all buffer, aligned, and table allocations.
434 * Object allocations remain valid.
435 */
ZSTD_cwksp_clear(ZSTD_cwksp * ws)436 MEM_STATIC void ZSTD_cwksp_clear(ZSTD_cwksp* ws) {
437 DEBUGLOG(4, "cwksp: clearing!");
438
439 #if ZSTD_MEMORY_SANITIZER && !defined (ZSTD_MSAN_DONT_POISON_WORKSPACE)
440 /* To validate that the context re-use logic is sound, and that we don't
441 * access stuff that this compression hasn't initialized, we re-"poison"
442 * the workspace (or at least the non-static, non-table parts of it)
443 * every time we start a new compression. */
444 {
445 size_t size = (BYTE*)ws->workspaceEnd - (BYTE*)ws->tableValidEnd;
446 __msan_poison(ws->tableValidEnd, size);
447 }
448 #endif
449
450 #if ZSTD_ADDRESS_SANITIZER && !defined (ZSTD_ASAN_DONT_POISON_WORKSPACE)
451 /* We don't do this when the workspace is statically allocated, because
452 * when that is the case, we have no capability to hook into the end of the
453 * workspace's lifecycle to unpoison the memory.
454 */
455 if (ws->isStatic == ZSTD_cwksp_dynamic_alloc) {
456 size_t size = (BYTE*)ws->workspaceEnd - (BYTE*)ws->objectEnd;
457 __asan_poison_memory_region(ws->objectEnd, size);
458 }
459 #endif
460
461 ws->tableEnd = ws->objectEnd;
462 ws->allocStart = ws->workspaceEnd;
463 ws->allocFailed = 0;
464 if (ws->phase > ZSTD_cwksp_alloc_buffers) {
465 ws->phase = ZSTD_cwksp_alloc_buffers;
466 }
467 ZSTD_cwksp_assert_internal_consistency(ws);
468 }
469
470 /**
471 * The provided workspace takes ownership of the buffer [start, start+size).
472 * Any existing values in the workspace are ignored (the previously managed
473 * buffer, if present, must be separately freed).
474 */
ZSTD_cwksp_init(ZSTD_cwksp * ws,void * start,size_t size,ZSTD_cwksp_static_alloc_e isStatic)475 MEM_STATIC void ZSTD_cwksp_init(ZSTD_cwksp* ws, void* start, size_t size, ZSTD_cwksp_static_alloc_e isStatic) {
476 DEBUGLOG(4, "cwksp: init'ing workspace with %zd bytes", size);
477 assert(((size_t)start & (sizeof(void*)-1)) == 0); /* ensure correct alignment */
478 ws->workspace = start;
479 ws->workspaceEnd = (BYTE*)start + size;
480 ws->objectEnd = ws->workspace;
481 ws->tableValidEnd = ws->objectEnd;
482 ws->phase = ZSTD_cwksp_alloc_objects;
483 ws->isStatic = isStatic;
484 ZSTD_cwksp_clear(ws);
485 ws->workspaceOversizedDuration = 0;
486 ZSTD_cwksp_assert_internal_consistency(ws);
487 }
488
ZSTD_cwksp_create(ZSTD_cwksp * ws,size_t size,ZSTD_customMem customMem)489 MEM_STATIC size_t ZSTD_cwksp_create(ZSTD_cwksp* ws, size_t size, ZSTD_customMem customMem) {
490 void* workspace = ZSTD_customMalloc(size, customMem);
491 DEBUGLOG(4, "cwksp: creating new workspace with %zd bytes", size);
492 RETURN_ERROR_IF(workspace == NULL, memory_allocation, "NULL pointer!");
493 ZSTD_cwksp_init(ws, workspace, size, ZSTD_cwksp_dynamic_alloc);
494 return 0;
495 }
496
ZSTD_cwksp_free(ZSTD_cwksp * ws,ZSTD_customMem customMem)497 MEM_STATIC void ZSTD_cwksp_free(ZSTD_cwksp* ws, ZSTD_customMem customMem) {
498 void *ptr = ws->workspace;
499 DEBUGLOG(4, "cwksp: freeing workspace");
500 ZSTD_memset(ws, 0, sizeof(ZSTD_cwksp));
501 ZSTD_customFree(ptr, customMem);
502 }
503
504 /**
505 * Moves the management of a workspace from one cwksp to another. The src cwksp
506 * is left in an invalid state (src must be re-init()'ed before its used again).
507 */
ZSTD_cwksp_move(ZSTD_cwksp * dst,ZSTD_cwksp * src)508 MEM_STATIC void ZSTD_cwksp_move(ZSTD_cwksp* dst, ZSTD_cwksp* src) {
509 *dst = *src;
510 ZSTD_memset(src, 0, sizeof(ZSTD_cwksp));
511 }
512
ZSTD_cwksp_sizeof(const ZSTD_cwksp * ws)513 MEM_STATIC size_t ZSTD_cwksp_sizeof(const ZSTD_cwksp* ws) {
514 return (size_t)((BYTE*)ws->workspaceEnd - (BYTE*)ws->workspace);
515 }
516
ZSTD_cwksp_used(const ZSTD_cwksp * ws)517 MEM_STATIC size_t ZSTD_cwksp_used(const ZSTD_cwksp* ws) {
518 return (size_t)((BYTE*)ws->tableEnd - (BYTE*)ws->workspace)
519 + (size_t)((BYTE*)ws->workspaceEnd - (BYTE*)ws->allocStart);
520 }
521
ZSTD_cwksp_reserve_failed(const ZSTD_cwksp * ws)522 MEM_STATIC int ZSTD_cwksp_reserve_failed(const ZSTD_cwksp* ws) {
523 return ws->allocFailed;
524 }
525
526 /*-*************************************
527 * Functions Checking Free Space
528 ***************************************/
529
ZSTD_cwksp_available_space(ZSTD_cwksp * ws)530 MEM_STATIC size_t ZSTD_cwksp_available_space(ZSTD_cwksp* ws) {
531 return (size_t)((BYTE*)ws->allocStart - (BYTE*)ws->tableEnd);
532 }
533
ZSTD_cwksp_check_available(ZSTD_cwksp * ws,size_t additionalNeededSpace)534 MEM_STATIC int ZSTD_cwksp_check_available(ZSTD_cwksp* ws, size_t additionalNeededSpace) {
535 return ZSTD_cwksp_available_space(ws) >= additionalNeededSpace;
536 }
537
ZSTD_cwksp_check_too_large(ZSTD_cwksp * ws,size_t additionalNeededSpace)538 MEM_STATIC int ZSTD_cwksp_check_too_large(ZSTD_cwksp* ws, size_t additionalNeededSpace) {
539 return ZSTD_cwksp_check_available(
540 ws, additionalNeededSpace * ZSTD_WORKSPACETOOLARGE_FACTOR);
541 }
542
ZSTD_cwksp_check_wasteful(ZSTD_cwksp * ws,size_t additionalNeededSpace)543 MEM_STATIC int ZSTD_cwksp_check_wasteful(ZSTD_cwksp* ws, size_t additionalNeededSpace) {
544 return ZSTD_cwksp_check_too_large(ws, additionalNeededSpace)
545 && ws->workspaceOversizedDuration > ZSTD_WORKSPACETOOLARGE_MAXDURATION;
546 }
547
ZSTD_cwksp_bump_oversized_duration(ZSTD_cwksp * ws,size_t additionalNeededSpace)548 MEM_STATIC void ZSTD_cwksp_bump_oversized_duration(
549 ZSTD_cwksp* ws, size_t additionalNeededSpace) {
550 if (ZSTD_cwksp_check_too_large(ws, additionalNeededSpace)) {
551 ws->workspaceOversizedDuration++;
552 } else {
553 ws->workspaceOversizedDuration = 0;
554 }
555 }
556
557 #if defined (__cplusplus)
558 }
559 #endif
560
561 #endif /* ZSTD_CWKSP_H */
562