• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2012 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "art_method-inl.h"
18 #include "base/callee_save_type.h"
19 #include "base/enums.h"
20 #include "callee_save_frame.h"
21 #include "common_throws.h"
22 #include "class_root-inl.h"
23 #include "debug_print.h"
24 #include "debugger.h"
25 #include "dex/dex_file-inl.h"
26 #include "dex/dex_file_types.h"
27 #include "dex/dex_instruction-inl.h"
28 #include "dex/method_reference.h"
29 #include "entrypoints/entrypoint_utils-inl.h"
30 #include "entrypoints/quick/callee_save_frame.h"
31 #include "entrypoints/runtime_asm_entrypoints.h"
32 #include "gc/accounting/card_table-inl.h"
33 #include "imt_conflict_table.h"
34 #include "imtable-inl.h"
35 #include "instrumentation.h"
36 #include "interpreter/interpreter.h"
37 #include "interpreter/interpreter_common.h"
38 #include "interpreter/shadow_frame-inl.h"
39 #include "jit/jit.h"
40 #include "jit/jit_code_cache.h"
41 #include "linear_alloc.h"
42 #include "method_handles.h"
43 #include "mirror/class-inl.h"
44 #include "mirror/dex_cache-inl.h"
45 #include "mirror/method.h"
46 #include "mirror/method_handle_impl.h"
47 #include "mirror/object-inl.h"
48 #include "mirror/object_array-inl.h"
49 #include "mirror/var_handle.h"
50 #include "oat.h"
51 #include "oat_file.h"
52 #include "oat_quick_method_header.h"
53 #include "quick_exception_handler.h"
54 #include "runtime.h"
55 #include "scoped_thread_state_change-inl.h"
56 #include "stack.h"
57 #include "thread-inl.h"
58 #include "var_handles.h"
59 #include "well_known_classes.h"
60 
61 namespace art {
62 
63 // Visits the arguments as saved to the stack by a CalleeSaveType::kRefAndArgs callee save frame.
64 class QuickArgumentVisitor {
65   // Number of bytes for each out register in the caller method's frame.
66   static constexpr size_t kBytesStackArgLocation = 4;
67   // Frame size in bytes of a callee-save frame for RefsAndArgs.
68   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_FrameSize =
69       RuntimeCalleeSaveFrame::GetFrameSize(CalleeSaveType::kSaveRefsAndArgs);
70   // Offset of first GPR arg.
71   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset =
72       RuntimeCalleeSaveFrame::GetGpr1Offset(CalleeSaveType::kSaveRefsAndArgs);
73   // Offset of first FPR arg.
74   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset =
75       RuntimeCalleeSaveFrame::GetFpr1Offset(CalleeSaveType::kSaveRefsAndArgs);
76   // Offset of return address.
77   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_ReturnPcOffset =
78       RuntimeCalleeSaveFrame::GetReturnPcOffset(CalleeSaveType::kSaveRefsAndArgs);
79 #if defined(__arm__)
80   // The callee save frame is pointed to by SP.
81   // | argN       |  |
82   // | ...        |  |
83   // | arg4       |  |
84   // | arg3 spill |  |  Caller's frame
85   // | arg2 spill |  |
86   // | arg1 spill |  |
87   // | Method*    | ---
88   // | LR         |
89   // | ...        |    4x6 bytes callee saves
90   // | R3         |
91   // | R2         |
92   // | R1         |
93   // | S15        |
94   // | :          |
95   // | S0         |
96   // |            |    4x2 bytes padding
97   // | Method*    |  <- sp
98   static constexpr bool kSplitPairAcrossRegisterAndStack = false;
99   static constexpr bool kAlignPairRegister = true;
100   static constexpr bool kQuickSoftFloatAbi = false;
101   static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = true;
102   static constexpr bool kQuickSkipOddFpRegisters = false;
103   static constexpr size_t kNumQuickGprArgs = 3;
104   static constexpr size_t kNumQuickFprArgs = 16;
105   static constexpr bool kGprFprLockstep = false;
GprIndexToGprOffset(uint32_t gpr_index)106   static size_t GprIndexToGprOffset(uint32_t gpr_index) {
107     return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
108   }
109 #elif defined(__aarch64__)
110   // The callee save frame is pointed to by SP.
111   // | argN       |  |
112   // | ...        |  |
113   // | arg4       |  |
114   // | arg3 spill |  |  Caller's frame
115   // | arg2 spill |  |
116   // | arg1 spill |  |
117   // | Method*    | ---
118   // | LR         |
119   // | X29        |
120   // |  :         |
121   // | X20        |
122   // | X7         |
123   // | :          |
124   // | X1         |
125   // | D7         |
126   // |  :         |
127   // | D0         |
128   // |            |    padding
129   // | Method*    |  <- sp
130   static constexpr bool kSplitPairAcrossRegisterAndStack = false;
131   static constexpr bool kAlignPairRegister = false;
132   static constexpr bool kQuickSoftFloatAbi = false;  // This is a hard float ABI.
133   static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
134   static constexpr bool kQuickSkipOddFpRegisters = false;
135   static constexpr size_t kNumQuickGprArgs = 7;  // 7 arguments passed in GPRs.
136   static constexpr size_t kNumQuickFprArgs = 8;  // 8 arguments passed in FPRs.
137   static constexpr bool kGprFprLockstep = false;
GprIndexToGprOffset(uint32_t gpr_index)138   static size_t GprIndexToGprOffset(uint32_t gpr_index) {
139     return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
140   }
141 #elif defined(__i386__)
142   // The callee save frame is pointed to by SP.
143   // | argN        |  |
144   // | ...         |  |
145   // | arg4        |  |
146   // | arg3 spill  |  |  Caller's frame
147   // | arg2 spill  |  |
148   // | arg1 spill  |  |
149   // | Method*     | ---
150   // | Return      |
151   // | EBP,ESI,EDI |    callee saves
152   // | EBX         |    arg3
153   // | EDX         |    arg2
154   // | ECX         |    arg1
155   // | XMM3        |    float arg 4
156   // | XMM2        |    float arg 3
157   // | XMM1        |    float arg 2
158   // | XMM0        |    float arg 1
159   // | EAX/Method* |  <- sp
160   static constexpr bool kSplitPairAcrossRegisterAndStack = false;
161   static constexpr bool kAlignPairRegister = false;
162   static constexpr bool kQuickSoftFloatAbi = false;  // This is a hard float ABI.
163   static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
164   static constexpr bool kQuickSkipOddFpRegisters = false;
165   static constexpr size_t kNumQuickGprArgs = 3;  // 3 arguments passed in GPRs.
166   static constexpr size_t kNumQuickFprArgs = 4;  // 4 arguments passed in FPRs.
167   static constexpr bool kGprFprLockstep = false;
GprIndexToGprOffset(uint32_t gpr_index)168   static size_t GprIndexToGprOffset(uint32_t gpr_index) {
169     return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
170   }
171 #elif defined(__x86_64__)
172   // The callee save frame is pointed to by SP.
173   // | argN            |  |
174   // | ...             |  |
175   // | reg. arg spills |  |  Caller's frame
176   // | Method*         | ---
177   // | Return          |
178   // | R15             |    callee save
179   // | R14             |    callee save
180   // | R13             |    callee save
181   // | R12             |    callee save
182   // | R9              |    arg5
183   // | R8              |    arg4
184   // | RSI/R6          |    arg1
185   // | RBP/R5          |    callee save
186   // | RBX/R3          |    callee save
187   // | RDX/R2          |    arg2
188   // | RCX/R1          |    arg3
189   // | XMM7            |    float arg 8
190   // | XMM6            |    float arg 7
191   // | XMM5            |    float arg 6
192   // | XMM4            |    float arg 5
193   // | XMM3            |    float arg 4
194   // | XMM2            |    float arg 3
195   // | XMM1            |    float arg 2
196   // | XMM0            |    float arg 1
197   // | Padding         |
198   // | RDI/Method*     |  <- sp
199   static constexpr bool kSplitPairAcrossRegisterAndStack = false;
200   static constexpr bool kAlignPairRegister = false;
201   static constexpr bool kQuickSoftFloatAbi = false;  // This is a hard float ABI.
202   static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
203   static constexpr bool kQuickSkipOddFpRegisters = false;
204   static constexpr size_t kNumQuickGprArgs = 5;  // 5 arguments passed in GPRs.
205   static constexpr size_t kNumQuickFprArgs = 8;  // 8 arguments passed in FPRs.
206   static constexpr bool kGprFprLockstep = false;
GprIndexToGprOffset(uint32_t gpr_index)207   static size_t GprIndexToGprOffset(uint32_t gpr_index) {
208     switch (gpr_index) {
209       case 0: return (4 * GetBytesPerGprSpillLocation(kRuntimeISA));
210       case 1: return (1 * GetBytesPerGprSpillLocation(kRuntimeISA));
211       case 2: return (0 * GetBytesPerGprSpillLocation(kRuntimeISA));
212       case 3: return (5 * GetBytesPerGprSpillLocation(kRuntimeISA));
213       case 4: return (6 * GetBytesPerGprSpillLocation(kRuntimeISA));
214       default:
215       LOG(FATAL) << "Unexpected GPR index: " << gpr_index;
216       UNREACHABLE();
217     }
218   }
219 #else
220 #error "Unsupported architecture"
221 #endif
222 
223  public:
224   // Special handling for proxy methods. Proxy methods are instance methods so the
225   // 'this' object is the 1st argument. They also have the same frame layout as the
226   // kRefAndArgs runtime method. Since 'this' is a reference, it is located in the
227   // 1st GPR.
GetProxyThisObjectReference(ArtMethod ** sp)228   static StackReference<mirror::Object>* GetProxyThisObjectReference(ArtMethod** sp)
229       REQUIRES_SHARED(Locks::mutator_lock_) {
230     CHECK((*sp)->IsProxyMethod());
231     CHECK_GT(kNumQuickGprArgs, 0u);
232     constexpr uint32_t kThisGprIndex = 0u;  // 'this' is in the 1st GPR.
233     size_t this_arg_offset = kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset +
234         GprIndexToGprOffset(kThisGprIndex);
235     uint8_t* this_arg_address = reinterpret_cast<uint8_t*>(sp) + this_arg_offset;
236     return reinterpret_cast<StackReference<mirror::Object>*>(this_arg_address);
237   }
238 
GetCallingMethod(ArtMethod ** sp)239   static ArtMethod* GetCallingMethod(ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
240     DCHECK((*sp)->IsCalleeSaveMethod());
241     return GetCalleeSaveMethodCaller(sp, CalleeSaveType::kSaveRefsAndArgs);
242   }
243 
GetOuterMethod(ArtMethod ** sp)244   static ArtMethod* GetOuterMethod(ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
245     DCHECK((*sp)->IsCalleeSaveMethod());
246     uint8_t* previous_sp =
247         reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_FrameSize;
248     return *reinterpret_cast<ArtMethod**>(previous_sp);
249   }
250 
GetCallingDexPc(ArtMethod ** sp)251   static uint32_t GetCallingDexPc(ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
252     DCHECK((*sp)->IsCalleeSaveMethod());
253     constexpr size_t callee_frame_size =
254         RuntimeCalleeSaveFrame::GetFrameSize(CalleeSaveType::kSaveRefsAndArgs);
255     ArtMethod** caller_sp = reinterpret_cast<ArtMethod**>(
256         reinterpret_cast<uintptr_t>(sp) + callee_frame_size);
257     uintptr_t outer_pc = QuickArgumentVisitor::GetCallingPc(sp);
258     const OatQuickMethodHeader* current_code = (*caller_sp)->GetOatQuickMethodHeader(outer_pc);
259     uintptr_t outer_pc_offset = current_code->NativeQuickPcOffset(outer_pc);
260 
261     if (current_code->IsOptimized()) {
262       CodeInfo code_info = CodeInfo::DecodeInlineInfoOnly(current_code);
263       StackMap stack_map = code_info.GetStackMapForNativePcOffset(outer_pc_offset);
264       DCHECK(stack_map.IsValid());
265       BitTableRange<InlineInfo> inline_infos = code_info.GetInlineInfosOf(stack_map);
266       if (!inline_infos.empty()) {
267         return inline_infos.back().GetDexPc();
268       } else {
269         return stack_map.GetDexPc();
270       }
271     } else {
272       return current_code->ToDexPc(caller_sp, outer_pc);
273     }
274   }
275 
GetCallingPcAddr(ArtMethod ** sp)276   static uint8_t* GetCallingPcAddr(ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
277     DCHECK((*sp)->IsCalleeSaveMethod());
278     uint8_t* return_adress_spill =
279         reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_ReturnPcOffset;
280     return return_adress_spill;
281   }
282 
283   // For the given quick ref and args quick frame, return the caller's PC.
GetCallingPc(ArtMethod ** sp)284   static uintptr_t GetCallingPc(ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
285     return *reinterpret_cast<uintptr_t*>(GetCallingPcAddr(sp));
286   }
287 
QuickArgumentVisitor(ArtMethod ** sp,bool is_static,const char * shorty,uint32_t shorty_len)288   QuickArgumentVisitor(ArtMethod** sp, bool is_static, const char* shorty,
289                        uint32_t shorty_len) REQUIRES_SHARED(Locks::mutator_lock_) :
290           is_static_(is_static), shorty_(shorty), shorty_len_(shorty_len),
291           gpr_args_(reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset),
292           fpr_args_(reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset),
293           stack_args_(reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_FrameSize
294               + sizeof(ArtMethod*)),  // Skip ArtMethod*.
295           gpr_index_(0), fpr_index_(0), fpr_double_index_(0), stack_index_(0),
296           cur_type_(Primitive::kPrimVoid), is_split_long_or_double_(false) {
297     static_assert(kQuickSoftFloatAbi == (kNumQuickFprArgs == 0),
298                   "Number of Quick FPR arguments unexpected");
299     static_assert(!(kQuickSoftFloatAbi && kQuickDoubleRegAlignedFloatBackFilled),
300                   "Double alignment unexpected");
301     // For register alignment, we want to assume that counters(fpr_double_index_) are even if the
302     // next register is even.
303     static_assert(!kQuickDoubleRegAlignedFloatBackFilled || kNumQuickFprArgs % 2 == 0,
304                   "Number of Quick FPR arguments not even");
305     DCHECK_EQ(Runtime::Current()->GetClassLinker()->GetImagePointerSize(), kRuntimePointerSize);
306   }
307 
~QuickArgumentVisitor()308   virtual ~QuickArgumentVisitor() {}
309 
310   virtual void Visit() = 0;
311 
GetParamPrimitiveType() const312   Primitive::Type GetParamPrimitiveType() const {
313     return cur_type_;
314   }
315 
GetParamAddress() const316   uint8_t* GetParamAddress() const {
317     if (!kQuickSoftFloatAbi) {
318       Primitive::Type type = GetParamPrimitiveType();
319       if (UNLIKELY((type == Primitive::kPrimDouble) || (type == Primitive::kPrimFloat))) {
320         if (type == Primitive::kPrimDouble && kQuickDoubleRegAlignedFloatBackFilled) {
321           if (fpr_double_index_ + 2 < kNumQuickFprArgs + 1) {
322             return fpr_args_ + (fpr_double_index_ * GetBytesPerFprSpillLocation(kRuntimeISA));
323           }
324         } else if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
325           return fpr_args_ + (fpr_index_ * GetBytesPerFprSpillLocation(kRuntimeISA));
326         }
327         return stack_args_ + (stack_index_ * kBytesStackArgLocation);
328       }
329     }
330     if (gpr_index_ < kNumQuickGprArgs) {
331       return gpr_args_ + GprIndexToGprOffset(gpr_index_);
332     }
333     return stack_args_ + (stack_index_ * kBytesStackArgLocation);
334   }
335 
IsSplitLongOrDouble() const336   bool IsSplitLongOrDouble() const {
337     if ((GetBytesPerGprSpillLocation(kRuntimeISA) == 4) ||
338         (GetBytesPerFprSpillLocation(kRuntimeISA) == 4)) {
339       return is_split_long_or_double_;
340     } else {
341       return false;  // An optimization for when GPR and FPRs are 64bit.
342     }
343   }
344 
IsParamAReference() const345   bool IsParamAReference() const {
346     return GetParamPrimitiveType() == Primitive::kPrimNot;
347   }
348 
IsParamALongOrDouble() const349   bool IsParamALongOrDouble() const {
350     Primitive::Type type = GetParamPrimitiveType();
351     return type == Primitive::kPrimLong || type == Primitive::kPrimDouble;
352   }
353 
ReadSplitLongParam() const354   uint64_t ReadSplitLongParam() const {
355     // The splitted long is always available through the stack.
356     return *reinterpret_cast<uint64_t*>(stack_args_
357         + stack_index_ * kBytesStackArgLocation);
358   }
359 
IncGprIndex()360   void IncGprIndex() {
361     gpr_index_++;
362     if (kGprFprLockstep) {
363       fpr_index_++;
364     }
365   }
366 
IncFprIndex()367   void IncFprIndex() {
368     fpr_index_++;
369     if (kGprFprLockstep) {
370       gpr_index_++;
371     }
372   }
373 
VisitArguments()374   void VisitArguments() REQUIRES_SHARED(Locks::mutator_lock_) {
375     // (a) 'stack_args_' should point to the first method's argument
376     // (b) whatever the argument type it is, the 'stack_index_' should
377     //     be moved forward along with every visiting.
378     gpr_index_ = 0;
379     fpr_index_ = 0;
380     if (kQuickDoubleRegAlignedFloatBackFilled) {
381       fpr_double_index_ = 0;
382     }
383     stack_index_ = 0;
384     if (!is_static_) {  // Handle this.
385       cur_type_ = Primitive::kPrimNot;
386       is_split_long_or_double_ = false;
387       Visit();
388       stack_index_++;
389       if (kNumQuickGprArgs > 0) {
390         IncGprIndex();
391       }
392     }
393     for (uint32_t shorty_index = 1; shorty_index < shorty_len_; ++shorty_index) {
394       cur_type_ = Primitive::GetType(shorty_[shorty_index]);
395       switch (cur_type_) {
396         case Primitive::kPrimNot:
397         case Primitive::kPrimBoolean:
398         case Primitive::kPrimByte:
399         case Primitive::kPrimChar:
400         case Primitive::kPrimShort:
401         case Primitive::kPrimInt:
402           is_split_long_or_double_ = false;
403           Visit();
404           stack_index_++;
405           if (gpr_index_ < kNumQuickGprArgs) {
406             IncGprIndex();
407           }
408           break;
409         case Primitive::kPrimFloat:
410           is_split_long_or_double_ = false;
411           Visit();
412           stack_index_++;
413           if (kQuickSoftFloatAbi) {
414             if (gpr_index_ < kNumQuickGprArgs) {
415               IncGprIndex();
416             }
417           } else {
418             if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
419               IncFprIndex();
420               if (kQuickDoubleRegAlignedFloatBackFilled) {
421                 // Double should not overlap with float.
422                 // For example, if fpr_index_ = 3, fpr_double_index_ should be at least 4.
423                 fpr_double_index_ = std::max(fpr_double_index_, RoundUp(fpr_index_, 2));
424                 // Float should not overlap with double.
425                 if (fpr_index_ % 2 == 0) {
426                   fpr_index_ = std::max(fpr_double_index_, fpr_index_);
427                 }
428               } else if (kQuickSkipOddFpRegisters) {
429                 IncFprIndex();
430               }
431             }
432           }
433           break;
434         case Primitive::kPrimDouble:
435         case Primitive::kPrimLong:
436           if (kQuickSoftFloatAbi || (cur_type_ == Primitive::kPrimLong)) {
437             if (cur_type_ == Primitive::kPrimLong &&
438                 gpr_index_ == 0 &&
439                 kAlignPairRegister) {
440               // Currently, this is only for ARM, where we align long parameters with
441               // even-numbered registers by skipping R1 and using R2 instead.
442               IncGprIndex();
443             }
444             is_split_long_or_double_ = (GetBytesPerGprSpillLocation(kRuntimeISA) == 4) &&
445                 ((gpr_index_ + 1) == kNumQuickGprArgs);
446             if (!kSplitPairAcrossRegisterAndStack && is_split_long_or_double_) {
447               // We don't want to split this. Pass over this register.
448               gpr_index_++;
449               is_split_long_or_double_ = false;
450             }
451             Visit();
452             if (kBytesStackArgLocation == 4) {
453               stack_index_+= 2;
454             } else {
455               CHECK_EQ(kBytesStackArgLocation, 8U);
456               stack_index_++;
457             }
458             if (gpr_index_ < kNumQuickGprArgs) {
459               IncGprIndex();
460               if (GetBytesPerGprSpillLocation(kRuntimeISA) == 4) {
461                 if (gpr_index_ < kNumQuickGprArgs) {
462                   IncGprIndex();
463                 }
464               }
465             }
466           } else {
467             is_split_long_or_double_ = (GetBytesPerFprSpillLocation(kRuntimeISA) == 4) &&
468                 ((fpr_index_ + 1) == kNumQuickFprArgs) && !kQuickDoubleRegAlignedFloatBackFilled;
469             Visit();
470             if (kBytesStackArgLocation == 4) {
471               stack_index_+= 2;
472             } else {
473               CHECK_EQ(kBytesStackArgLocation, 8U);
474               stack_index_++;
475             }
476             if (kQuickDoubleRegAlignedFloatBackFilled) {
477               if (fpr_double_index_ + 2 < kNumQuickFprArgs + 1) {
478                 fpr_double_index_ += 2;
479                 // Float should not overlap with double.
480                 if (fpr_index_ % 2 == 0) {
481                   fpr_index_ = std::max(fpr_double_index_, fpr_index_);
482                 }
483               }
484             } else if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
485               IncFprIndex();
486               if (GetBytesPerFprSpillLocation(kRuntimeISA) == 4) {
487                 if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
488                   IncFprIndex();
489                 }
490               }
491             }
492           }
493           break;
494         default:
495           LOG(FATAL) << "Unexpected type: " << cur_type_ << " in " << shorty_;
496       }
497     }
498   }
499 
500  protected:
501   const bool is_static_;
502   const char* const shorty_;
503   const uint32_t shorty_len_;
504 
505  private:
506   uint8_t* const gpr_args_;  // Address of GPR arguments in callee save frame.
507   uint8_t* const fpr_args_;  // Address of FPR arguments in callee save frame.
508   uint8_t* const stack_args_;  // Address of stack arguments in caller's frame.
509   uint32_t gpr_index_;  // Index into spilled GPRs.
510   // Index into spilled FPRs.
511   // In case kQuickDoubleRegAlignedFloatBackFilled, it may index a hole while fpr_double_index_
512   // holds a higher register number.
513   uint32_t fpr_index_;
514   // Index into spilled FPRs for aligned double.
515   // Only used when kQuickDoubleRegAlignedFloatBackFilled. Next available double register indexed in
516   // terms of singles, may be behind fpr_index.
517   uint32_t fpr_double_index_;
518   uint32_t stack_index_;  // Index into arguments on the stack.
519   // The current type of argument during VisitArguments.
520   Primitive::Type cur_type_;
521   // Does a 64bit parameter straddle the register and stack arguments?
522   bool is_split_long_or_double_;
523 };
524 
525 // Returns the 'this' object of a proxy method. This function is only used by StackVisitor. It
526 // allows to use the QuickArgumentVisitor constants without moving all the code in its own module.
artQuickGetProxyThisObject(ArtMethod ** sp)527 extern "C" mirror::Object* artQuickGetProxyThisObject(ArtMethod** sp)
528     REQUIRES_SHARED(Locks::mutator_lock_) {
529   return QuickArgumentVisitor::GetProxyThisObjectReference(sp)->AsMirrorPtr();
530 }
531 
532 // Visits arguments on the stack placing them into the shadow frame.
533 class BuildQuickShadowFrameVisitor final : public QuickArgumentVisitor {
534  public:
BuildQuickShadowFrameVisitor(ArtMethod ** sp,bool is_static,const char * shorty,uint32_t shorty_len,ShadowFrame * sf,size_t first_arg_reg)535   BuildQuickShadowFrameVisitor(ArtMethod** sp, bool is_static, const char* shorty,
536                                uint32_t shorty_len, ShadowFrame* sf, size_t first_arg_reg) :
537       QuickArgumentVisitor(sp, is_static, shorty, shorty_len), sf_(sf), cur_reg_(first_arg_reg) {}
538 
539   void Visit() REQUIRES_SHARED(Locks::mutator_lock_) override;
540 
541  private:
542   ShadowFrame* const sf_;
543   uint32_t cur_reg_;
544 
545   DISALLOW_COPY_AND_ASSIGN(BuildQuickShadowFrameVisitor);
546 };
547 
Visit()548 void BuildQuickShadowFrameVisitor::Visit() {
549   Primitive::Type type = GetParamPrimitiveType();
550   switch (type) {
551     case Primitive::kPrimLong:  // Fall-through.
552     case Primitive::kPrimDouble:
553       if (IsSplitLongOrDouble()) {
554         sf_->SetVRegLong(cur_reg_, ReadSplitLongParam());
555       } else {
556         sf_->SetVRegLong(cur_reg_, *reinterpret_cast<jlong*>(GetParamAddress()));
557       }
558       ++cur_reg_;
559       break;
560     case Primitive::kPrimNot: {
561         StackReference<mirror::Object>* stack_ref =
562             reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
563         sf_->SetVRegReference(cur_reg_, stack_ref->AsMirrorPtr());
564       }
565       break;
566     case Primitive::kPrimBoolean:  // Fall-through.
567     case Primitive::kPrimByte:     // Fall-through.
568     case Primitive::kPrimChar:     // Fall-through.
569     case Primitive::kPrimShort:    // Fall-through.
570     case Primitive::kPrimInt:      // Fall-through.
571     case Primitive::kPrimFloat:
572       sf_->SetVReg(cur_reg_, *reinterpret_cast<jint*>(GetParamAddress()));
573       break;
574     case Primitive::kPrimVoid:
575       LOG(FATAL) << "UNREACHABLE";
576       UNREACHABLE();
577   }
578   ++cur_reg_;
579 }
580 
581 // Don't inline. See b/65159206.
582 NO_INLINE
HandleDeoptimization(JValue * result,ArtMethod * method,ShadowFrame * deopt_frame,ManagedStack * fragment)583 static void HandleDeoptimization(JValue* result,
584                                  ArtMethod* method,
585                                  ShadowFrame* deopt_frame,
586                                  ManagedStack* fragment)
587     REQUIRES_SHARED(Locks::mutator_lock_) {
588   // Coming from partial-fragment deopt.
589   Thread* self = Thread::Current();
590   if (kIsDebugBuild) {
591     // Consistency-check: are the methods as expected? We check that the last shadow frame
592     // (the bottom of the call-stack) corresponds to the called method.
593     ShadowFrame* linked = deopt_frame;
594     while (linked->GetLink() != nullptr) {
595       linked = linked->GetLink();
596     }
597     CHECK_EQ(method, linked->GetMethod()) << method->PrettyMethod() << " "
598         << ArtMethod::PrettyMethod(linked->GetMethod());
599   }
600 
601   if (VLOG_IS_ON(deopt)) {
602     // Print out the stack to verify that it was a partial-fragment deopt.
603     LOG(INFO) << "Continue-ing from deopt. Stack is:";
604     QuickExceptionHandler::DumpFramesWithType(self, true);
605   }
606 
607   ObjPtr<mirror::Throwable> pending_exception;
608   bool from_code = false;
609   DeoptimizationMethodType method_type;
610   self->PopDeoptimizationContext(/* out */ result,
611                                  /* out */ &pending_exception,
612                                  /* out */ &from_code,
613                                  /* out */ &method_type);
614 
615   // Push a transition back into managed code onto the linked list in thread.
616   self->PushManagedStackFragment(fragment);
617 
618   // Ensure that the stack is still in order.
619   if (kIsDebugBuild) {
620     class EntireStackVisitor : public StackVisitor {
621      public:
622       explicit EntireStackVisitor(Thread* self_in) REQUIRES_SHARED(Locks::mutator_lock_)
623           : StackVisitor(self_in, nullptr, StackVisitor::StackWalkKind::kIncludeInlinedFrames) {}
624 
625       bool VisitFrame() override REQUIRES_SHARED(Locks::mutator_lock_) {
626         // Nothing to do here. In a debug build, ValidateFrame will do the work in the walking
627         // logic. Just always say we want to continue.
628         return true;
629       }
630     };
631     EntireStackVisitor esv(self);
632     esv.WalkStack();
633   }
634 
635   // Restore the exception that was pending before deoptimization then interpret the
636   // deoptimized frames.
637   if (pending_exception != nullptr) {
638     self->SetException(pending_exception);
639   }
640   interpreter::EnterInterpreterFromDeoptimize(self,
641                                               deopt_frame,
642                                               result,
643                                               from_code,
644                                               DeoptimizationMethodType::kDefault);
645 }
646 
artQuickToInterpreterBridge(ArtMethod * method,Thread * self,ArtMethod ** sp)647 extern "C" uint64_t artQuickToInterpreterBridge(ArtMethod* method, Thread* self, ArtMethod** sp)
648     REQUIRES_SHARED(Locks::mutator_lock_) {
649   // Ensure we don't get thread suspension until the object arguments are safely in the shadow
650   // frame.
651   ScopedQuickEntrypointChecks sqec(self);
652 
653   if (UNLIKELY(!method->IsInvokable())) {
654     method->ThrowInvocationTimeError();
655     return 0;
656   }
657 
658   JValue tmp_value;
659   ShadowFrame* deopt_frame = self->PopStackedShadowFrame(
660       StackedShadowFrameType::kDeoptimizationShadowFrame, false);
661   ManagedStack fragment;
662 
663   DCHECK(!method->IsNative()) << method->PrettyMethod();
664   uint32_t shorty_len = 0;
665   ArtMethod* non_proxy_method = method->GetInterfaceMethodIfProxy(kRuntimePointerSize);
666   DCHECK(non_proxy_method->GetCodeItem() != nullptr) << method->PrettyMethod();
667   CodeItemDataAccessor accessor(non_proxy_method->DexInstructionData());
668   const char* shorty = non_proxy_method->GetShorty(&shorty_len);
669 
670   JValue result;
671   bool force_frame_pop = false;
672 
673   if (UNLIKELY(deopt_frame != nullptr)) {
674     HandleDeoptimization(&result, method, deopt_frame, &fragment);
675   } else {
676     const char* old_cause = self->StartAssertNoThreadSuspension(
677         "Building interpreter shadow frame");
678     uint16_t num_regs = accessor.RegistersSize();
679     // No last shadow coming from quick.
680     ShadowFrameAllocaUniquePtr shadow_frame_unique_ptr =
681         CREATE_SHADOW_FRAME(num_regs, /* link= */ nullptr, method, /* dex_pc= */ 0);
682     ShadowFrame* shadow_frame = shadow_frame_unique_ptr.get();
683     size_t first_arg_reg = accessor.RegistersSize() - accessor.InsSize();
684     BuildQuickShadowFrameVisitor shadow_frame_builder(sp, method->IsStatic(), shorty, shorty_len,
685                                                       shadow_frame, first_arg_reg);
686     shadow_frame_builder.VisitArguments();
687     // Push a transition back into managed code onto the linked list in thread.
688     self->PushManagedStackFragment(&fragment);
689     self->PushShadowFrame(shadow_frame);
690     self->EndAssertNoThreadSuspension(old_cause);
691 
692     if (NeedsClinitCheckBeforeCall(method)) {
693       ObjPtr<mirror::Class> declaring_class = method->GetDeclaringClass();
694       if (UNLIKELY(!declaring_class->IsVisiblyInitialized())) {
695         // Ensure static method's class is initialized.
696         StackHandleScope<1> hs(self);
697         Handle<mirror::Class> h_class(hs.NewHandle(declaring_class));
698         if (!Runtime::Current()->GetClassLinker()->EnsureInitialized(self, h_class, true, true)) {
699           DCHECK(Thread::Current()->IsExceptionPending()) << method->PrettyMethod();
700           self->PopManagedStackFragment(fragment);
701           return 0;
702         }
703       }
704     }
705 
706     result = interpreter::EnterInterpreterFromEntryPoint(self, accessor, shadow_frame);
707     force_frame_pop = shadow_frame->GetForcePopFrame();
708   }
709 
710   // Pop transition.
711   self->PopManagedStackFragment(fragment);
712 
713   // Request a stack deoptimization if needed
714   ArtMethod* caller = QuickArgumentVisitor::GetCallingMethod(sp);
715   uintptr_t caller_pc = QuickArgumentVisitor::GetCallingPc(sp);
716   // If caller_pc is the instrumentation exit stub, the stub will check to see if deoptimization
717   // should be done and it knows the real return pc. NB If the upcall is null we don't need to do
718   // anything. This can happen during shutdown or early startup.
719   if (UNLIKELY(
720           caller != nullptr &&
721           caller_pc != reinterpret_cast<uintptr_t>(GetQuickInstrumentationExitPc()) &&
722           (self->IsForceInterpreter() || Dbg::IsForcedInterpreterNeededForUpcall(self, caller)))) {
723     if (!Runtime::Current()->IsAsyncDeoptimizeable(caller_pc)) {
724       LOG(WARNING) << "Got a deoptimization request on un-deoptimizable method "
725                    << caller->PrettyMethod();
726     } else {
727       VLOG(deopt) << "Forcing deoptimization on return from method " << method->PrettyMethod()
728                   << " to " << caller->PrettyMethod()
729                   << (force_frame_pop ? " for frame-pop" : "");
730       DCHECK(!force_frame_pop || result.GetJ() == 0) << "Force frame pop should have no result.";
731       if (force_frame_pop && self->GetException() != nullptr) {
732         LOG(WARNING) << "Suppressing exception for instruction-retry: "
733                      << self->GetException()->Dump();
734       }
735       // Push the context of the deoptimization stack so we can restore the return value and the
736       // exception before executing the deoptimized frames.
737       self->PushDeoptimizationContext(
738           result,
739           shorty[0] == 'L' || shorty[0] == '[',  /* class or array */
740           force_frame_pop ? nullptr : self->GetException(),
741           /* from_code= */ false,
742           DeoptimizationMethodType::kDefault);
743 
744       // Set special exception to cause deoptimization.
745       self->SetException(Thread::GetDeoptimizationException());
746     }
747   }
748 
749   // No need to restore the args since the method has already been run by the interpreter.
750   return result.GetJ();
751 }
752 
753 // Visits arguments on the stack placing them into the args vector, Object* arguments are converted
754 // to jobjects.
755 class BuildQuickArgumentVisitor final : public QuickArgumentVisitor {
756  public:
BuildQuickArgumentVisitor(ArtMethod ** sp,bool is_static,const char * shorty,uint32_t shorty_len,ScopedObjectAccessUnchecked * soa,std::vector<jvalue> * args)757   BuildQuickArgumentVisitor(ArtMethod** sp, bool is_static, const char* shorty, uint32_t shorty_len,
758                             ScopedObjectAccessUnchecked* soa, std::vector<jvalue>* args) :
759       QuickArgumentVisitor(sp, is_static, shorty, shorty_len), soa_(soa), args_(args) {}
760 
761   void Visit() REQUIRES_SHARED(Locks::mutator_lock_) override;
762 
763  private:
764   ScopedObjectAccessUnchecked* const soa_;
765   std::vector<jvalue>* const args_;
766 
767   DISALLOW_COPY_AND_ASSIGN(BuildQuickArgumentVisitor);
768 };
769 
Visit()770 void BuildQuickArgumentVisitor::Visit() {
771   jvalue val;
772   Primitive::Type type = GetParamPrimitiveType();
773   switch (type) {
774     case Primitive::kPrimNot: {
775       StackReference<mirror::Object>* stack_ref =
776           reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
777       val.l = soa_->AddLocalReference<jobject>(stack_ref->AsMirrorPtr());
778       break;
779     }
780     case Primitive::kPrimLong:  // Fall-through.
781     case Primitive::kPrimDouble:
782       if (IsSplitLongOrDouble()) {
783         val.j = ReadSplitLongParam();
784       } else {
785         val.j = *reinterpret_cast<jlong*>(GetParamAddress());
786       }
787       break;
788     case Primitive::kPrimBoolean:  // Fall-through.
789     case Primitive::kPrimByte:     // Fall-through.
790     case Primitive::kPrimChar:     // Fall-through.
791     case Primitive::kPrimShort:    // Fall-through.
792     case Primitive::kPrimInt:      // Fall-through.
793     case Primitive::kPrimFloat:
794       val.i = *reinterpret_cast<jint*>(GetParamAddress());
795       break;
796     case Primitive::kPrimVoid:
797       LOG(FATAL) << "UNREACHABLE";
798       UNREACHABLE();
799   }
800   args_->push_back(val);
801 }
802 
803 // Handler for invocation on proxy methods. On entry a frame will exist for the proxy object method
804 // which is responsible for recording callee save registers. We explicitly place into jobjects the
805 // incoming reference arguments (so they survive GC). We invoke the invocation handler, which is a
806 // field within the proxy object, which will box the primitive arguments and deal with error cases.
artQuickProxyInvokeHandler(ArtMethod * proxy_method,mirror::Object * receiver,Thread * self,ArtMethod ** sp)807 extern "C" uint64_t artQuickProxyInvokeHandler(
808     ArtMethod* proxy_method, mirror::Object* receiver, Thread* self, ArtMethod** sp)
809     REQUIRES_SHARED(Locks::mutator_lock_) {
810   DCHECK(proxy_method->IsProxyMethod()) << proxy_method->PrettyMethod();
811   DCHECK(receiver->GetClass()->IsProxyClass()) << proxy_method->PrettyMethod();
812   // Ensure we don't get thread suspension until the object arguments are safely in jobjects.
813   const char* old_cause =
814       self->StartAssertNoThreadSuspension("Adding to IRT proxy object arguments");
815   // Register the top of the managed stack, making stack crawlable.
816   DCHECK_EQ((*sp), proxy_method) << proxy_method->PrettyMethod();
817   self->VerifyStack();
818   // Start new JNI local reference state.
819   JNIEnvExt* env = self->GetJniEnv();
820   ScopedObjectAccessUnchecked soa(env);
821   ScopedJniEnvLocalRefState env_state(env);
822   // Create local ref. copies of proxy method and the receiver.
823   jobject rcvr_jobj = soa.AddLocalReference<jobject>(receiver);
824 
825   // Placing arguments into args vector and remove the receiver.
826   ArtMethod* non_proxy_method = proxy_method->GetInterfaceMethodIfProxy(kRuntimePointerSize);
827   CHECK(!non_proxy_method->IsStatic()) << proxy_method->PrettyMethod() << " "
828                                        << non_proxy_method->PrettyMethod();
829   std::vector<jvalue> args;
830   uint32_t shorty_len = 0;
831   const char* shorty = non_proxy_method->GetShorty(&shorty_len);
832   BuildQuickArgumentVisitor local_ref_visitor(
833       sp, /* is_static= */ false, shorty, shorty_len, &soa, &args);
834 
835   local_ref_visitor.VisitArguments();
836   DCHECK_GT(args.size(), 0U) << proxy_method->PrettyMethod();
837   args.erase(args.begin());
838 
839   // Convert proxy method into expected interface method.
840   ArtMethod* interface_method = proxy_method->FindOverriddenMethod(kRuntimePointerSize);
841   DCHECK(interface_method != nullptr) << proxy_method->PrettyMethod();
842   DCHECK(!interface_method->IsProxyMethod()) << interface_method->PrettyMethod();
843   self->EndAssertNoThreadSuspension(old_cause);
844   DCHECK_EQ(Runtime::Current()->GetClassLinker()->GetImagePointerSize(), kRuntimePointerSize);
845   DCHECK(!Runtime::Current()->IsActiveTransaction());
846   ObjPtr<mirror::Method> interface_reflect_method =
847       mirror::Method::CreateFromArtMethod<kRuntimePointerSize>(soa.Self(), interface_method);
848   if (interface_reflect_method == nullptr) {
849     soa.Self()->AssertPendingOOMException();
850     return 0;
851   }
852   jobject interface_method_jobj = soa.AddLocalReference<jobject>(interface_reflect_method);
853 
854   // All naked Object*s should now be in jobjects, so its safe to go into the main invoke code
855   // that performs allocations or instrumentation events.
856   instrumentation::Instrumentation* instr = Runtime::Current()->GetInstrumentation();
857   if (instr->HasMethodEntryListeners()) {
858     instr->MethodEnterEvent(soa.Self(),
859                             soa.Decode<mirror::Object>(rcvr_jobj),
860                             proxy_method,
861                             0);
862     if (soa.Self()->IsExceptionPending()) {
863       instr->MethodUnwindEvent(self,
864                                soa.Decode<mirror::Object>(rcvr_jobj),
865                                proxy_method,
866                                0);
867       return 0;
868     }
869   }
870   JValue result = InvokeProxyInvocationHandler(soa, shorty, rcvr_jobj, interface_method_jobj, args);
871   if (soa.Self()->IsExceptionPending()) {
872     if (instr->HasMethodUnwindListeners()) {
873       instr->MethodUnwindEvent(self,
874                                soa.Decode<mirror::Object>(rcvr_jobj),
875                                proxy_method,
876                                0);
877     }
878   } else if (instr->HasMethodExitListeners()) {
879     instr->MethodExitEvent(self,
880                            soa.Decode<mirror::Object>(rcvr_jobj),
881                            proxy_method,
882                            0,
883                            {},
884                            result);
885   }
886   return result.GetJ();
887 }
888 
889 // Visitor returning a reference argument at a given position in a Quick stack frame.
890 // NOTE: Only used for testing purposes.
891 class GetQuickReferenceArgumentAtVisitor final : public QuickArgumentVisitor {
892  public:
GetQuickReferenceArgumentAtVisitor(ArtMethod ** sp,const char * shorty,uint32_t shorty_len,size_t arg_pos)893   GetQuickReferenceArgumentAtVisitor(ArtMethod** sp,
894                                      const char* shorty,
895                                      uint32_t shorty_len,
896                                      size_t arg_pos)
897       : QuickArgumentVisitor(sp, /* is_static= */ false, shorty, shorty_len),
898         cur_pos_(0u),
899         arg_pos_(arg_pos),
900         ref_arg_(nullptr) {
901           CHECK_LT(arg_pos, shorty_len) << "Argument position greater than the number arguments";
902         }
903 
Visit()904   void Visit() REQUIRES_SHARED(Locks::mutator_lock_) override {
905     if (cur_pos_ == arg_pos_) {
906       Primitive::Type type = GetParamPrimitiveType();
907       CHECK_EQ(type, Primitive::kPrimNot) << "Argument at searched position is not a reference";
908       ref_arg_ = reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
909     }
910     ++cur_pos_;
911   }
912 
GetReferenceArgument()913   StackReference<mirror::Object>* GetReferenceArgument() {
914     return ref_arg_;
915   }
916 
917  private:
918   // The position of the currently visited argument.
919   size_t cur_pos_;
920   // The position of the searched argument.
921   const size_t arg_pos_;
922   // The reference argument, if found.
923   StackReference<mirror::Object>* ref_arg_;
924 
925   DISALLOW_COPY_AND_ASSIGN(GetQuickReferenceArgumentAtVisitor);
926 };
927 
928 // Returning reference argument at position `arg_pos` in Quick stack frame at address `sp`.
929 // NOTE: Only used for testing purposes.
artQuickGetProxyReferenceArgumentAt(size_t arg_pos,ArtMethod ** sp)930 extern "C" StackReference<mirror::Object>* artQuickGetProxyReferenceArgumentAt(size_t arg_pos,
931                                                                                ArtMethod** sp)
932     REQUIRES_SHARED(Locks::mutator_lock_) {
933   ArtMethod* proxy_method = *sp;
934   ArtMethod* non_proxy_method = proxy_method->GetInterfaceMethodIfProxy(kRuntimePointerSize);
935   CHECK(!non_proxy_method->IsStatic())
936       << proxy_method->PrettyMethod() << " " << non_proxy_method->PrettyMethod();
937   uint32_t shorty_len = 0;
938   const char* shorty = non_proxy_method->GetShorty(&shorty_len);
939   GetQuickReferenceArgumentAtVisitor ref_arg_visitor(sp, shorty, shorty_len, arg_pos);
940   ref_arg_visitor.VisitArguments();
941   StackReference<mirror::Object>* ref_arg = ref_arg_visitor.GetReferenceArgument();
942   return ref_arg;
943 }
944 
945 // Visitor returning all the reference arguments in a Quick stack frame.
946 class GetQuickReferenceArgumentsVisitor final : public QuickArgumentVisitor {
947  public:
GetQuickReferenceArgumentsVisitor(ArtMethod ** sp,bool is_static,const char * shorty,uint32_t shorty_len)948   GetQuickReferenceArgumentsVisitor(ArtMethod** sp,
949                                     bool is_static,
950                                     const char* shorty,
951                                     uint32_t shorty_len)
952       : QuickArgumentVisitor(sp, is_static, shorty, shorty_len) {}
953 
Visit()954   void Visit() REQUIRES_SHARED(Locks::mutator_lock_) override {
955     Primitive::Type type = GetParamPrimitiveType();
956     if (type == Primitive::kPrimNot) {
957       StackReference<mirror::Object>* ref_arg =
958           reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
959       ref_args_.push_back(ref_arg);
960     }
961   }
962 
GetReferenceArguments()963   std::vector<StackReference<mirror::Object>*> GetReferenceArguments() {
964     return ref_args_;
965   }
966 
967  private:
968   // The reference arguments.
969   std::vector<StackReference<mirror::Object>*> ref_args_;
970 
971   DISALLOW_COPY_AND_ASSIGN(GetQuickReferenceArgumentsVisitor);
972 };
973 
974 // Returning all reference arguments in Quick stack frame at address `sp`.
GetProxyReferenceArguments(ArtMethod ** sp)975 std::vector<StackReference<mirror::Object>*> GetProxyReferenceArguments(ArtMethod** sp)
976     REQUIRES_SHARED(Locks::mutator_lock_) {
977   ArtMethod* proxy_method = *sp;
978   ArtMethod* non_proxy_method = proxy_method->GetInterfaceMethodIfProxy(kRuntimePointerSize);
979   CHECK(!non_proxy_method->IsStatic())
980       << proxy_method->PrettyMethod() << " " << non_proxy_method->PrettyMethod();
981   uint32_t shorty_len = 0;
982   const char* shorty = non_proxy_method->GetShorty(&shorty_len);
983   GetQuickReferenceArgumentsVisitor ref_args_visitor(sp, /*is_static=*/ false, shorty, shorty_len);
984   ref_args_visitor.VisitArguments();
985   std::vector<StackReference<mirror::Object>*> ref_args = ref_args_visitor.GetReferenceArguments();
986   return ref_args;
987 }
988 
989 // Read object references held in arguments from quick frames and place in a JNI local references,
990 // so they don't get garbage collected.
991 class RememberForGcArgumentVisitor final : public QuickArgumentVisitor {
992  public:
RememberForGcArgumentVisitor(ArtMethod ** sp,bool is_static,const char * shorty,uint32_t shorty_len,ScopedObjectAccessUnchecked * soa)993   RememberForGcArgumentVisitor(ArtMethod** sp, bool is_static, const char* shorty,
994                                uint32_t shorty_len, ScopedObjectAccessUnchecked* soa) :
995       QuickArgumentVisitor(sp, is_static, shorty, shorty_len), soa_(soa) {}
996 
997   void Visit() REQUIRES_SHARED(Locks::mutator_lock_) override;
998 
999   void FixupReferences() REQUIRES_SHARED(Locks::mutator_lock_);
1000 
1001  private:
1002   ScopedObjectAccessUnchecked* const soa_;
1003   // References which we must update when exiting in case the GC moved the objects.
1004   std::vector<std::pair<jobject, StackReference<mirror::Object>*> > references_;
1005 
1006   DISALLOW_COPY_AND_ASSIGN(RememberForGcArgumentVisitor);
1007 };
1008 
Visit()1009 void RememberForGcArgumentVisitor::Visit() {
1010   if (IsParamAReference()) {
1011     StackReference<mirror::Object>* stack_ref =
1012         reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
1013     jobject reference =
1014         soa_->AddLocalReference<jobject>(stack_ref->AsMirrorPtr());
1015     references_.push_back(std::make_pair(reference, stack_ref));
1016   }
1017 }
1018 
FixupReferences()1019 void RememberForGcArgumentVisitor::FixupReferences() {
1020   // Fixup any references which may have changed.
1021   for (const auto& pair : references_) {
1022     pair.second->Assign(soa_->Decode<mirror::Object>(pair.first));
1023     soa_->Env()->DeleteLocalRef(pair.first);
1024   }
1025 }
1026 
artInstrumentationMethodEntryFromCode(ArtMethod * method,mirror::Object * this_object,Thread * self,ArtMethod ** sp)1027 extern "C" const void* artInstrumentationMethodEntryFromCode(ArtMethod* method,
1028                                                              mirror::Object* this_object,
1029                                                              Thread* self,
1030                                                              ArtMethod** sp)
1031     REQUIRES_SHARED(Locks::mutator_lock_) {
1032   const void* result;
1033   // Instrumentation changes the stack. Thus, when exiting, the stack cannot be verified, so skip
1034   // that part.
1035   ScopedQuickEntrypointChecks sqec(self, kIsDebugBuild, false);
1036   instrumentation::Instrumentation* instrumentation = Runtime::Current()->GetInstrumentation();
1037   DCHECK(!method->IsProxyMethod())
1038       << "Proxy method " << method->PrettyMethod()
1039       << " (declaring class: " << method->GetDeclaringClass()->PrettyClass() << ")"
1040       << " should not hit instrumentation entrypoint.";
1041   if (instrumentation->IsDeoptimized(method)) {
1042     result = GetQuickToInterpreterBridge();
1043   } else {
1044     // This will get the entry point either from the oat file, the JIT or the appropriate bridge
1045     // method if none of those can be found.
1046     result = instrumentation->GetCodeForInvoke(method);
1047     jit::Jit* jit = Runtime::Current()->GetJit();
1048     DCHECK_NE(result, GetQuickInstrumentationEntryPoint()) << method->PrettyMethod();
1049     DCHECK(jit == nullptr ||
1050            // Native methods come through here in Interpreter entrypoints. We might not have
1051            // disabled jit-gc but that is fine since we won't return jit-code for native methods.
1052            method->IsNative() ||
1053            !jit->GetCodeCache()->GetGarbageCollectCode());
1054     DCHECK(!method->IsNative() ||
1055            jit == nullptr ||
1056            !jit->GetCodeCache()->ContainsPc(result))
1057         << method->PrettyMethod() << " code will jump to possibly cleaned up jit code!";
1058   }
1059 
1060   bool interpreter_entry = (result == GetQuickToInterpreterBridge());
1061   bool is_static = method->IsStatic();
1062   uint32_t shorty_len;
1063   const char* shorty =
1064       method->GetInterfaceMethodIfProxy(kRuntimePointerSize)->GetShorty(&shorty_len);
1065 
1066   ScopedObjectAccessUnchecked soa(self);
1067   RememberForGcArgumentVisitor visitor(sp, is_static, shorty, shorty_len, &soa);
1068   visitor.VisitArguments();
1069 
1070   instrumentation->PushInstrumentationStackFrame(self,
1071                                                  is_static ? nullptr : this_object,
1072                                                  method,
1073                                                  reinterpret_cast<uintptr_t>(
1074                                                      QuickArgumentVisitor::GetCallingPcAddr(sp)),
1075                                                  QuickArgumentVisitor::GetCallingPc(sp),
1076                                                  interpreter_entry);
1077 
1078   visitor.FixupReferences();
1079   if (UNLIKELY(self->IsExceptionPending())) {
1080     return nullptr;
1081   }
1082   CHECK(result != nullptr) << method->PrettyMethod();
1083   return result;
1084 }
1085 
artInstrumentationMethodExitFromCode(Thread * self,ArtMethod ** sp,uint64_t * gpr_result,uint64_t * fpr_result)1086 extern "C" TwoWordReturn artInstrumentationMethodExitFromCode(Thread* self,
1087                                                               ArtMethod** sp,
1088                                                               uint64_t* gpr_result,
1089                                                               uint64_t* fpr_result)
1090     REQUIRES_SHARED(Locks::mutator_lock_) {
1091   DCHECK_EQ(reinterpret_cast<uintptr_t>(self), reinterpret_cast<uintptr_t>(Thread::Current()));
1092   CHECK(gpr_result != nullptr);
1093   CHECK(fpr_result != nullptr);
1094   // Instrumentation exit stub must not be entered with a pending exception.
1095   CHECK(!self->IsExceptionPending()) << "Enter instrumentation exit stub with pending exception "
1096                                      << self->GetException()->Dump();
1097   // Compute address of return PC and check that it currently holds 0.
1098   constexpr size_t return_pc_offset =
1099       RuntimeCalleeSaveFrame::GetReturnPcOffset(CalleeSaveType::kSaveEverything);
1100   uintptr_t* return_pc_addr = reinterpret_cast<uintptr_t*>(reinterpret_cast<uint8_t*>(sp) +
1101                                                            return_pc_offset);
1102   CHECK_EQ(*return_pc_addr, 0U);
1103 
1104   // Pop the frame filling in the return pc. The low half of the return value is 0 when
1105   // deoptimization shouldn't be performed with the high-half having the return address. When
1106   // deoptimization should be performed the low half is zero and the high-half the address of the
1107   // deoptimization entry point.
1108   instrumentation::Instrumentation* instrumentation = Runtime::Current()->GetInstrumentation();
1109   TwoWordReturn return_or_deoptimize_pc = instrumentation->PopInstrumentationStackFrame(
1110       self, return_pc_addr, gpr_result, fpr_result);
1111   if (self->IsExceptionPending() || self->ObserveAsyncException()) {
1112     return GetTwoWordFailureValue();
1113   }
1114   return return_or_deoptimize_pc;
1115 }
1116 
DumpInstruction(ArtMethod * method,uint32_t dex_pc)1117 static std::string DumpInstruction(ArtMethod* method, uint32_t dex_pc)
1118     REQUIRES_SHARED(Locks::mutator_lock_) {
1119   if (dex_pc == static_cast<uint32_t>(-1)) {
1120     CHECK(method == jni::DecodeArtMethod(WellKnownClasses::java_lang_String_charAt));
1121     return "<native>";
1122   } else {
1123     CodeItemInstructionAccessor accessor = method->DexInstructions();
1124     CHECK_LT(dex_pc, accessor.InsnsSizeInCodeUnits());
1125     return accessor.InstructionAt(dex_pc).DumpString(method->GetDexFile());
1126   }
1127 }
1128 
DumpB74410240ClassData(ObjPtr<mirror::Class> klass)1129 static void DumpB74410240ClassData(ObjPtr<mirror::Class> klass)
1130     REQUIRES_SHARED(Locks::mutator_lock_) {
1131   std::string storage;
1132   const char* descriptor = klass->GetDescriptor(&storage);
1133   LOG(FATAL_WITHOUT_ABORT) << "  " << DescribeLoaders(klass->GetClassLoader(), descriptor);
1134   const OatDexFile* oat_dex_file = klass->GetDexFile().GetOatDexFile();
1135   if (oat_dex_file != nullptr) {
1136     const OatFile* oat_file = oat_dex_file->GetOatFile();
1137     const char* dex2oat_cmdline =
1138         oat_file->GetOatHeader().GetStoreValueByKey(OatHeader::kDex2OatCmdLineKey);
1139     LOG(FATAL_WITHOUT_ABORT) << "    OatFile: " << oat_file->GetLocation()
1140         << "; " << (dex2oat_cmdline != nullptr ? dex2oat_cmdline : "<not recorded>");
1141   }
1142 }
1143 
DumpB74410240DebugData(ArtMethod ** sp)1144 static void DumpB74410240DebugData(ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
1145   // Mimick the search for the caller and dump some data while doing so.
1146   LOG(FATAL_WITHOUT_ABORT) << "Dumping debugging data, please attach a bugreport to b/74410240.";
1147 
1148   constexpr CalleeSaveType type = CalleeSaveType::kSaveRefsAndArgs;
1149   CHECK_EQ(*sp, Runtime::Current()->GetCalleeSaveMethod(type));
1150 
1151   constexpr size_t callee_frame_size = RuntimeCalleeSaveFrame::GetFrameSize(type);
1152   auto** caller_sp = reinterpret_cast<ArtMethod**>(
1153       reinterpret_cast<uintptr_t>(sp) + callee_frame_size);
1154   constexpr size_t callee_return_pc_offset = RuntimeCalleeSaveFrame::GetReturnPcOffset(type);
1155   uintptr_t caller_pc = *reinterpret_cast<uintptr_t*>(
1156       (reinterpret_cast<uint8_t*>(sp) + callee_return_pc_offset));
1157   ArtMethod* outer_method = *caller_sp;
1158 
1159   if (UNLIKELY(caller_pc == reinterpret_cast<uintptr_t>(GetQuickInstrumentationExitPc()))) {
1160     LOG(FATAL_WITHOUT_ABORT) << "Method: " << outer_method->PrettyMethod()
1161         << " native pc: " << caller_pc << " Instrumented!";
1162     return;
1163   }
1164 
1165   const OatQuickMethodHeader* current_code = outer_method->GetOatQuickMethodHeader(caller_pc);
1166   CHECK(current_code != nullptr);
1167   CHECK(current_code->IsOptimized());
1168   uintptr_t native_pc_offset = current_code->NativeQuickPcOffset(caller_pc);
1169   CodeInfo code_info(current_code);
1170   StackMap stack_map = code_info.GetStackMapForNativePcOffset(native_pc_offset);
1171   CHECK(stack_map.IsValid());
1172   uint32_t dex_pc = stack_map.GetDexPc();
1173 
1174   // Log the outer method and its associated dex file and class table pointer which can be used
1175   // to find out if the inlined methods were defined by other dex file(s) or class loader(s).
1176   ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
1177   LOG(FATAL_WITHOUT_ABORT) << "Outer: " << outer_method->PrettyMethod()
1178       << " native pc: " << caller_pc
1179       << " dex pc: " << dex_pc
1180       << " dex file: " << outer_method->GetDexFile()->GetLocation()
1181       << " class table: " << class_linker->ClassTableForClassLoader(outer_method->GetClassLoader());
1182   DumpB74410240ClassData(outer_method->GetDeclaringClass());
1183   LOG(FATAL_WITHOUT_ABORT) << "  instruction: " << DumpInstruction(outer_method, dex_pc);
1184 
1185   ArtMethod* caller = outer_method;
1186   BitTableRange<InlineInfo> inline_infos = code_info.GetInlineInfosOf(stack_map);
1187   for (InlineInfo inline_info : inline_infos) {
1188     const char* tag = "";
1189     dex_pc = inline_info.GetDexPc();
1190     if (inline_info.EncodesArtMethod()) {
1191       tag = "encoded ";
1192       caller = inline_info.GetArtMethod();
1193     } else {
1194       uint32_t method_index = code_info.GetMethodIndexOf(inline_info);
1195       if (dex_pc == static_cast<uint32_t>(-1)) {
1196         tag = "special ";
1197         CHECK(inline_info.Equals(inline_infos.back()));
1198         caller = jni::DecodeArtMethod(WellKnownClasses::java_lang_String_charAt);
1199         CHECK_EQ(caller->GetDexMethodIndex(), method_index);
1200       } else {
1201         ObjPtr<mirror::DexCache> dex_cache = caller->GetDexCache();
1202         ObjPtr<mirror::ClassLoader> class_loader = caller->GetClassLoader();
1203         caller = class_linker->LookupResolvedMethod(method_index, dex_cache, class_loader);
1204         CHECK(caller != nullptr);
1205       }
1206     }
1207     LOG(FATAL_WITHOUT_ABORT) << "InlineInfo #" << inline_info.Row()
1208         << ": " << tag << caller->PrettyMethod()
1209         << " dex pc: " << dex_pc
1210         << " dex file: " << caller->GetDexFile()->GetLocation()
1211         << " class table: "
1212         << class_linker->ClassTableForClassLoader(caller->GetClassLoader());
1213     DumpB74410240ClassData(caller->GetDeclaringClass());
1214     LOG(FATAL_WITHOUT_ABORT) << "  instruction: " << DumpInstruction(caller, dex_pc);
1215   }
1216 }
1217 
1218 // Lazily resolve a method for quick. Called by stub code.
artQuickResolutionTrampoline(ArtMethod * called,mirror::Object * receiver,Thread * self,ArtMethod ** sp)1219 extern "C" const void* artQuickResolutionTrampoline(
1220     ArtMethod* called, mirror::Object* receiver, Thread* self, ArtMethod** sp)
1221     REQUIRES_SHARED(Locks::mutator_lock_) {
1222   // The resolution trampoline stashes the resolved method into the callee-save frame to transport
1223   // it. Thus, when exiting, the stack cannot be verified (as the resolved method most likely
1224   // does not have the same stack layout as the callee-save method).
1225   ScopedQuickEntrypointChecks sqec(self, kIsDebugBuild, false);
1226   // Start new JNI local reference state
1227   JNIEnvExt* env = self->GetJniEnv();
1228   ScopedObjectAccessUnchecked soa(env);
1229   ScopedJniEnvLocalRefState env_state(env);
1230   const char* old_cause = self->StartAssertNoThreadSuspension("Quick method resolution set up");
1231 
1232   // Compute details about the called method (avoid GCs)
1233   ClassLinker* linker = Runtime::Current()->GetClassLinker();
1234   InvokeType invoke_type;
1235   MethodReference called_method(nullptr, 0);
1236   const bool called_method_known_on_entry = !called->IsRuntimeMethod();
1237   ArtMethod* caller = nullptr;
1238   if (!called_method_known_on_entry) {
1239     caller = QuickArgumentVisitor::GetCallingMethod(sp);
1240     called_method.dex_file = caller->GetDexFile();
1241 
1242     {
1243       uint32_t dex_pc = QuickArgumentVisitor::GetCallingDexPc(sp);
1244       CodeItemInstructionAccessor accessor(caller->DexInstructions());
1245       CHECK_LT(dex_pc, accessor.InsnsSizeInCodeUnits());
1246       const Instruction& instr = accessor.InstructionAt(dex_pc);
1247       Instruction::Code instr_code = instr.Opcode();
1248       bool is_range;
1249       switch (instr_code) {
1250         case Instruction::INVOKE_DIRECT:
1251           invoke_type = kDirect;
1252           is_range = false;
1253           break;
1254         case Instruction::INVOKE_DIRECT_RANGE:
1255           invoke_type = kDirect;
1256           is_range = true;
1257           break;
1258         case Instruction::INVOKE_STATIC:
1259           invoke_type = kStatic;
1260           is_range = false;
1261           break;
1262         case Instruction::INVOKE_STATIC_RANGE:
1263           invoke_type = kStatic;
1264           is_range = true;
1265           break;
1266         case Instruction::INVOKE_SUPER:
1267           invoke_type = kSuper;
1268           is_range = false;
1269           break;
1270         case Instruction::INVOKE_SUPER_RANGE:
1271           invoke_type = kSuper;
1272           is_range = true;
1273           break;
1274         case Instruction::INVOKE_VIRTUAL:
1275           invoke_type = kVirtual;
1276           is_range = false;
1277           break;
1278         case Instruction::INVOKE_VIRTUAL_RANGE:
1279           invoke_type = kVirtual;
1280           is_range = true;
1281           break;
1282         case Instruction::INVOKE_INTERFACE:
1283           invoke_type = kInterface;
1284           is_range = false;
1285           break;
1286         case Instruction::INVOKE_INTERFACE_RANGE:
1287           invoke_type = kInterface;
1288           is_range = true;
1289           break;
1290         default:
1291           DumpB74410240DebugData(sp);
1292           LOG(FATAL) << "Unexpected call into trampoline: " << instr.DumpString(nullptr);
1293           UNREACHABLE();
1294       }
1295       called_method.index = (is_range) ? instr.VRegB_3rc() : instr.VRegB_35c();
1296       VLOG(dex) << "Accessed dex file for invoke " << invoke_type << " "
1297                 << called_method.index;
1298     }
1299   } else {
1300     invoke_type = kStatic;
1301     called_method.dex_file = called->GetDexFile();
1302     called_method.index = called->GetDexMethodIndex();
1303   }
1304   uint32_t shorty_len;
1305   const char* shorty =
1306       called_method.dex_file->GetMethodShorty(called_method.GetMethodId(), &shorty_len);
1307   RememberForGcArgumentVisitor visitor(sp, invoke_type == kStatic, shorty, shorty_len, &soa);
1308   visitor.VisitArguments();
1309   self->EndAssertNoThreadSuspension(old_cause);
1310   const bool virtual_or_interface = invoke_type == kVirtual || invoke_type == kInterface;
1311   // Resolve method filling in dex cache.
1312   if (!called_method_known_on_entry) {
1313     StackHandleScope<1> hs(self);
1314     mirror::Object* fake_receiver = nullptr;
1315     HandleWrapper<mirror::Object> h_receiver(
1316         hs.NewHandleWrapper(virtual_or_interface ? &receiver : &fake_receiver));
1317     DCHECK_EQ(caller->GetDexFile(), called_method.dex_file);
1318     called = linker->ResolveMethod<ClassLinker::ResolveMode::kCheckICCEAndIAE>(
1319         self, called_method.index, caller, invoke_type);
1320   }
1321   const void* code = nullptr;
1322   if (LIKELY(!self->IsExceptionPending())) {
1323     // Incompatible class change should have been handled in resolve method.
1324     CHECK(!called->CheckIncompatibleClassChange(invoke_type))
1325         << called->PrettyMethod() << " " << invoke_type;
1326     if (virtual_or_interface || invoke_type == kSuper) {
1327       // Refine called method based on receiver for kVirtual/kInterface, and
1328       // caller for kSuper.
1329       ArtMethod* orig_called = called;
1330       if (invoke_type == kVirtual) {
1331         CHECK(receiver != nullptr) << invoke_type;
1332         called = receiver->GetClass()->FindVirtualMethodForVirtual(called, kRuntimePointerSize);
1333       } else if (invoke_type == kInterface) {
1334         CHECK(receiver != nullptr) << invoke_type;
1335         called = receiver->GetClass()->FindVirtualMethodForInterface(called, kRuntimePointerSize);
1336       } else {
1337         DCHECK_EQ(invoke_type, kSuper);
1338         CHECK(caller != nullptr) << invoke_type;
1339         ObjPtr<mirror::Class> ref_class = linker->LookupResolvedType(
1340             caller->GetDexFile()->GetMethodId(called_method.index).class_idx_, caller);
1341         if (ref_class->IsInterface()) {
1342           called = ref_class->FindVirtualMethodForInterfaceSuper(called, kRuntimePointerSize);
1343         } else {
1344           called = caller->GetDeclaringClass()->GetSuperClass()->GetVTableEntry(
1345               called->GetMethodIndex(), kRuntimePointerSize);
1346         }
1347       }
1348 
1349       CHECK(called != nullptr) << orig_called->PrettyMethod() << " "
1350                                << mirror::Object::PrettyTypeOf(receiver) << " "
1351                                << invoke_type << " " << orig_called->GetVtableIndex();
1352     }
1353     // Now that we know the actual target, update .bss entry in oat file, if
1354     // any.
1355     if (!called_method_known_on_entry) {
1356       // We only put non copied methods in the BSS. Putting a copy can lead to an
1357       // odd situation where the ArtMethod being executed is unrelated to the
1358       // receiver of the method.
1359       called = called->GetCanonicalMethod();
1360       if (invoke_type == kSuper || invoke_type == kInterface || invoke_type == kVirtual) {
1361         if (called->GetDexFile() == called_method.dex_file) {
1362           called_method.index = called->GetDexMethodIndex();
1363         } else {
1364           called_method.index = called->FindDexMethodIndexInOtherDexFile(
1365               *called_method.dex_file, called_method.index);
1366           DCHECK_NE(called_method.index, dex::kDexNoIndex);
1367         }
1368       }
1369       MaybeUpdateBssMethodEntry(called, called_method);
1370     }
1371 
1372     // Static invokes need class initialization check but instance invokes can proceed even if
1373     // the class is erroneous, i.e. in the edge case of escaping instances of erroneous classes.
1374     bool success = true;
1375     ObjPtr<mirror::Class> called_class = called->GetDeclaringClass();
1376     if (NeedsClinitCheckBeforeCall(called) && !called_class->IsVisiblyInitialized()) {
1377       // Ensure that the called method's class is initialized.
1378       StackHandleScope<1> hs(soa.Self());
1379       HandleWrapperObjPtr<mirror::Class> h_called_class(hs.NewHandleWrapper(&called_class));
1380       success = linker->EnsureInitialized(soa.Self(), h_called_class, true, true);
1381     }
1382     if (success) {
1383       code = called->GetEntryPointFromQuickCompiledCode();
1384       if (linker->IsQuickResolutionStub(code)) {
1385         DCHECK_EQ(invoke_type, kStatic);
1386         // Go to JIT or oat and grab code.
1387         code = linker->GetQuickOatCodeFor(called);
1388       }
1389       if (linker->ShouldUseInterpreterEntrypoint(called, code)) {
1390         code = GetQuickToInterpreterBridge();
1391       }
1392     } else {
1393       DCHECK(called_class->IsErroneous());
1394       DCHECK(self->IsExceptionPending());
1395     }
1396   }
1397   CHECK_EQ(code == nullptr, self->IsExceptionPending());
1398   // Fixup any locally saved objects may have moved during a GC.
1399   visitor.FixupReferences();
1400   // Place called method in callee-save frame to be placed as first argument to quick method.
1401   *sp = called;
1402 
1403   return code;
1404 }
1405 
1406 /*
1407  * This class uses a couple of observations to unite the different calling conventions through
1408  * a few constants.
1409  *
1410  * 1) Number of registers used for passing is normally even, so counting down has no penalty for
1411  *    possible alignment.
1412  * 2) Known 64b architectures store 8B units on the stack, both for integral and floating point
1413  *    types, so using uintptr_t is OK. Also means that we can use kRegistersNeededX to denote
1414  *    when we have to split things
1415  * 3) The only soft-float, Arm, is 32b, so no widening needs to be taken into account for floats
1416  *    and we can use Int handling directly.
1417  * 4) Only 64b architectures widen, and their stack is aligned 8B anyways, so no padding code
1418  *    necessary when widening. Also, widening of Ints will take place implicitly, and the
1419  *    extension should be compatible with Aarch64, which mandates copying the available bits
1420  *    into LSB and leaving the rest unspecified.
1421  * 5) Aligning longs and doubles is necessary on arm only, and it's the same in registers and on
1422  *    the stack.
1423  * 6) There is only little endian.
1424  *
1425  *
1426  * Actual work is supposed to be done in a delegate of the template type. The interface is as
1427  * follows:
1428  *
1429  * void PushGpr(uintptr_t):   Add a value for the next GPR
1430  *
1431  * void PushFpr4(float):      Add a value for the next FPR of size 32b. Is only called if we need
1432  *                            padding, that is, think the architecture is 32b and aligns 64b.
1433  *
1434  * void PushFpr8(uint64_t):   Push a double. We _will_ call this on 32b, it's the callee's job to
1435  *                            split this if necessary. The current state will have aligned, if
1436  *                            necessary.
1437  *
1438  * void PushStack(uintptr_t): Push a value to the stack.
1439  */
1440 template<class T> class BuildNativeCallFrameStateMachine {
1441  public:
1442 #if defined(__arm__)
1443   static constexpr bool kNativeSoftFloatAbi = true;
1444   static constexpr size_t kNumNativeGprArgs = 4;  // 4 arguments passed in GPRs, r0-r3
1445   static constexpr size_t kNumNativeFprArgs = 0;  // 0 arguments passed in FPRs.
1446 
1447   static constexpr size_t kRegistersNeededForLong = 2;
1448   static constexpr size_t kRegistersNeededForDouble = 2;
1449   static constexpr bool kMultiRegistersAligned = true;
1450   static constexpr bool kMultiFPRegistersWidened = false;
1451   static constexpr bool kMultiGPRegistersWidened = false;
1452   static constexpr bool kAlignLongOnStack = true;
1453   static constexpr bool kAlignDoubleOnStack = true;
1454 #elif defined(__aarch64__)
1455   static constexpr bool kNativeSoftFloatAbi = false;  // This is a hard float ABI.
1456   static constexpr size_t kNumNativeGprArgs = 8;  // 8 arguments passed in GPRs.
1457   static constexpr size_t kNumNativeFprArgs = 8;  // 8 arguments passed in FPRs.
1458 
1459   static constexpr size_t kRegistersNeededForLong = 1;
1460   static constexpr size_t kRegistersNeededForDouble = 1;
1461   static constexpr bool kMultiRegistersAligned = false;
1462   static constexpr bool kMultiFPRegistersWidened = false;
1463   static constexpr bool kMultiGPRegistersWidened = false;
1464   static constexpr bool kAlignLongOnStack = false;
1465   static constexpr bool kAlignDoubleOnStack = false;
1466 #elif defined(__i386__)
1467   static constexpr bool kNativeSoftFloatAbi = false;  // Not using int registers for fp
1468   static constexpr size_t kNumNativeGprArgs = 0;  // 0 arguments passed in GPRs.
1469   static constexpr size_t kNumNativeFprArgs = 0;  // 0 arguments passed in FPRs.
1470 
1471   static constexpr size_t kRegistersNeededForLong = 2;
1472   static constexpr size_t kRegistersNeededForDouble = 2;
1473   static constexpr bool kMultiRegistersAligned = false;  // x86 not using regs, anyways
1474   static constexpr bool kMultiFPRegistersWidened = false;
1475   static constexpr bool kMultiGPRegistersWidened = false;
1476   static constexpr bool kAlignLongOnStack = false;
1477   static constexpr bool kAlignDoubleOnStack = false;
1478 #elif defined(__x86_64__)
1479   static constexpr bool kNativeSoftFloatAbi = false;  // This is a hard float ABI.
1480   static constexpr size_t kNumNativeGprArgs = 6;  // 6 arguments passed in GPRs.
1481   static constexpr size_t kNumNativeFprArgs = 8;  // 8 arguments passed in FPRs.
1482 
1483   static constexpr size_t kRegistersNeededForLong = 1;
1484   static constexpr size_t kRegistersNeededForDouble = 1;
1485   static constexpr bool kMultiRegistersAligned = false;
1486   static constexpr bool kMultiFPRegistersWidened = false;
1487   static constexpr bool kMultiGPRegistersWidened = false;
1488   static constexpr bool kAlignLongOnStack = false;
1489   static constexpr bool kAlignDoubleOnStack = false;
1490 #else
1491 #error "Unsupported architecture"
1492 #endif
1493 
1494  public:
BuildNativeCallFrameStateMachine(T * delegate)1495   explicit BuildNativeCallFrameStateMachine(T* delegate)
1496       : gpr_index_(kNumNativeGprArgs),
1497         fpr_index_(kNumNativeFprArgs),
1498         stack_entries_(0),
1499         delegate_(delegate) {
1500     // For register alignment, we want to assume that counters (gpr_index_, fpr_index_) are even iff
1501     // the next register is even; counting down is just to make the compiler happy...
1502     static_assert(kNumNativeGprArgs % 2 == 0U, "Number of native GPR arguments not even");
1503     static_assert(kNumNativeFprArgs % 2 == 0U, "Number of native FPR arguments not even");
1504   }
1505 
~BuildNativeCallFrameStateMachine()1506   virtual ~BuildNativeCallFrameStateMachine() {}
1507 
HavePointerGpr() const1508   bool HavePointerGpr() const {
1509     return gpr_index_ > 0;
1510   }
1511 
AdvancePointer(const void * val)1512   void AdvancePointer(const void* val) {
1513     if (HavePointerGpr()) {
1514       gpr_index_--;
1515       PushGpr(reinterpret_cast<uintptr_t>(val));
1516     } else {
1517       stack_entries_++;  // TODO: have a field for pointer length as multiple of 32b
1518       PushStack(reinterpret_cast<uintptr_t>(val));
1519       gpr_index_ = 0;
1520     }
1521   }
1522 
HaveIntGpr() const1523   bool HaveIntGpr() const {
1524     return gpr_index_ > 0;
1525   }
1526 
AdvanceInt(uint32_t val)1527   void AdvanceInt(uint32_t val) {
1528     if (HaveIntGpr()) {
1529       gpr_index_--;
1530       if (kMultiGPRegistersWidened) {
1531         DCHECK_EQ(sizeof(uintptr_t), sizeof(int64_t));
1532         PushGpr(static_cast<int64_t>(bit_cast<int32_t, uint32_t>(val)));
1533       } else {
1534         PushGpr(val);
1535       }
1536     } else {
1537       stack_entries_++;
1538       if (kMultiGPRegistersWidened) {
1539         DCHECK_EQ(sizeof(uintptr_t), sizeof(int64_t));
1540         PushStack(static_cast<int64_t>(bit_cast<int32_t, uint32_t>(val)));
1541       } else {
1542         PushStack(val);
1543       }
1544       gpr_index_ = 0;
1545     }
1546   }
1547 
HaveLongGpr() const1548   bool HaveLongGpr() const {
1549     return gpr_index_ >= kRegistersNeededForLong + (LongGprNeedsPadding() ? 1 : 0);
1550   }
1551 
LongGprNeedsPadding() const1552   bool LongGprNeedsPadding() const {
1553     return kRegistersNeededForLong > 1 &&     // only pad when using multiple registers
1554         kAlignLongOnStack &&                  // and when it needs alignment
1555         (gpr_index_ & 1) == 1;                // counter is odd, see constructor
1556   }
1557 
LongStackNeedsPadding() const1558   bool LongStackNeedsPadding() const {
1559     return kRegistersNeededForLong > 1 &&     // only pad when using multiple registers
1560         kAlignLongOnStack &&                  // and when it needs 8B alignment
1561         (stack_entries_ & 1) == 1;            // counter is odd
1562   }
1563 
AdvanceLong(uint64_t val)1564   void AdvanceLong(uint64_t val) {
1565     if (HaveLongGpr()) {
1566       if (LongGprNeedsPadding()) {
1567         PushGpr(0);
1568         gpr_index_--;
1569       }
1570       if (kRegistersNeededForLong == 1) {
1571         PushGpr(static_cast<uintptr_t>(val));
1572       } else {
1573         PushGpr(static_cast<uintptr_t>(val & 0xFFFFFFFF));
1574         PushGpr(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF));
1575       }
1576       gpr_index_ -= kRegistersNeededForLong;
1577     } else {
1578       if (LongStackNeedsPadding()) {
1579         PushStack(0);
1580         stack_entries_++;
1581       }
1582       if (kRegistersNeededForLong == 1) {
1583         PushStack(static_cast<uintptr_t>(val));
1584         stack_entries_++;
1585       } else {
1586         PushStack(static_cast<uintptr_t>(val & 0xFFFFFFFF));
1587         PushStack(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF));
1588         stack_entries_ += 2;
1589       }
1590       gpr_index_ = 0;
1591     }
1592   }
1593 
HaveFloatFpr() const1594   bool HaveFloatFpr() const {
1595     return fpr_index_ > 0;
1596   }
1597 
AdvanceFloat(float val)1598   void AdvanceFloat(float val) {
1599     if (kNativeSoftFloatAbi) {
1600       AdvanceInt(bit_cast<uint32_t, float>(val));
1601     } else {
1602       if (HaveFloatFpr()) {
1603         fpr_index_--;
1604         if (kRegistersNeededForDouble == 1) {
1605           if (kMultiFPRegistersWidened) {
1606             PushFpr8(bit_cast<uint64_t, double>(val));
1607           } else {
1608             // No widening, just use the bits.
1609             PushFpr8(static_cast<uint64_t>(bit_cast<uint32_t, float>(val)));
1610           }
1611         } else {
1612           PushFpr4(val);
1613         }
1614       } else {
1615         stack_entries_++;
1616         if (kRegistersNeededForDouble == 1 && kMultiFPRegistersWidened) {
1617           // Need to widen before storing: Note the "double" in the template instantiation.
1618           // Note: We need to jump through those hoops to make the compiler happy.
1619           DCHECK_EQ(sizeof(uintptr_t), sizeof(uint64_t));
1620           PushStack(static_cast<uintptr_t>(bit_cast<uint64_t, double>(val)));
1621         } else {
1622           PushStack(static_cast<uintptr_t>(bit_cast<uint32_t, float>(val)));
1623         }
1624         fpr_index_ = 0;
1625       }
1626     }
1627   }
1628 
HaveDoubleFpr() const1629   bool HaveDoubleFpr() const {
1630     return fpr_index_ >= kRegistersNeededForDouble + (DoubleFprNeedsPadding() ? 1 : 0);
1631   }
1632 
DoubleFprNeedsPadding() const1633   bool DoubleFprNeedsPadding() const {
1634     return kRegistersNeededForDouble > 1 &&     // only pad when using multiple registers
1635         kAlignDoubleOnStack &&                  // and when it needs alignment
1636         (fpr_index_ & 1) == 1;                  // counter is odd, see constructor
1637   }
1638 
DoubleStackNeedsPadding() const1639   bool DoubleStackNeedsPadding() const {
1640     return kRegistersNeededForDouble > 1 &&     // only pad when using multiple registers
1641         kAlignDoubleOnStack &&                  // and when it needs 8B alignment
1642         (stack_entries_ & 1) == 1;              // counter is odd
1643   }
1644 
AdvanceDouble(uint64_t val)1645   void AdvanceDouble(uint64_t val) {
1646     if (kNativeSoftFloatAbi) {
1647       AdvanceLong(val);
1648     } else {
1649       if (HaveDoubleFpr()) {
1650         if (DoubleFprNeedsPadding()) {
1651           PushFpr4(0);
1652           fpr_index_--;
1653         }
1654         PushFpr8(val);
1655         fpr_index_ -= kRegistersNeededForDouble;
1656       } else {
1657         if (DoubleStackNeedsPadding()) {
1658           PushStack(0);
1659           stack_entries_++;
1660         }
1661         if (kRegistersNeededForDouble == 1) {
1662           PushStack(static_cast<uintptr_t>(val));
1663           stack_entries_++;
1664         } else {
1665           PushStack(static_cast<uintptr_t>(val & 0xFFFFFFFF));
1666           PushStack(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF));
1667           stack_entries_ += 2;
1668         }
1669         fpr_index_ = 0;
1670       }
1671     }
1672   }
1673 
GetStackEntries() const1674   uint32_t GetStackEntries() const {
1675     return stack_entries_;
1676   }
1677 
GetNumberOfUsedGprs() const1678   uint32_t GetNumberOfUsedGprs() const {
1679     return kNumNativeGprArgs - gpr_index_;
1680   }
1681 
GetNumberOfUsedFprs() const1682   uint32_t GetNumberOfUsedFprs() const {
1683     return kNumNativeFprArgs - fpr_index_;
1684   }
1685 
1686  private:
PushGpr(uintptr_t val)1687   void PushGpr(uintptr_t val) {
1688     delegate_->PushGpr(val);
1689   }
PushFpr4(float val)1690   void PushFpr4(float val) {
1691     delegate_->PushFpr4(val);
1692   }
PushFpr8(uint64_t val)1693   void PushFpr8(uint64_t val) {
1694     delegate_->PushFpr8(val);
1695   }
PushStack(uintptr_t val)1696   void PushStack(uintptr_t val) {
1697     delegate_->PushStack(val);
1698   }
1699 
1700   uint32_t gpr_index_;      // Number of free GPRs
1701   uint32_t fpr_index_;      // Number of free FPRs
1702   uint32_t stack_entries_;  // Stack entries are in multiples of 32b, as floats are usually not
1703                             // extended
1704   T* const delegate_;             // What Push implementation gets called
1705 };
1706 
1707 // Computes the sizes of register stacks and call stack area. Handling of references can be extended
1708 // in subclasses.
1709 //
1710 // To handle native pointers, use "L" in the shorty for an object reference, which simulates
1711 // them with handles.
1712 class ComputeNativeCallFrameSize {
1713  public:
ComputeNativeCallFrameSize()1714   ComputeNativeCallFrameSize() : num_stack_entries_(0) {}
1715 
~ComputeNativeCallFrameSize()1716   virtual ~ComputeNativeCallFrameSize() {}
1717 
GetStackSize() const1718   uint32_t GetStackSize() const {
1719     return num_stack_entries_ * sizeof(uintptr_t);
1720   }
1721 
LayoutStackArgs(uint8_t * sp8) const1722   uint8_t* LayoutStackArgs(uint8_t* sp8) const {
1723     sp8 -= GetStackSize();
1724     // Align by kStackAlignment; it is at least as strict as native stack alignment.
1725     sp8 = reinterpret_cast<uint8_t*>(RoundDown(reinterpret_cast<uintptr_t>(sp8), kStackAlignment));
1726     return sp8;
1727   }
1728 
WalkHeader(BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize> * sm ATTRIBUTE_UNUSED)1729   virtual void WalkHeader(
1730       BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm ATTRIBUTE_UNUSED)
1731       REQUIRES_SHARED(Locks::mutator_lock_) {
1732   }
1733 
Walk(const char * shorty,uint32_t shorty_len)1734   void Walk(const char* shorty, uint32_t shorty_len) REQUIRES_SHARED(Locks::mutator_lock_) {
1735     BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize> sm(this);
1736 
1737     WalkHeader(&sm);
1738 
1739     for (uint32_t i = 1; i < shorty_len; ++i) {
1740       Primitive::Type cur_type_ = Primitive::GetType(shorty[i]);
1741       switch (cur_type_) {
1742         case Primitive::kPrimNot:
1743           sm.AdvancePointer(nullptr);
1744           break;
1745         case Primitive::kPrimBoolean:
1746         case Primitive::kPrimByte:
1747         case Primitive::kPrimChar:
1748         case Primitive::kPrimShort:
1749         case Primitive::kPrimInt:
1750           sm.AdvanceInt(0);
1751           break;
1752         case Primitive::kPrimFloat:
1753           sm.AdvanceFloat(0);
1754           break;
1755         case Primitive::kPrimDouble:
1756           sm.AdvanceDouble(0);
1757           break;
1758         case Primitive::kPrimLong:
1759           sm.AdvanceLong(0);
1760           break;
1761         default:
1762           LOG(FATAL) << "Unexpected type: " << cur_type_ << " in " << shorty;
1763           UNREACHABLE();
1764       }
1765     }
1766 
1767     num_stack_entries_ = sm.GetStackEntries();
1768   }
1769 
PushGpr(uintptr_t)1770   void PushGpr(uintptr_t /* val */) {
1771     // not optimizing registers, yet
1772   }
1773 
PushFpr4(float)1774   void PushFpr4(float /* val */) {
1775     // not optimizing registers, yet
1776   }
1777 
PushFpr8(uint64_t)1778   void PushFpr8(uint64_t /* val */) {
1779     // not optimizing registers, yet
1780   }
1781 
PushStack(uintptr_t)1782   void PushStack(uintptr_t /* val */) {
1783     // counting is already done in the superclass
1784   }
1785 
1786  protected:
1787   uint32_t num_stack_entries_;
1788 };
1789 
1790 class ComputeGenericJniFrameSize final : public ComputeNativeCallFrameSize {
1791  public:
ComputeGenericJniFrameSize(bool critical_native)1792   explicit ComputeGenericJniFrameSize(bool critical_native)
1793     : critical_native_(critical_native) {}
1794 
ComputeLayout(ArtMethod ** managed_sp,const char * shorty,uint32_t shorty_len)1795   uintptr_t* ComputeLayout(ArtMethod** managed_sp, const char* shorty, uint32_t shorty_len)
1796       REQUIRES_SHARED(Locks::mutator_lock_) {
1797     DCHECK_EQ(Runtime::Current()->GetClassLinker()->GetImagePointerSize(), kRuntimePointerSize);
1798 
1799     Walk(shorty, shorty_len);
1800 
1801     // Add space for cookie.
1802     DCHECK_ALIGNED(managed_sp, sizeof(uintptr_t));
1803     static_assert(sizeof(uintptr_t) >= sizeof(IRTSegmentState));
1804     uint8_t* sp8 = reinterpret_cast<uint8_t*>(managed_sp) - sizeof(uintptr_t);
1805 
1806     // Layout stack arguments.
1807     sp8 = LayoutStackArgs(sp8);
1808 
1809     // Return the new bottom.
1810     DCHECK_ALIGNED(sp8, sizeof(uintptr_t));
1811     return reinterpret_cast<uintptr_t*>(sp8);
1812   }
1813 
GetStartGprRegs(uintptr_t * reserved_area)1814   static uintptr_t* GetStartGprRegs(uintptr_t* reserved_area) {
1815     return reserved_area;
1816   }
1817 
GetStartFprRegs(uintptr_t * reserved_area)1818   static uint32_t* GetStartFprRegs(uintptr_t* reserved_area) {
1819     constexpr size_t num_gprs =
1820         BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>::kNumNativeGprArgs;
1821     return reinterpret_cast<uint32_t*>(GetStartGprRegs(reserved_area) + num_gprs);
1822   }
1823 
GetHiddenArgSlot(uintptr_t * reserved_area)1824   static uintptr_t* GetHiddenArgSlot(uintptr_t* reserved_area) {
1825     // Note: `num_fprs` is 0 on architectures where sizeof(uintptr_t) does not match the
1826     // FP register size (it is actually 0 on all supported 32-bit architectures).
1827     constexpr size_t num_fprs =
1828         BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>::kNumNativeFprArgs;
1829     return reinterpret_cast<uintptr_t*>(GetStartFprRegs(reserved_area)) + num_fprs;
1830   }
1831 
GetOutArgsSpSlot(uintptr_t * reserved_area)1832   static uintptr_t* GetOutArgsSpSlot(uintptr_t* reserved_area) {
1833     return GetHiddenArgSlot(reserved_area) + 1;
1834   }
1835 
1836   // Add JNIEnv* and jobj/jclass before the shorty-derived elements.
1837   void WalkHeader(BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm) override
1838       REQUIRES_SHARED(Locks::mutator_lock_);
1839 
1840  private:
1841   const bool critical_native_;
1842 };
1843 
WalkHeader(BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize> * sm)1844 void ComputeGenericJniFrameSize::WalkHeader(
1845     BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm) {
1846   // First 2 parameters are always excluded for @CriticalNative.
1847   if (UNLIKELY(critical_native_)) {
1848     return;
1849   }
1850 
1851   // JNIEnv
1852   sm->AdvancePointer(nullptr);
1853 
1854   // Class object or this as first argument
1855   sm->AdvancePointer(nullptr);
1856 }
1857 
1858 // Class to push values to three separate regions. Used to fill the native call part. Adheres to
1859 // the template requirements of BuildGenericJniFrameStateMachine.
1860 class FillNativeCall {
1861  public:
FillNativeCall(uintptr_t * gpr_regs,uint32_t * fpr_regs,uintptr_t * stack_args)1862   FillNativeCall(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args) :
1863       cur_gpr_reg_(gpr_regs), cur_fpr_reg_(fpr_regs), cur_stack_arg_(stack_args) {}
1864 
~FillNativeCall()1865   virtual ~FillNativeCall() {}
1866 
Reset(uintptr_t * gpr_regs,uint32_t * fpr_regs,uintptr_t * stack_args)1867   void Reset(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args) {
1868     cur_gpr_reg_ = gpr_regs;
1869     cur_fpr_reg_ = fpr_regs;
1870     cur_stack_arg_ = stack_args;
1871   }
1872 
PushGpr(uintptr_t val)1873   void PushGpr(uintptr_t val) {
1874     *cur_gpr_reg_ = val;
1875     cur_gpr_reg_++;
1876   }
1877 
PushFpr4(float val)1878   void PushFpr4(float val) {
1879     *cur_fpr_reg_ = val;
1880     cur_fpr_reg_++;
1881   }
1882 
PushFpr8(uint64_t val)1883   void PushFpr8(uint64_t val) {
1884     uint64_t* tmp = reinterpret_cast<uint64_t*>(cur_fpr_reg_);
1885     *tmp = val;
1886     cur_fpr_reg_ += 2;
1887   }
1888 
PushStack(uintptr_t val)1889   void PushStack(uintptr_t val) {
1890     *cur_stack_arg_ = val;
1891     cur_stack_arg_++;
1892   }
1893 
1894  private:
1895   uintptr_t* cur_gpr_reg_;
1896   uint32_t* cur_fpr_reg_;
1897   uintptr_t* cur_stack_arg_;
1898 };
1899 
1900 // Visits arguments on the stack placing them into a region lower down the stack for the benefit
1901 // of transitioning into native code.
1902 class BuildGenericJniFrameVisitor final : public QuickArgumentVisitor {
1903  public:
BuildGenericJniFrameVisitor(Thread * self,bool is_static,bool critical_native,const char * shorty,uint32_t shorty_len,ArtMethod ** managed_sp,uintptr_t * reserved_area)1904   BuildGenericJniFrameVisitor(Thread* self,
1905                               bool is_static,
1906                               bool critical_native,
1907                               const char* shorty,
1908                               uint32_t shorty_len,
1909                               ArtMethod** managed_sp,
1910                               uintptr_t* reserved_area)
1911      : QuickArgumentVisitor(managed_sp, is_static, shorty, shorty_len),
1912        jni_call_(nullptr, nullptr, nullptr, critical_native),
1913        sm_(&jni_call_),
1914        current_vreg_(nullptr) {
1915     DCHECK_ALIGNED(managed_sp, kStackAlignment);
1916     DCHECK_ALIGNED(reserved_area, sizeof(uintptr_t));
1917 
1918     ComputeGenericJniFrameSize fsc(critical_native);
1919     uintptr_t* out_args_sp = fsc.ComputeLayout(managed_sp, shorty, shorty_len);
1920 
1921     // Store hidden argument for @CriticalNative.
1922     uintptr_t* hidden_arg_slot = fsc.GetHiddenArgSlot(reserved_area);
1923     constexpr uintptr_t kGenericJniTag = 1u;
1924     ArtMethod* method = *managed_sp;
1925     *hidden_arg_slot = critical_native ? (reinterpret_cast<uintptr_t>(method) | kGenericJniTag)
1926                                        : 0xebad6a89u;  // Bad value.
1927 
1928     // Set out args SP.
1929     uintptr_t* out_args_sp_slot = fsc.GetOutArgsSpSlot(reserved_area);
1930     *out_args_sp_slot = reinterpret_cast<uintptr_t>(out_args_sp);
1931 
1932     // Prepare vreg pointer for spilling references.
1933     static constexpr size_t frame_size =
1934         RuntimeCalleeSaveFrame::GetFrameSize(CalleeSaveType::kSaveRefsAndArgs);
1935     current_vreg_ = reinterpret_cast<uint32_t*>(
1936         reinterpret_cast<uint8_t*>(managed_sp) + frame_size + sizeof(ArtMethod*));
1937 
1938     jni_call_.Reset(fsc.GetStartGprRegs(reserved_area),
1939                     fsc.GetStartFprRegs(reserved_area),
1940                     out_args_sp);
1941 
1942     // First 2 parameters are always excluded for CriticalNative methods.
1943     if (LIKELY(!critical_native)) {
1944       // jni environment is always first argument
1945       sm_.AdvancePointer(self->GetJniEnv());
1946 
1947       if (is_static) {
1948         // The `jclass` is a pointer to the method's declaring class.
1949         // The declaring class must be marked.
1950         auto* declaring_class = reinterpret_cast<mirror::CompressedReference<mirror::Class>*>(
1951             method->GetDeclaringClassAddressWithoutBarrier());
1952         if (kUseReadBarrier) {
1953           ReadBarrierJni(declaring_class, self);
1954         }
1955         sm_.AdvancePointer(declaring_class);
1956       }  // else "this" reference is already handled by QuickArgumentVisitor.
1957     }
1958   }
1959 
1960   void Visit() REQUIRES_SHARED(Locks::mutator_lock_) override;
1961 
1962  private:
1963   // A class to fill a JNI call. Adds reference/handle-scope management to FillNativeCall.
1964   class FillJniCall final : public FillNativeCall {
1965    public:
FillJniCall(uintptr_t * gpr_regs,uint32_t * fpr_regs,uintptr_t * stack_args,bool critical_native)1966     FillJniCall(uintptr_t* gpr_regs,
1967                 uint32_t* fpr_regs,
1968                 uintptr_t* stack_args,
1969                 bool critical_native)
1970         : FillNativeCall(gpr_regs, fpr_regs, stack_args),
1971           cur_entry_(0),
1972           critical_native_(critical_native) {}
1973 
Reset(uintptr_t * gpr_regs,uint32_t * fpr_regs,uintptr_t * stack_args)1974     void Reset(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args) {
1975       FillNativeCall::Reset(gpr_regs, fpr_regs, stack_args);
1976       cur_entry_ = 0U;
1977     }
1978 
CriticalNative() const1979     bool CriticalNative() const {
1980       return critical_native_;
1981     }
1982 
1983    private:
1984     size_t cur_entry_;
1985     const bool critical_native_;
1986   };
1987 
1988   FillJniCall jni_call_;
1989   BuildNativeCallFrameStateMachine<FillJniCall> sm_;
1990 
1991   // Pointer to the current vreg in caller's reserved out vreg area.
1992   // Used for spilling reference arguments.
1993   uint32_t* current_vreg_;
1994 
1995   DISALLOW_COPY_AND_ASSIGN(BuildGenericJniFrameVisitor);
1996 };
1997 
Visit()1998 void BuildGenericJniFrameVisitor::Visit() {
1999   Primitive::Type type = GetParamPrimitiveType();
2000   switch (type) {
2001     case Primitive::kPrimLong: {
2002       jlong long_arg;
2003       if (IsSplitLongOrDouble()) {
2004         long_arg = ReadSplitLongParam();
2005       } else {
2006         long_arg = *reinterpret_cast<jlong*>(GetParamAddress());
2007       }
2008       sm_.AdvanceLong(long_arg);
2009       current_vreg_ += 2u;
2010       break;
2011     }
2012     case Primitive::kPrimDouble: {
2013       uint64_t double_arg;
2014       if (IsSplitLongOrDouble()) {
2015         // Read into union so that we don't case to a double.
2016         double_arg = ReadSplitLongParam();
2017       } else {
2018         double_arg = *reinterpret_cast<uint64_t*>(GetParamAddress());
2019       }
2020       sm_.AdvanceDouble(double_arg);
2021       current_vreg_ += 2u;
2022       break;
2023     }
2024     case Primitive::kPrimNot: {
2025       mirror::Object* obj =
2026           reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress())->AsMirrorPtr();
2027       StackReference<mirror::Object>* spill_ref =
2028           reinterpret_cast<StackReference<mirror::Object>*>(current_vreg_);
2029       spill_ref->Assign(obj);
2030       sm_.AdvancePointer(obj != nullptr ? spill_ref : nullptr);
2031       current_vreg_ += 1u;
2032       break;
2033     }
2034     case Primitive::kPrimFloat:
2035       sm_.AdvanceFloat(*reinterpret_cast<float*>(GetParamAddress()));
2036       current_vreg_ += 1u;
2037       break;
2038     case Primitive::kPrimBoolean:  // Fall-through.
2039     case Primitive::kPrimByte:     // Fall-through.
2040     case Primitive::kPrimChar:     // Fall-through.
2041     case Primitive::kPrimShort:    // Fall-through.
2042     case Primitive::kPrimInt:      // Fall-through.
2043       sm_.AdvanceInt(*reinterpret_cast<jint*>(GetParamAddress()));
2044       current_vreg_ += 1u;
2045       break;
2046     case Primitive::kPrimVoid:
2047       LOG(FATAL) << "UNREACHABLE";
2048       UNREACHABLE();
2049   }
2050 }
2051 
2052 /*
2053  * Initializes the reserved area assumed to be directly below `managed_sp` for a native call:
2054  *
2055  * On entry, the stack has a standard callee-save frame above `managed_sp`,
2056  * and the reserved area below it. Starting below `managed_sp`, we reserve space
2057  * for local reference cookie (not present for @CriticalNative), HandleScope
2058  * (not present for @CriticalNative) and stack args (if args do not fit into
2059  * registers). At the bottom of the reserved area, there is space for register
2060  * arguments, hidden arg (for @CriticalNative) and the SP for the native call
2061  * (i.e. pointer to the stack args area), which the calling stub shall load
2062  * to perform the native call. We fill all these fields, perform class init
2063  * check (for static methods) and/or locking (for synchronized methods) if
2064  * needed and return to the stub.
2065  *
2066  * The return value is the pointer to the native code, null on failure.
2067  */
artQuickGenericJniTrampoline(Thread * self,ArtMethod ** managed_sp,uintptr_t * reserved_area)2068 extern "C" const void* artQuickGenericJniTrampoline(Thread* self,
2069                                                     ArtMethod** managed_sp,
2070                                                     uintptr_t* reserved_area)
2071     REQUIRES_SHARED(Locks::mutator_lock_) {
2072   // Note: We cannot walk the stack properly until fixed up below.
2073   ArtMethod* called = *managed_sp;
2074   DCHECK(called->IsNative()) << called->PrettyMethod(true);
2075   Runtime* runtime = Runtime::Current();
2076   uint32_t shorty_len = 0;
2077   const char* shorty = called->GetShorty(&shorty_len);
2078   bool critical_native = called->IsCriticalNative();
2079   bool fast_native = called->IsFastNative();
2080   bool normal_native = !critical_native && !fast_native;
2081 
2082   // Run the visitor and update sp.
2083   BuildGenericJniFrameVisitor visitor(self,
2084                                       called->IsStatic(),
2085                                       critical_native,
2086                                       shorty,
2087                                       shorty_len,
2088                                       managed_sp,
2089                                       reserved_area);
2090   {
2091     ScopedAssertNoThreadSuspension sants(__FUNCTION__);
2092     visitor.VisitArguments();
2093   }
2094 
2095   // Fix up managed-stack things in Thread. After this we can walk the stack.
2096   self->SetTopOfStackTagged(managed_sp);
2097 
2098   self->VerifyStack();
2099 
2100   // We can now walk the stack if needed by JIT GC from MethodEntered() for JIT-on-first-use.
2101   jit::Jit* jit = runtime->GetJit();
2102   if (jit != nullptr) {
2103     jit->MethodEntered(self, called);
2104   }
2105 
2106   // We can set the entrypoint of a native method to generic JNI even when the
2107   // class hasn't been initialized, so we need to do the initialization check
2108   // before invoking the native code.
2109   if (NeedsClinitCheckBeforeCall(called)) {
2110     ObjPtr<mirror::Class> declaring_class = called->GetDeclaringClass();
2111     if (UNLIKELY(!declaring_class->IsVisiblyInitialized())) {
2112       // Ensure static method's class is initialized.
2113       StackHandleScope<1> hs(self);
2114       Handle<mirror::Class> h_class(hs.NewHandle(declaring_class));
2115       if (!runtime->GetClassLinker()->EnsureInitialized(self, h_class, true, true)) {
2116         DCHECK(Thread::Current()->IsExceptionPending()) << called->PrettyMethod();
2117         return nullptr;  // Report error.
2118       }
2119     }
2120   }
2121 
2122   uint32_t cookie;
2123   uint32_t* sp32;
2124   // Skip calling JniMethodStart for @CriticalNative.
2125   if (LIKELY(!critical_native)) {
2126     // Start JNI, save the cookie.
2127     if (called->IsSynchronized()) {
2128       DCHECK(normal_native) << " @FastNative and synchronize is not supported";
2129       jobject lock = GetGenericJniSynchronizationObject(self, called);
2130       cookie = JniMethodStartSynchronized(lock, self);
2131       if (self->IsExceptionPending()) {
2132         return nullptr;  // Report error.
2133       }
2134     } else {
2135       if (fast_native) {
2136         cookie = JniMethodFastStart(self);
2137       } else {
2138         DCHECK(normal_native);
2139         cookie = JniMethodStart(self);
2140       }
2141     }
2142     sp32 = reinterpret_cast<uint32_t*>(managed_sp);
2143     *(sp32 - 1) = cookie;
2144   }
2145 
2146   // Retrieve the stored native code.
2147   // Note that it may point to the lookup stub or trampoline.
2148   // FIXME: This is broken for @CriticalNative as the art_jni_dlsym_lookup_stub
2149   // does not handle that case. Calls from compiled stubs are also broken.
2150   void const* nativeCode = called->GetEntryPointFromJni();
2151 
2152   VLOG(third_party_jni) << "GenericJNI: "
2153                         << called->PrettyMethod()
2154                         << " -> "
2155                         << std::hex << reinterpret_cast<uintptr_t>(nativeCode);
2156 
2157   // Return native code.
2158   return nativeCode;
2159 }
2160 
2161 // Defined in quick_jni_entrypoints.cc.
2162 extern uint64_t GenericJniMethodEnd(Thread* self,
2163                                     uint32_t saved_local_ref_cookie,
2164                                     jvalue result,
2165                                     uint64_t result_f,
2166                                     ArtMethod* called);
2167 
2168 /*
2169  * Is called after the native JNI code. Responsible for cleanup (handle scope, saved state) and
2170  * unlocking.
2171  */
artQuickGenericJniEndTrampoline(Thread * self,jvalue result,uint64_t result_f)2172 extern "C" uint64_t artQuickGenericJniEndTrampoline(Thread* self,
2173                                                     jvalue result,
2174                                                     uint64_t result_f) {
2175   // We're here just back from a native call. We don't have the shared mutator lock at this point
2176   // yet until we call GoToRunnable() later in GenericJniMethodEnd(). Accessing objects or doing
2177   // anything that requires a mutator lock before that would cause problems as GC may have the
2178   // exclusive mutator lock and may be moving objects, etc.
2179   ArtMethod** sp = self->GetManagedStack()->GetTopQuickFrame();
2180   DCHECK(self->GetManagedStack()->GetTopQuickFrameTag());
2181   uint32_t* sp32 = reinterpret_cast<uint32_t*>(sp);
2182   ArtMethod* called = *sp;
2183   uint32_t cookie = *(sp32 - 1);
2184   return GenericJniMethodEnd(self, cookie, result, result_f, called);
2185 }
2186 
2187 // We use TwoWordReturn to optimize scalar returns. We use the hi value for code, and the lo value
2188 // for the method pointer.
2189 //
2190 // It is valid to use this, as at the usage points here (returns from C functions) we are assuming
2191 // to hold the mutator lock (see REQUIRES_SHARED(Locks::mutator_lock_) annotations).
2192 
2193 template <InvokeType type, bool access_check>
artInvokeCommon(uint32_t method_idx,ObjPtr<mirror::Object> this_object,Thread * self,ArtMethod ** sp)2194 static TwoWordReturn artInvokeCommon(uint32_t method_idx,
2195                                      ObjPtr<mirror::Object> this_object,
2196                                      Thread* self,
2197                                      ArtMethod** sp) {
2198   ScopedQuickEntrypointChecks sqec(self);
2199   DCHECK_EQ(*sp, Runtime::Current()->GetCalleeSaveMethod(CalleeSaveType::kSaveRefsAndArgs));
2200   ArtMethod* caller_method = QuickArgumentVisitor::GetCallingMethod(sp);
2201   ArtMethod* method = FindMethodFast<type, access_check>(method_idx, this_object, caller_method);
2202   if (UNLIKELY(method == nullptr)) {
2203     const DexFile* dex_file = caller_method->GetDexFile();
2204     uint32_t shorty_len;
2205     const char* shorty = dex_file->GetMethodShorty(dex_file->GetMethodId(method_idx), &shorty_len);
2206     {
2207       // Remember the args in case a GC happens in FindMethodFromCode.
2208       ScopedObjectAccessUnchecked soa(self->GetJniEnv());
2209       RememberForGcArgumentVisitor visitor(sp, type == kStatic, shorty, shorty_len, &soa);
2210       visitor.VisitArguments();
2211       method = FindMethodFromCode<type, access_check>(method_idx,
2212                                                       &this_object,
2213                                                       caller_method,
2214                                                       self);
2215       visitor.FixupReferences();
2216     }
2217 
2218     if (UNLIKELY(method == nullptr)) {
2219       CHECK(self->IsExceptionPending());
2220       return GetTwoWordFailureValue();  // Failure.
2221     }
2222   }
2223   DCHECK(!self->IsExceptionPending());
2224   const void* code = method->GetEntryPointFromQuickCompiledCode();
2225 
2226   // When we return, the caller will branch to this address, so it had better not be 0!
2227   DCHECK(code != nullptr) << "Code was null in method: " << method->PrettyMethod()
2228                           << " location: "
2229                           << method->GetDexFile()->GetLocation();
2230 
2231   return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(code),
2232                                 reinterpret_cast<uintptr_t>(method));
2233 }
2234 
2235 // Explicit artInvokeCommon template function declarations to please analysis tool.
2236 #define EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(type, access_check)                                \
2237   template REQUIRES_SHARED(Locks::mutator_lock_)                                          \
2238   TwoWordReturn artInvokeCommon<type, access_check>(                                            \
2239       uint32_t method_idx, ObjPtr<mirror::Object> his_object, Thread* self, ArtMethod** sp)
2240 
2241 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kVirtual, false);
2242 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kVirtual, true);
2243 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kInterface, false);
2244 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kInterface, true);
2245 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kDirect, false);
2246 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kDirect, true);
2247 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kStatic, false);
2248 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kStatic, true);
2249 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kSuper, false);
2250 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kSuper, true);
2251 #undef EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL
2252 
2253 // See comments in runtime_support_asm.S
artInvokeInterfaceTrampolineWithAccessCheck(uint32_t method_idx,mirror::Object * this_object,Thread * self,ArtMethod ** sp)2254 extern "C" TwoWordReturn artInvokeInterfaceTrampolineWithAccessCheck(
2255     uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
2256     REQUIRES_SHARED(Locks::mutator_lock_) {
2257   return artInvokeCommon<kInterface, true>(method_idx, this_object, self, sp);
2258 }
2259 
artInvokeDirectTrampolineWithAccessCheck(uint32_t method_idx,mirror::Object * this_object,Thread * self,ArtMethod ** sp)2260 extern "C" TwoWordReturn artInvokeDirectTrampolineWithAccessCheck(
2261     uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
2262     REQUIRES_SHARED(Locks::mutator_lock_) {
2263   return artInvokeCommon<kDirect, true>(method_idx, this_object, self, sp);
2264 }
2265 
artInvokeStaticTrampolineWithAccessCheck(uint32_t method_idx,mirror::Object * this_object ATTRIBUTE_UNUSED,Thread * self,ArtMethod ** sp)2266 extern "C" TwoWordReturn artInvokeStaticTrampolineWithAccessCheck(
2267     uint32_t method_idx,
2268     mirror::Object* this_object ATTRIBUTE_UNUSED,
2269     Thread* self,
2270     ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
2271   // For static, this_object is not required and may be random garbage. Don't pass it down so that
2272   // it doesn't cause ObjPtr alignment failure check.
2273   return artInvokeCommon<kStatic, true>(method_idx, nullptr, self, sp);
2274 }
2275 
artInvokeSuperTrampolineWithAccessCheck(uint32_t method_idx,mirror::Object * this_object,Thread * self,ArtMethod ** sp)2276 extern "C" TwoWordReturn artInvokeSuperTrampolineWithAccessCheck(
2277     uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
2278     REQUIRES_SHARED(Locks::mutator_lock_) {
2279   return artInvokeCommon<kSuper, true>(method_idx, this_object, self, sp);
2280 }
2281 
artInvokeVirtualTrampolineWithAccessCheck(uint32_t method_idx,mirror::Object * this_object,Thread * self,ArtMethod ** sp)2282 extern "C" TwoWordReturn artInvokeVirtualTrampolineWithAccessCheck(
2283     uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
2284     REQUIRES_SHARED(Locks::mutator_lock_) {
2285   return artInvokeCommon<kVirtual, true>(method_idx, this_object, self, sp);
2286 }
2287 
2288 // Determine target of interface dispatch. The interface method and this object are known non-null.
2289 // The interface method is the method returned by the dex cache in the conflict trampoline.
artInvokeInterfaceTrampoline(ArtMethod * interface_method,mirror::Object * raw_this_object,Thread * self,ArtMethod ** sp)2290 extern "C" TwoWordReturn artInvokeInterfaceTrampoline(ArtMethod* interface_method,
2291                                                       mirror::Object* raw_this_object,
2292                                                       Thread* self,
2293                                                       ArtMethod** sp)
2294     REQUIRES_SHARED(Locks::mutator_lock_) {
2295   ScopedQuickEntrypointChecks sqec(self);
2296 
2297   Runtime* runtime = Runtime::Current();
2298   bool resolve_method = ((interface_method == nullptr) || interface_method->IsRuntimeMethod());
2299   if (UNLIKELY(resolve_method)) {
2300     // The interface method is unresolved, so resolve it in the dex file of the caller.
2301     // Fetch the dex_method_idx of the target interface method from the caller.
2302     StackHandleScope<1> hs(self);
2303     Handle<mirror::Object> this_object = hs.NewHandle(raw_this_object);
2304     ArtMethod* caller_method = QuickArgumentVisitor::GetCallingMethod(sp);
2305     uint32_t dex_method_idx;
2306     uint32_t dex_pc = QuickArgumentVisitor::GetCallingDexPc(sp);
2307     const Instruction& instr = caller_method->DexInstructions().InstructionAt(dex_pc);
2308     Instruction::Code instr_code = instr.Opcode();
2309     DCHECK(instr_code == Instruction::INVOKE_INTERFACE ||
2310            instr_code == Instruction::INVOKE_INTERFACE_RANGE)
2311         << "Unexpected call into interface trampoline: " << instr.DumpString(nullptr);
2312     if (instr_code == Instruction::INVOKE_INTERFACE) {
2313       dex_method_idx = instr.VRegB_35c();
2314     } else {
2315       DCHECK_EQ(instr_code, Instruction::INVOKE_INTERFACE_RANGE);
2316       dex_method_idx = instr.VRegB_3rc();
2317     }
2318 
2319     const DexFile& dex_file = *caller_method->GetDexFile();
2320     uint32_t shorty_len;
2321     const char* shorty = dex_file.GetMethodShorty(dex_file.GetMethodId(dex_method_idx),
2322                                                   &shorty_len);
2323     {
2324       // Remember the args in case a GC happens in ClassLinker::ResolveMethod().
2325       ScopedObjectAccessUnchecked soa(self->GetJniEnv());
2326       RememberForGcArgumentVisitor visitor(sp, false, shorty, shorty_len, &soa);
2327       visitor.VisitArguments();
2328       ClassLinker* class_linker = runtime->GetClassLinker();
2329       interface_method = class_linker->ResolveMethod<ClassLinker::ResolveMode::kNoChecks>(
2330           self, dex_method_idx, caller_method, kInterface);
2331       visitor.FixupReferences();
2332     }
2333 
2334     if (UNLIKELY(interface_method == nullptr)) {
2335       CHECK(self->IsExceptionPending());
2336       return GetTwoWordFailureValue();  // Failure.
2337     }
2338     MaybeUpdateBssMethodEntry(interface_method, MethodReference(&dex_file, dex_method_idx));
2339 
2340     // Refresh `raw_this_object` which may have changed after resolution.
2341     raw_this_object = this_object.Get();
2342   }
2343 
2344   // The compiler and interpreter make sure the conflict trampoline is never
2345   // called on a method that resolves to j.l.Object.
2346   DCHECK(!interface_method->GetDeclaringClass()->IsObjectClass());
2347   DCHECK(interface_method->GetDeclaringClass()->IsInterface());
2348   DCHECK(!interface_method->IsRuntimeMethod());
2349   DCHECK(!interface_method->IsCopied());
2350 
2351   ObjPtr<mirror::Object> obj_this = raw_this_object;
2352   ObjPtr<mirror::Class> cls = obj_this->GetClass();
2353   uint32_t imt_index = interface_method->GetImtIndex();
2354   ImTable* imt = cls->GetImt(kRuntimePointerSize);
2355   ArtMethod* conflict_method = imt->Get(imt_index, kRuntimePointerSize);
2356   DCHECK(conflict_method->IsRuntimeMethod());
2357 
2358   if (UNLIKELY(resolve_method)) {
2359     // Now that we know the interface method, look it up in the conflict table.
2360     ImtConflictTable* current_table = conflict_method->GetImtConflictTable(kRuntimePointerSize);
2361     DCHECK(current_table != nullptr);
2362     ArtMethod* method = current_table->Lookup(interface_method, kRuntimePointerSize);
2363     if (method != nullptr) {
2364       return GetTwoWordSuccessValue(
2365           reinterpret_cast<uintptr_t>(method->GetEntryPointFromQuickCompiledCode()),
2366           reinterpret_cast<uintptr_t>(method));
2367     }
2368     // Interface method is not in the conflict table. Continue looking up in the
2369     // iftable.
2370   }
2371 
2372   ArtMethod* method = cls->FindVirtualMethodForInterface(interface_method, kRuntimePointerSize);
2373   if (UNLIKELY(method == nullptr)) {
2374     ArtMethod* caller_method = QuickArgumentVisitor::GetCallingMethod(sp);
2375     ThrowIncompatibleClassChangeErrorClassForInterfaceDispatch(
2376         interface_method, obj_this.Ptr(), caller_method);
2377     return GetTwoWordFailureValue();
2378   }
2379 
2380   // We arrive here if we have found an implementation, and it is not in the ImtConflictTable.
2381   // We create a new table with the new pair { interface_method, method }.
2382 
2383   // Classes in the boot image should never need to update conflict methods in
2384   // their IMT.
2385   CHECK(!runtime->GetHeap()->ObjectIsInBootImageSpace(cls.Ptr())) << cls->PrettyClass();
2386   ArtMethod* new_conflict_method = runtime->GetClassLinker()->AddMethodToConflictTable(
2387       cls.Ptr(),
2388       conflict_method,
2389       interface_method,
2390       method);
2391   if (new_conflict_method != conflict_method) {
2392     // Update the IMT if we create a new conflict method. No fence needed here, as the
2393     // data is consistent.
2394     imt->Set(imt_index,
2395              new_conflict_method,
2396              kRuntimePointerSize);
2397   }
2398 
2399   const void* code = method->GetEntryPointFromQuickCompiledCode();
2400 
2401   // When we return, the caller will branch to this address, so it had better not be 0!
2402   DCHECK(code != nullptr) << "Code was null in method: " << method->PrettyMethod()
2403                           << " location: " << method->GetDexFile()->GetLocation();
2404 
2405   return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(code),
2406                                 reinterpret_cast<uintptr_t>(method));
2407 }
2408 
2409 // Returns uint64_t representing raw bits from JValue.
artInvokePolymorphic(mirror::Object * raw_receiver,Thread * self,ArtMethod ** sp)2410 extern "C" uint64_t artInvokePolymorphic(mirror::Object* raw_receiver, Thread* self, ArtMethod** sp)
2411     REQUIRES_SHARED(Locks::mutator_lock_) {
2412   ScopedQuickEntrypointChecks sqec(self);
2413   DCHECK(raw_receiver != nullptr);
2414   DCHECK_EQ(*sp, Runtime::Current()->GetCalleeSaveMethod(CalleeSaveType::kSaveRefsAndArgs));
2415 
2416   // Start new JNI local reference state
2417   JNIEnvExt* env = self->GetJniEnv();
2418   ScopedObjectAccessUnchecked soa(env);
2419   ScopedJniEnvLocalRefState env_state(env);
2420   const char* old_cause = self->StartAssertNoThreadSuspension("Making stack arguments safe.");
2421 
2422   // From the instruction, get the |callsite_shorty| and expose arguments on the stack to the GC.
2423   ArtMethod* caller_method = QuickArgumentVisitor::GetCallingMethod(sp);
2424   uint32_t dex_pc = QuickArgumentVisitor::GetCallingDexPc(sp);
2425   const Instruction& inst = caller_method->DexInstructions().InstructionAt(dex_pc);
2426   DCHECK(inst.Opcode() == Instruction::INVOKE_POLYMORPHIC ||
2427          inst.Opcode() == Instruction::INVOKE_POLYMORPHIC_RANGE);
2428   const dex::ProtoIndex proto_idx(inst.VRegH());
2429   const char* shorty = caller_method->GetDexFile()->GetShorty(proto_idx);
2430   const size_t shorty_length = strlen(shorty);
2431   static const bool kMethodIsStatic = false;  // invoke() and invokeExact() are not static.
2432   RememberForGcArgumentVisitor gc_visitor(sp, kMethodIsStatic, shorty, shorty_length, &soa);
2433   gc_visitor.VisitArguments();
2434 
2435   // Wrap raw_receiver in a Handle for safety.
2436   StackHandleScope<3> hs(self);
2437   Handle<mirror::Object> receiver_handle(hs.NewHandle(raw_receiver));
2438   raw_receiver = nullptr;
2439   self->EndAssertNoThreadSuspension(old_cause);
2440 
2441   // Resolve method.
2442   ClassLinker* linker = Runtime::Current()->GetClassLinker();
2443   ArtMethod* resolved_method = linker->ResolveMethod<ClassLinker::ResolveMode::kCheckICCEAndIAE>(
2444       self, inst.VRegB(), caller_method, kVirtual);
2445 
2446   Handle<mirror::MethodType> method_type(
2447       hs.NewHandle(linker->ResolveMethodType(self, proto_idx, caller_method)));
2448   if (UNLIKELY(method_type.IsNull())) {
2449     // This implies we couldn't resolve one or more types in this method handle.
2450     CHECK(self->IsExceptionPending());
2451     return 0UL;
2452   }
2453 
2454   DCHECK_EQ(ArtMethod::NumArgRegisters(shorty) + 1u, (uint32_t)inst.VRegA());
2455   DCHECK_EQ(resolved_method->IsStatic(), kMethodIsStatic);
2456 
2457   // Fix references before constructing the shadow frame.
2458   gc_visitor.FixupReferences();
2459 
2460   // Construct shadow frame placing arguments consecutively from |first_arg|.
2461   const bool is_range = (inst.Opcode() == Instruction::INVOKE_POLYMORPHIC_RANGE);
2462   const size_t num_vregs = is_range ? inst.VRegA_4rcc() : inst.VRegA_45cc();
2463   const size_t first_arg = 0;
2464   ShadowFrameAllocaUniquePtr shadow_frame_unique_ptr =
2465       CREATE_SHADOW_FRAME(num_vregs, /* link= */ nullptr, resolved_method, dex_pc);
2466   ShadowFrame* shadow_frame = shadow_frame_unique_ptr.get();
2467   ScopedStackedShadowFramePusher
2468       frame_pusher(self, shadow_frame, StackedShadowFrameType::kShadowFrameUnderConstruction);
2469   BuildQuickShadowFrameVisitor shadow_frame_builder(sp,
2470                                                     kMethodIsStatic,
2471                                                     shorty,
2472                                                     strlen(shorty),
2473                                                     shadow_frame,
2474                                                     first_arg);
2475   shadow_frame_builder.VisitArguments();
2476 
2477   // Push a transition back into managed code onto the linked list in thread.
2478   ManagedStack fragment;
2479   self->PushManagedStackFragment(&fragment);
2480 
2481   // Call DoInvokePolymorphic with |is_range| = true, as shadow frame has argument registers in
2482   // consecutive order.
2483   RangeInstructionOperands operands(first_arg + 1, num_vregs - 1);
2484   Intrinsics intrinsic = static_cast<Intrinsics>(resolved_method->GetIntrinsic());
2485   JValue result;
2486   bool success = false;
2487   if (resolved_method->GetDeclaringClass() == GetClassRoot<mirror::MethodHandle>(linker)) {
2488     Handle<mirror::MethodHandle> method_handle(hs.NewHandle(
2489         ObjPtr<mirror::MethodHandle>::DownCast(receiver_handle.Get())));
2490     if (intrinsic == Intrinsics::kMethodHandleInvokeExact) {
2491       success = MethodHandleInvokeExact(self,
2492                                         *shadow_frame,
2493                                         method_handle,
2494                                         method_type,
2495                                         &operands,
2496                                         &result);
2497     } else {
2498       DCHECK_EQ(static_cast<uint32_t>(intrinsic),
2499                 static_cast<uint32_t>(Intrinsics::kMethodHandleInvoke));
2500       success = MethodHandleInvoke(self,
2501                                    *shadow_frame,
2502                                    method_handle,
2503                                    method_type,
2504                                    &operands,
2505                                    &result);
2506     }
2507   } else {
2508     DCHECK_EQ(GetClassRoot<mirror::VarHandle>(linker), resolved_method->GetDeclaringClass());
2509     Handle<mirror::VarHandle> var_handle(hs.NewHandle(
2510         ObjPtr<mirror::VarHandle>::DownCast(receiver_handle.Get())));
2511     mirror::VarHandle::AccessMode access_mode =
2512         mirror::VarHandle::GetAccessModeByIntrinsic(intrinsic);
2513     success = VarHandleInvokeAccessor(self,
2514                                       *shadow_frame,
2515                                       var_handle,
2516                                       method_type,
2517                                       access_mode,
2518                                       &operands,
2519                                       &result);
2520   }
2521 
2522   DCHECK(success || self->IsExceptionPending());
2523 
2524   // Pop transition record.
2525   self->PopManagedStackFragment(fragment);
2526 
2527   return result.GetJ();
2528 }
2529 
2530 // Returns uint64_t representing raw bits from JValue.
artInvokeCustom(uint32_t call_site_idx,Thread * self,ArtMethod ** sp)2531 extern "C" uint64_t artInvokeCustom(uint32_t call_site_idx, Thread* self, ArtMethod** sp)
2532     REQUIRES_SHARED(Locks::mutator_lock_) {
2533   ScopedQuickEntrypointChecks sqec(self);
2534   DCHECK_EQ(*sp, Runtime::Current()->GetCalleeSaveMethod(CalleeSaveType::kSaveRefsAndArgs));
2535 
2536   // invoke-custom is effectively a static call (no receiver).
2537   static constexpr bool kMethodIsStatic = true;
2538 
2539   // Start new JNI local reference state
2540   JNIEnvExt* env = self->GetJniEnv();
2541   ScopedObjectAccessUnchecked soa(env);
2542   ScopedJniEnvLocalRefState env_state(env);
2543 
2544   const char* old_cause = self->StartAssertNoThreadSuspension("Making stack arguments safe.");
2545 
2546   // From the instruction, get the |callsite_shorty| and expose arguments on the stack to the GC.
2547   ArtMethod* caller_method = QuickArgumentVisitor::GetCallingMethod(sp);
2548   uint32_t dex_pc = QuickArgumentVisitor::GetCallingDexPc(sp);
2549   const DexFile* dex_file = caller_method->GetDexFile();
2550   const dex::ProtoIndex proto_idx(dex_file->GetProtoIndexForCallSite(call_site_idx));
2551   const char* shorty = caller_method->GetDexFile()->GetShorty(proto_idx);
2552   const uint32_t shorty_len = strlen(shorty);
2553 
2554   // Construct the shadow frame placing arguments consecutively from |first_arg|.
2555   const size_t first_arg = 0;
2556   const size_t num_vregs = ArtMethod::NumArgRegisters(shorty);
2557   ShadowFrameAllocaUniquePtr shadow_frame_unique_ptr =
2558       CREATE_SHADOW_FRAME(num_vregs, /* link= */ nullptr, caller_method, dex_pc);
2559   ShadowFrame* shadow_frame = shadow_frame_unique_ptr.get();
2560   ScopedStackedShadowFramePusher
2561       frame_pusher(self, shadow_frame, StackedShadowFrameType::kShadowFrameUnderConstruction);
2562   BuildQuickShadowFrameVisitor shadow_frame_builder(sp,
2563                                                     kMethodIsStatic,
2564                                                     shorty,
2565                                                     shorty_len,
2566                                                     shadow_frame,
2567                                                     first_arg);
2568   shadow_frame_builder.VisitArguments();
2569 
2570   // Push a transition back into managed code onto the linked list in thread.
2571   ManagedStack fragment;
2572   self->PushManagedStackFragment(&fragment);
2573   self->EndAssertNoThreadSuspension(old_cause);
2574 
2575   // Perform the invoke-custom operation.
2576   RangeInstructionOperands operands(first_arg, num_vregs);
2577   JValue result;
2578   bool success =
2579       interpreter::DoInvokeCustom(self, *shadow_frame, call_site_idx, &operands, &result);
2580   DCHECK(success || self->IsExceptionPending());
2581 
2582   // Pop transition record.
2583   self->PopManagedStackFragment(fragment);
2584 
2585   return result.GetJ();
2586 }
2587 
2588 }  // namespace art
2589