1 /* 2 * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. 3 * 4 * Use of this source code is governed by a BSD-style license 5 * that can be found in the LICENSE file in the root of the source 6 * tree. An additional intellectual property rights grant can be found 7 * in the file PATENTS. All contributing project authors may 8 * be found in the AUTHORS file in the root of the source tree. 9 */ 10 11 #ifndef MODULES_AUDIO_PROCESSING_INCLUDE_AUDIO_PROCESSING_H_ 12 #define MODULES_AUDIO_PROCESSING_INCLUDE_AUDIO_PROCESSING_H_ 13 14 // MSVC++ requires this to be set before any other includes to get M_PI. 15 #ifndef _USE_MATH_DEFINES 16 #define _USE_MATH_DEFINES 17 #endif 18 19 #include <math.h> 20 #include <stddef.h> // size_t 21 #include <stdio.h> // FILE 22 #include <string.h> 23 24 #include <vector> 25 26 #include "absl/types/optional.h" 27 #include "api/array_view.h" 28 #include "api/audio/echo_canceller3_config.h" 29 #include "api/audio/echo_control.h" 30 #include "api/scoped_refptr.h" 31 #include "modules/audio_processing/include/audio_processing_statistics.h" 32 #include "modules/audio_processing/include/config.h" 33 #include "rtc_base/arraysize.h" 34 #include "rtc_base/deprecation.h" 35 #include "rtc_base/ref_count.h" 36 #include "rtc_base/system/file_wrapper.h" 37 #include "rtc_base/system/rtc_export.h" 38 39 namespace rtc { 40 class TaskQueue; 41 } // namespace rtc 42 43 namespace webrtc { 44 45 class AecDump; 46 class AudioBuffer; 47 48 class StreamConfig; 49 class ProcessingConfig; 50 51 class EchoDetector; 52 class CustomAudioAnalyzer; 53 class CustomProcessing; 54 55 // Use to enable experimental gain control (AGC). At startup the experimental 56 // AGC moves the microphone volume up to |startup_min_volume| if the current 57 // microphone volume is set too low. The value is clamped to its operating range 58 // [12, 255]. Here, 255 maps to 100%. 59 // 60 // Must be provided through AudioProcessingBuilder().Create(config). 61 #if defined(WEBRTC_CHROMIUM_BUILD) 62 static const int kAgcStartupMinVolume = 85; 63 #else 64 static const int kAgcStartupMinVolume = 0; 65 #endif // defined(WEBRTC_CHROMIUM_BUILD) 66 static constexpr int kClippedLevelMin = 70; 67 68 // To be deprecated: Please instead use the flag in the 69 // AudioProcessing::Config::AnalogGainController. 70 // TODO(webrtc:5298): Remove. 71 struct ExperimentalAgc { 72 ExperimentalAgc() = default; ExperimentalAgcExperimentalAgc73 explicit ExperimentalAgc(bool enabled) : enabled(enabled) {} ExperimentalAgcExperimentalAgc74 ExperimentalAgc(bool enabled, 75 bool enabled_agc2_level_estimator, 76 bool digital_adaptive_disabled) 77 : enabled(enabled), 78 enabled_agc2_level_estimator(enabled_agc2_level_estimator), 79 digital_adaptive_disabled(digital_adaptive_disabled) {} 80 // Deprecated constructor: will be removed. ExperimentalAgcExperimentalAgc81 ExperimentalAgc(bool enabled, 82 bool enabled_agc2_level_estimator, 83 bool digital_adaptive_disabled, 84 bool analyze_before_aec) 85 : enabled(enabled), 86 enabled_agc2_level_estimator(enabled_agc2_level_estimator), 87 digital_adaptive_disabled(digital_adaptive_disabled) {} ExperimentalAgcExperimentalAgc88 ExperimentalAgc(bool enabled, int startup_min_volume) 89 : enabled(enabled), startup_min_volume(startup_min_volume) {} ExperimentalAgcExperimentalAgc90 ExperimentalAgc(bool enabled, int startup_min_volume, int clipped_level_min) 91 : enabled(enabled), 92 startup_min_volume(startup_min_volume), 93 clipped_level_min(clipped_level_min) {} 94 static const ConfigOptionID identifier = ConfigOptionID::kExperimentalAgc; 95 bool enabled = true; 96 int startup_min_volume = kAgcStartupMinVolume; 97 // Lowest microphone level that will be applied in response to clipping. 98 int clipped_level_min = kClippedLevelMin; 99 bool enabled_agc2_level_estimator = false; 100 bool digital_adaptive_disabled = false; 101 }; 102 103 // To be deprecated: Please instead use the flag in the 104 // AudioProcessing::Config::TransientSuppression. 105 // 106 // Use to enable experimental noise suppression. It can be set in the 107 // constructor or using AudioProcessing::SetExtraOptions(). 108 // TODO(webrtc:5298): Remove. 109 struct ExperimentalNs { ExperimentalNsExperimentalNs110 ExperimentalNs() : enabled(false) {} ExperimentalNsExperimentalNs111 explicit ExperimentalNs(bool enabled) : enabled(enabled) {} 112 static const ConfigOptionID identifier = ConfigOptionID::kExperimentalNs; 113 bool enabled; 114 }; 115 116 // The Audio Processing Module (APM) provides a collection of voice processing 117 // components designed for real-time communications software. 118 // 119 // APM operates on two audio streams on a frame-by-frame basis. Frames of the 120 // primary stream, on which all processing is applied, are passed to 121 // |ProcessStream()|. Frames of the reverse direction stream are passed to 122 // |ProcessReverseStream()|. On the client-side, this will typically be the 123 // near-end (capture) and far-end (render) streams, respectively. APM should be 124 // placed in the signal chain as close to the audio hardware abstraction layer 125 // (HAL) as possible. 126 // 127 // On the server-side, the reverse stream will normally not be used, with 128 // processing occurring on each incoming stream. 129 // 130 // Component interfaces follow a similar pattern and are accessed through 131 // corresponding getters in APM. All components are disabled at create-time, 132 // with default settings that are recommended for most situations. New settings 133 // can be applied without enabling a component. Enabling a component triggers 134 // memory allocation and initialization to allow it to start processing the 135 // streams. 136 // 137 // Thread safety is provided with the following assumptions to reduce locking 138 // overhead: 139 // 1. The stream getters and setters are called from the same thread as 140 // ProcessStream(). More precisely, stream functions are never called 141 // concurrently with ProcessStream(). 142 // 2. Parameter getters are never called concurrently with the corresponding 143 // setter. 144 // 145 // APM accepts only linear PCM audio data in chunks of 10 ms. The int16 146 // interfaces use interleaved data, while the float interfaces use deinterleaved 147 // data. 148 // 149 // Usage example, omitting error checking: 150 // AudioProcessing* apm = AudioProcessingBuilder().Create(); 151 // 152 // AudioProcessing::Config config; 153 // config.echo_canceller.enabled = true; 154 // config.echo_canceller.mobile_mode = false; 155 // 156 // config.gain_controller1.enabled = true; 157 // config.gain_controller1.mode = 158 // AudioProcessing::Config::GainController1::kAdaptiveAnalog; 159 // config.gain_controller1.analog_level_minimum = 0; 160 // config.gain_controller1.analog_level_maximum = 255; 161 // 162 // config.gain_controller2.enabled = true; 163 // 164 // config.high_pass_filter.enabled = true; 165 // 166 // config.voice_detection.enabled = true; 167 // 168 // apm->ApplyConfig(config) 169 // 170 // apm->noise_reduction()->set_level(kHighSuppression); 171 // apm->noise_reduction()->Enable(true); 172 // 173 // // Start a voice call... 174 // 175 // // ... Render frame arrives bound for the audio HAL ... 176 // apm->ProcessReverseStream(render_frame); 177 // 178 // // ... Capture frame arrives from the audio HAL ... 179 // // Call required set_stream_ functions. 180 // apm->set_stream_delay_ms(delay_ms); 181 // apm->set_stream_analog_level(analog_level); 182 // 183 // apm->ProcessStream(capture_frame); 184 // 185 // // Call required stream_ functions. 186 // analog_level = apm->recommended_stream_analog_level(); 187 // has_voice = apm->stream_has_voice(); 188 // 189 // // Repeate render and capture processing for the duration of the call... 190 // // Start a new call... 191 // apm->Initialize(); 192 // 193 // // Close the application... 194 // delete apm; 195 // 196 class RTC_EXPORT AudioProcessing : public rtc::RefCountInterface { 197 public: 198 // The struct below constitutes the new parameter scheme for the audio 199 // processing. It is being introduced gradually and until it is fully 200 // introduced, it is prone to change. 201 // TODO(peah): Remove this comment once the new config scheme is fully rolled 202 // out. 203 // 204 // The parameters and behavior of the audio processing module are controlled 205 // by changing the default values in the AudioProcessing::Config struct. 206 // The config is applied by passing the struct to the ApplyConfig method. 207 // 208 // This config is intended to be used during setup, and to enable/disable 209 // top-level processing effects. Use during processing may cause undesired 210 // submodule resets, affecting the audio quality. Use the RuntimeSetting 211 // construct for runtime configuration. 212 struct RTC_EXPORT Config { 213 214 // Sets the properties of the audio processing pipeline. 215 struct RTC_EXPORT Pipeline { 216 Pipeline(); 217 218 // Maximum allowed processing rate used internally. May only be set to 219 // 32000 or 48000 and any differing values will be treated as 48000. The 220 // default rate is currently selected based on the CPU architecture, but 221 // that logic may change. 222 int maximum_internal_processing_rate; 223 // Allow multi-channel processing of render audio. 224 bool multi_channel_render = false; 225 // Allow multi-channel processing of capture audio when AEC3 is active 226 // or a custom AEC is injected.. 227 bool multi_channel_capture = false; 228 } pipeline; 229 230 // Enabled the pre-amplifier. It amplifies the capture signal 231 // before any other processing is done. 232 struct PreAmplifier { 233 bool enabled = false; 234 float fixed_gain_factor = 1.f; 235 } pre_amplifier; 236 237 struct HighPassFilter { 238 bool enabled = false; 239 bool apply_in_full_band = true; 240 } high_pass_filter; 241 242 struct EchoCanceller { 243 bool enabled = false; 244 bool mobile_mode = false; 245 bool export_linear_aec_output = false; 246 // Enforce the highpass filter to be on (has no effect for the mobile 247 // mode). 248 bool enforce_high_pass_filtering = true; 249 } echo_canceller; 250 251 // Enables background noise suppression. 252 struct NoiseSuppression { 253 bool enabled = false; 254 enum Level { kLow, kModerate, kHigh, kVeryHigh }; 255 Level level = kModerate; 256 bool analyze_linear_aec_output_when_available = false; 257 } noise_suppression; 258 259 // Enables transient suppression. 260 struct TransientSuppression { 261 bool enabled = false; 262 } transient_suppression; 263 264 // Enables reporting of |voice_detected| in webrtc::AudioProcessingStats. 265 struct VoiceDetection { 266 bool enabled = false; 267 } voice_detection; 268 269 // Enables automatic gain control (AGC) functionality. 270 // The automatic gain control (AGC) component brings the signal to an 271 // appropriate range. This is done by applying a digital gain directly and, 272 // in the analog mode, prescribing an analog gain to be applied at the audio 273 // HAL. 274 // Recommended to be enabled on the client-side. 275 struct GainController1 { 276 bool enabled = false; 277 enum Mode { 278 // Adaptive mode intended for use if an analog volume control is 279 // available on the capture device. It will require the user to provide 280 // coupling between the OS mixer controls and AGC through the 281 // stream_analog_level() functions. 282 // It consists of an analog gain prescription for the audio device and a 283 // digital compression stage. 284 kAdaptiveAnalog, 285 // Adaptive mode intended for situations in which an analog volume 286 // control is unavailable. It operates in a similar fashion to the 287 // adaptive analog mode, but with scaling instead applied in the digital 288 // domain. As with the analog mode, it additionally uses a digital 289 // compression stage. 290 kAdaptiveDigital, 291 // Fixed mode which enables only the digital compression stage also used 292 // by the two adaptive modes. 293 // It is distinguished from the adaptive modes by considering only a 294 // short time-window of the input signal. It applies a fixed gain 295 // through most of the input level range, and compresses (gradually 296 // reduces gain with increasing level) the input signal at higher 297 // levels. This mode is preferred on embedded devices where the capture 298 // signal level is predictable, so that a known gain can be applied. 299 kFixedDigital 300 }; 301 Mode mode = kAdaptiveAnalog; 302 // Sets the target peak level (or envelope) of the AGC in dBFs (decibels 303 // from digital full-scale). The convention is to use positive values. For 304 // instance, passing in a value of 3 corresponds to -3 dBFs, or a target 305 // level 3 dB below full-scale. Limited to [0, 31]. 306 int target_level_dbfs = 3; 307 // Sets the maximum gain the digital compression stage may apply, in dB. A 308 // higher number corresponds to greater compression, while a value of 0 309 // will leave the signal uncompressed. Limited to [0, 90]. 310 // For updates after APM setup, use a RuntimeSetting instead. 311 int compression_gain_db = 9; 312 // When enabled, the compression stage will hard limit the signal to the 313 // target level. Otherwise, the signal will be compressed but not limited 314 // above the target level. 315 bool enable_limiter = true; 316 // Sets the minimum and maximum analog levels of the audio capture device. 317 // Must be set if an analog mode is used. Limited to [0, 65535]. 318 int analog_level_minimum = 0; 319 int analog_level_maximum = 255; 320 321 // Enables the analog gain controller functionality. 322 struct AnalogGainController { 323 bool enabled = true; 324 int startup_min_volume = kAgcStartupMinVolume; 325 // Lowest analog microphone level that will be applied in response to 326 // clipping. 327 int clipped_level_min = kClippedLevelMin; 328 bool enable_agc2_level_estimator = false; 329 bool enable_digital_adaptive = true; 330 } analog_gain_controller; 331 } gain_controller1; 332 333 // Enables the next generation AGC functionality. This feature replaces the 334 // standard methods of gain control in the previous AGC. Enabling this 335 // submodule enables an adaptive digital AGC followed by a limiter. By 336 // setting |fixed_gain_db|, the limiter can be turned into a compressor that 337 // first applies a fixed gain. The adaptive digital AGC can be turned off by 338 // setting |adaptive_digital_mode=false|. 339 struct GainController2 { 340 enum LevelEstimator { kRms, kPeak }; 341 bool enabled = false; 342 struct { 343 float gain_db = 0.f; 344 } fixed_digital; 345 struct { 346 bool enabled = false; 347 LevelEstimator level_estimator = kRms; 348 bool use_saturation_protector = true; 349 float extra_saturation_margin_db = 2.f; 350 } adaptive_digital; 351 } gain_controller2; 352 353 struct ResidualEchoDetector { 354 bool enabled = true; 355 } residual_echo_detector; 356 357 // Enables reporting of |output_rms_dbfs| in webrtc::AudioProcessingStats. 358 struct LevelEstimation { 359 bool enabled = false; 360 } level_estimation; 361 362 std::string ToString() const; 363 }; 364 365 // TODO(mgraczyk): Remove once all methods that use ChannelLayout are gone. 366 enum ChannelLayout { 367 kMono, 368 // Left, right. 369 kStereo, 370 // Mono, keyboard, and mic. 371 kMonoAndKeyboard, 372 // Left, right, keyboard, and mic. 373 kStereoAndKeyboard 374 }; 375 376 // Specifies the properties of a setting to be passed to AudioProcessing at 377 // runtime. 378 class RuntimeSetting { 379 public: 380 enum class Type { 381 kNotSpecified, 382 kCapturePreGain, 383 kCaptureCompressionGain, 384 kCaptureFixedPostGain, 385 kPlayoutVolumeChange, 386 kCustomRenderProcessingRuntimeSetting, 387 kPlayoutAudioDeviceChange 388 }; 389 390 // Play-out audio device properties. 391 struct PlayoutAudioDeviceInfo { 392 int id; // Identifies the audio device. 393 int max_volume; // Maximum play-out volume. 394 }; 395 RuntimeSetting()396 RuntimeSetting() : type_(Type::kNotSpecified), value_(0.f) {} 397 ~RuntimeSetting() = default; 398 CreateCapturePreGain(float gain)399 static RuntimeSetting CreateCapturePreGain(float gain) { 400 RTC_DCHECK_GE(gain, 1.f) << "Attenuation is not allowed."; 401 return {Type::kCapturePreGain, gain}; 402 } 403 404 // Corresponds to Config::GainController1::compression_gain_db, but for 405 // runtime configuration. CreateCompressionGainDb(int gain_db)406 static RuntimeSetting CreateCompressionGainDb(int gain_db) { 407 RTC_DCHECK_GE(gain_db, 0); 408 RTC_DCHECK_LE(gain_db, 90); 409 return {Type::kCaptureCompressionGain, static_cast<float>(gain_db)}; 410 } 411 412 // Corresponds to Config::GainController2::fixed_digital::gain_db, but for 413 // runtime configuration. CreateCaptureFixedPostGain(float gain_db)414 static RuntimeSetting CreateCaptureFixedPostGain(float gain_db) { 415 RTC_DCHECK_GE(gain_db, 0.f); 416 RTC_DCHECK_LE(gain_db, 90.f); 417 return {Type::kCaptureFixedPostGain, gain_db}; 418 } 419 420 // Creates a runtime setting to notify play-out (aka render) audio device 421 // changes. CreatePlayoutAudioDeviceChange(PlayoutAudioDeviceInfo audio_device)422 static RuntimeSetting CreatePlayoutAudioDeviceChange( 423 PlayoutAudioDeviceInfo audio_device) { 424 return {Type::kPlayoutAudioDeviceChange, audio_device}; 425 } 426 427 // Creates a runtime setting to notify play-out (aka render) volume changes. 428 // |volume| is the unnormalized volume, the maximum of which CreatePlayoutVolumeChange(int volume)429 static RuntimeSetting CreatePlayoutVolumeChange(int volume) { 430 return {Type::kPlayoutVolumeChange, volume}; 431 } 432 CreateCustomRenderSetting(float payload)433 static RuntimeSetting CreateCustomRenderSetting(float payload) { 434 return {Type::kCustomRenderProcessingRuntimeSetting, payload}; 435 } 436 type()437 Type type() const { return type_; } 438 // Getters do not return a value but instead modify the argument to protect 439 // from implicit casting. GetFloat(float * value)440 void GetFloat(float* value) const { 441 RTC_DCHECK(value); 442 *value = value_.float_value; 443 } GetInt(int * value)444 void GetInt(int* value) const { 445 RTC_DCHECK(value); 446 *value = value_.int_value; 447 } GetPlayoutAudioDeviceInfo(PlayoutAudioDeviceInfo * value)448 void GetPlayoutAudioDeviceInfo(PlayoutAudioDeviceInfo* value) const { 449 RTC_DCHECK(value); 450 *value = value_.playout_audio_device_info; 451 } 452 453 private: RuntimeSetting(Type id,float value)454 RuntimeSetting(Type id, float value) : type_(id), value_(value) {} RuntimeSetting(Type id,int value)455 RuntimeSetting(Type id, int value) : type_(id), value_(value) {} RuntimeSetting(Type id,PlayoutAudioDeviceInfo value)456 RuntimeSetting(Type id, PlayoutAudioDeviceInfo value) 457 : type_(id), value_(value) {} 458 Type type_; 459 union U { U()460 U() {} U(int value)461 U(int value) : int_value(value) {} U(float value)462 U(float value) : float_value(value) {} U(PlayoutAudioDeviceInfo value)463 U(PlayoutAudioDeviceInfo value) : playout_audio_device_info(value) {} 464 float float_value; 465 int int_value; 466 PlayoutAudioDeviceInfo playout_audio_device_info; 467 } value_; 468 }; 469 ~AudioProcessing()470 ~AudioProcessing() override {} 471 472 // Initializes internal states, while retaining all user settings. This 473 // should be called before beginning to process a new audio stream. However, 474 // it is not necessary to call before processing the first stream after 475 // creation. 476 // 477 // It is also not necessary to call if the audio parameters (sample 478 // rate and number of channels) have changed. Passing updated parameters 479 // directly to |ProcessStream()| and |ProcessReverseStream()| is permissible. 480 // If the parameters are known at init-time though, they may be provided. 481 virtual int Initialize() = 0; 482 483 // The int16 interfaces require: 484 // - only |NativeRate|s be used 485 // - that the input, output and reverse rates must match 486 // - that |processing_config.output_stream()| matches 487 // |processing_config.input_stream()|. 488 // 489 // The float interfaces accept arbitrary rates and support differing input and 490 // output layouts, but the output must have either one channel or the same 491 // number of channels as the input. 492 virtual int Initialize(const ProcessingConfig& processing_config) = 0; 493 494 // Initialize with unpacked parameters. See Initialize() above for details. 495 // 496 // TODO(mgraczyk): Remove once clients are updated to use the new interface. 497 virtual int Initialize(int capture_input_sample_rate_hz, 498 int capture_output_sample_rate_hz, 499 int render_sample_rate_hz, 500 ChannelLayout capture_input_layout, 501 ChannelLayout capture_output_layout, 502 ChannelLayout render_input_layout) = 0; 503 504 // TODO(peah): This method is a temporary solution used to take control 505 // over the parameters in the audio processing module and is likely to change. 506 virtual void ApplyConfig(const Config& config) = 0; 507 508 // Pass down additional options which don't have explicit setters. This 509 // ensures the options are applied immediately. 510 virtual void SetExtraOptions(const webrtc::Config& config) = 0; 511 512 // TODO(ajm): Only intended for internal use. Make private and friend the 513 // necessary classes? 514 virtual int proc_sample_rate_hz() const = 0; 515 virtual int proc_split_sample_rate_hz() const = 0; 516 virtual size_t num_input_channels() const = 0; 517 virtual size_t num_proc_channels() const = 0; 518 virtual size_t num_output_channels() const = 0; 519 virtual size_t num_reverse_channels() const = 0; 520 521 // Set to true when the output of AudioProcessing will be muted or in some 522 // other way not used. Ideally, the captured audio would still be processed, 523 // but some components may change behavior based on this information. 524 // Default false. 525 virtual void set_output_will_be_muted(bool muted) = 0; 526 527 // Enqueue a runtime setting. 528 virtual void SetRuntimeSetting(RuntimeSetting setting) = 0; 529 530 // Accepts and produces a 10 ms frame interleaved 16 bit integer audio as 531 // specified in |input_config| and |output_config|. |src| and |dest| may use 532 // the same memory, if desired. 533 virtual int ProcessStream(const int16_t* const src, 534 const StreamConfig& input_config, 535 const StreamConfig& output_config, 536 int16_t* const dest) = 0; 537 538 // Accepts deinterleaved float audio with the range [-1, 1]. Each element of 539 // |src| points to a channel buffer, arranged according to |input_stream|. At 540 // output, the channels will be arranged according to |output_stream| in 541 // |dest|. 542 // 543 // The output must have one channel or as many channels as the input. |src| 544 // and |dest| may use the same memory, if desired. 545 virtual int ProcessStream(const float* const* src, 546 const StreamConfig& input_config, 547 const StreamConfig& output_config, 548 float* const* dest) = 0; 549 550 // Accepts and produces a 10 ms frame of interleaved 16 bit integer audio for 551 // the reverse direction audio stream as specified in |input_config| and 552 // |output_config|. |src| and |dest| may use the same memory, if desired. 553 virtual int ProcessReverseStream(const int16_t* const src, 554 const StreamConfig& input_config, 555 const StreamConfig& output_config, 556 int16_t* const dest) = 0; 557 558 // Accepts deinterleaved float audio with the range [-1, 1]. Each element of 559 // |data| points to a channel buffer, arranged according to |reverse_config|. 560 virtual int ProcessReverseStream(const float* const* src, 561 const StreamConfig& input_config, 562 const StreamConfig& output_config, 563 float* const* dest) = 0; 564 565 // Accepts deinterleaved float audio with the range [-1, 1]. Each element 566 // of |data| points to a channel buffer, arranged according to 567 // |reverse_config|. 568 virtual int AnalyzeReverseStream(const float* const* data, 569 const StreamConfig& reverse_config) = 0; 570 571 // Returns the most recently produced 10 ms of the linear AEC output at a rate 572 // of 16 kHz. If there is more than one capture channel, a mono representation 573 // of the input is returned. Returns true/false to indicate whether an output 574 // returned. 575 virtual bool GetLinearAecOutput( 576 rtc::ArrayView<std::array<float, 160>> linear_output) const = 0; 577 578 // This must be called prior to ProcessStream() if and only if adaptive analog 579 // gain control is enabled, to pass the current analog level from the audio 580 // HAL. Must be within the range provided in Config::GainController1. 581 virtual void set_stream_analog_level(int level) = 0; 582 583 // When an analog mode is set, this should be called after ProcessStream() 584 // to obtain the recommended new analog level for the audio HAL. It is the 585 // user's responsibility to apply this level. 586 virtual int recommended_stream_analog_level() const = 0; 587 588 // This must be called if and only if echo processing is enabled. 589 // 590 // Sets the |delay| in ms between ProcessReverseStream() receiving a far-end 591 // frame and ProcessStream() receiving a near-end frame containing the 592 // corresponding echo. On the client-side this can be expressed as 593 // delay = (t_render - t_analyze) + (t_process - t_capture) 594 // where, 595 // - t_analyze is the time a frame is passed to ProcessReverseStream() and 596 // t_render is the time the first sample of the same frame is rendered by 597 // the audio hardware. 598 // - t_capture is the time the first sample of a frame is captured by the 599 // audio hardware and t_process is the time the same frame is passed to 600 // ProcessStream(). 601 virtual int set_stream_delay_ms(int delay) = 0; 602 virtual int stream_delay_ms() const = 0; 603 604 // Call to signal that a key press occurred (true) or did not occur (false) 605 // with this chunk of audio. 606 virtual void set_stream_key_pressed(bool key_pressed) = 0; 607 608 // Creates and attaches an webrtc::AecDump for recording debugging 609 // information. 610 // The |worker_queue| may not be null and must outlive the created 611 // AecDump instance. |max_log_size_bytes == -1| means the log size 612 // will be unlimited. |handle| may not be null. The AecDump takes 613 // responsibility for |handle| and closes it in the destructor. A 614 // return value of true indicates that the file has been 615 // sucessfully opened, while a value of false indicates that 616 // opening the file failed. 617 virtual bool CreateAndAttachAecDump(const std::string& file_name, 618 int64_t max_log_size_bytes, 619 rtc::TaskQueue* worker_queue) = 0; 620 virtual bool CreateAndAttachAecDump(FILE* handle, 621 int64_t max_log_size_bytes, 622 rtc::TaskQueue* worker_queue) = 0; 623 624 // TODO(webrtc:5298) Deprecated variant. 625 // Attaches provided webrtc::AecDump for recording debugging 626 // information. Log file and maximum file size logic is supposed to 627 // be handled by implementing instance of AecDump. Calling this 628 // method when another AecDump is attached resets the active AecDump 629 // with a new one. This causes the d-tor of the earlier AecDump to 630 // be called. The d-tor call may block until all pending logging 631 // tasks are completed. 632 virtual void AttachAecDump(std::unique_ptr<AecDump> aec_dump) = 0; 633 634 // If no AecDump is attached, this has no effect. If an AecDump is 635 // attached, it's destructor is called. The d-tor may block until 636 // all pending logging tasks are completed. 637 virtual void DetachAecDump() = 0; 638 639 // Get audio processing statistics. 640 virtual AudioProcessingStats GetStatistics() = 0; 641 // TODO(webrtc:5298) Deprecated variant. The |has_remote_tracks| argument 642 // should be set if there are active remote tracks (this would usually be true 643 // during a call). If there are no remote tracks some of the stats will not be 644 // set by AudioProcessing, because they only make sense if there is at least 645 // one remote track. 646 virtual AudioProcessingStats GetStatistics(bool has_remote_tracks) = 0; 647 648 // Returns the last applied configuration. 649 virtual AudioProcessing::Config GetConfig() const = 0; 650 651 enum Error { 652 // Fatal errors. 653 kNoError = 0, 654 kUnspecifiedError = -1, 655 kCreationFailedError = -2, 656 kUnsupportedComponentError = -3, 657 kUnsupportedFunctionError = -4, 658 kNullPointerError = -5, 659 kBadParameterError = -6, 660 kBadSampleRateError = -7, 661 kBadDataLengthError = -8, 662 kBadNumberChannelsError = -9, 663 kFileError = -10, 664 kStreamParameterNotSetError = -11, 665 kNotEnabledError = -12, 666 667 // Warnings are non-fatal. 668 // This results when a set_stream_ parameter is out of range. Processing 669 // will continue, but the parameter may have been truncated. 670 kBadStreamParameterWarning = -13 671 }; 672 673 // Native rates supported by the integer interfaces. 674 enum NativeRate { 675 kSampleRate8kHz = 8000, 676 kSampleRate16kHz = 16000, 677 kSampleRate32kHz = 32000, 678 kSampleRate48kHz = 48000 679 }; 680 681 // TODO(kwiberg): We currently need to support a compiler (Visual C++) that 682 // complains if we don't explicitly state the size of the array here. Remove 683 // the size when that's no longer the case. 684 static constexpr int kNativeSampleRatesHz[4] = { 685 kSampleRate8kHz, kSampleRate16kHz, kSampleRate32kHz, kSampleRate48kHz}; 686 static constexpr size_t kNumNativeSampleRates = 687 arraysize(kNativeSampleRatesHz); 688 static constexpr int kMaxNativeSampleRateHz = 689 kNativeSampleRatesHz[kNumNativeSampleRates - 1]; 690 691 static const int kChunkSizeMs = 10; 692 }; 693 694 class RTC_EXPORT AudioProcessingBuilder { 695 public: 696 AudioProcessingBuilder(); 697 ~AudioProcessingBuilder(); 698 // The AudioProcessingBuilder takes ownership of the echo_control_factory. SetEchoControlFactory(std::unique_ptr<EchoControlFactory> echo_control_factory)699 AudioProcessingBuilder& SetEchoControlFactory( 700 std::unique_ptr<EchoControlFactory> echo_control_factory) { 701 echo_control_factory_ = std::move(echo_control_factory); 702 return *this; 703 } 704 // The AudioProcessingBuilder takes ownership of the capture_post_processing. SetCapturePostProcessing(std::unique_ptr<CustomProcessing> capture_post_processing)705 AudioProcessingBuilder& SetCapturePostProcessing( 706 std::unique_ptr<CustomProcessing> capture_post_processing) { 707 capture_post_processing_ = std::move(capture_post_processing); 708 return *this; 709 } 710 // The AudioProcessingBuilder takes ownership of the render_pre_processing. SetRenderPreProcessing(std::unique_ptr<CustomProcessing> render_pre_processing)711 AudioProcessingBuilder& SetRenderPreProcessing( 712 std::unique_ptr<CustomProcessing> render_pre_processing) { 713 render_pre_processing_ = std::move(render_pre_processing); 714 return *this; 715 } 716 // The AudioProcessingBuilder takes ownership of the echo_detector. SetEchoDetector(rtc::scoped_refptr<EchoDetector> echo_detector)717 AudioProcessingBuilder& SetEchoDetector( 718 rtc::scoped_refptr<EchoDetector> echo_detector) { 719 echo_detector_ = std::move(echo_detector); 720 return *this; 721 } 722 // The AudioProcessingBuilder takes ownership of the capture_analyzer. SetCaptureAnalyzer(std::unique_ptr<CustomAudioAnalyzer> capture_analyzer)723 AudioProcessingBuilder& SetCaptureAnalyzer( 724 std::unique_ptr<CustomAudioAnalyzer> capture_analyzer) { 725 capture_analyzer_ = std::move(capture_analyzer); 726 return *this; 727 } 728 // This creates an APM instance using the previously set components. Calling 729 // the Create function resets the AudioProcessingBuilder to its initial state. 730 AudioProcessing* Create(); 731 AudioProcessing* Create(const webrtc::Config& config); 732 733 private: 734 std::unique_ptr<EchoControlFactory> echo_control_factory_; 735 std::unique_ptr<CustomProcessing> capture_post_processing_; 736 std::unique_ptr<CustomProcessing> render_pre_processing_; 737 rtc::scoped_refptr<EchoDetector> echo_detector_; 738 std::unique_ptr<CustomAudioAnalyzer> capture_analyzer_; 739 RTC_DISALLOW_COPY_AND_ASSIGN(AudioProcessingBuilder); 740 }; 741 742 class StreamConfig { 743 public: 744 // sample_rate_hz: The sampling rate of the stream. 745 // 746 // num_channels: The number of audio channels in the stream, excluding the 747 // keyboard channel if it is present. When passing a 748 // StreamConfig with an array of arrays T*[N], 749 // 750 // N == {num_channels + 1 if has_keyboard 751 // {num_channels if !has_keyboard 752 // 753 // has_keyboard: True if the stream has a keyboard channel. When has_keyboard 754 // is true, the last channel in any corresponding list of 755 // channels is the keyboard channel. 756 StreamConfig(int sample_rate_hz = 0, 757 size_t num_channels = 0, 758 bool has_keyboard = false) sample_rate_hz_(sample_rate_hz)759 : sample_rate_hz_(sample_rate_hz), 760 num_channels_(num_channels), 761 has_keyboard_(has_keyboard), 762 num_frames_(calculate_frames(sample_rate_hz)) {} 763 set_sample_rate_hz(int value)764 void set_sample_rate_hz(int value) { 765 sample_rate_hz_ = value; 766 num_frames_ = calculate_frames(value); 767 } set_num_channels(size_t value)768 void set_num_channels(size_t value) { num_channels_ = value; } set_has_keyboard(bool value)769 void set_has_keyboard(bool value) { has_keyboard_ = value; } 770 sample_rate_hz()771 int sample_rate_hz() const { return sample_rate_hz_; } 772 773 // The number of channels in the stream, not including the keyboard channel if 774 // present. num_channels()775 size_t num_channels() const { return num_channels_; } 776 has_keyboard()777 bool has_keyboard() const { return has_keyboard_; } num_frames()778 size_t num_frames() const { return num_frames_; } num_samples()779 size_t num_samples() const { return num_channels_ * num_frames_; } 780 781 bool operator==(const StreamConfig& other) const { 782 return sample_rate_hz_ == other.sample_rate_hz_ && 783 num_channels_ == other.num_channels_ && 784 has_keyboard_ == other.has_keyboard_; 785 } 786 787 bool operator!=(const StreamConfig& other) const { return !(*this == other); } 788 789 private: calculate_frames(int sample_rate_hz)790 static size_t calculate_frames(int sample_rate_hz) { 791 return static_cast<size_t>(AudioProcessing::kChunkSizeMs * sample_rate_hz / 792 1000); 793 } 794 795 int sample_rate_hz_; 796 size_t num_channels_; 797 bool has_keyboard_; 798 size_t num_frames_; 799 }; 800 801 class ProcessingConfig { 802 public: 803 enum StreamName { 804 kInputStream, 805 kOutputStream, 806 kReverseInputStream, 807 kReverseOutputStream, 808 kNumStreamNames, 809 }; 810 input_stream()811 const StreamConfig& input_stream() const { 812 return streams[StreamName::kInputStream]; 813 } output_stream()814 const StreamConfig& output_stream() const { 815 return streams[StreamName::kOutputStream]; 816 } reverse_input_stream()817 const StreamConfig& reverse_input_stream() const { 818 return streams[StreamName::kReverseInputStream]; 819 } reverse_output_stream()820 const StreamConfig& reverse_output_stream() const { 821 return streams[StreamName::kReverseOutputStream]; 822 } 823 input_stream()824 StreamConfig& input_stream() { return streams[StreamName::kInputStream]; } output_stream()825 StreamConfig& output_stream() { return streams[StreamName::kOutputStream]; } reverse_input_stream()826 StreamConfig& reverse_input_stream() { 827 return streams[StreamName::kReverseInputStream]; 828 } reverse_output_stream()829 StreamConfig& reverse_output_stream() { 830 return streams[StreamName::kReverseOutputStream]; 831 } 832 833 bool operator==(const ProcessingConfig& other) const { 834 for (int i = 0; i < StreamName::kNumStreamNames; ++i) { 835 if (this->streams[i] != other.streams[i]) { 836 return false; 837 } 838 } 839 return true; 840 } 841 842 bool operator!=(const ProcessingConfig& other) const { 843 return !(*this == other); 844 } 845 846 StreamConfig streams[StreamName::kNumStreamNames]; 847 }; 848 849 // Experimental interface for a custom analysis submodule. 850 class CustomAudioAnalyzer { 851 public: 852 // (Re-) Initializes the submodule. 853 virtual void Initialize(int sample_rate_hz, int num_channels) = 0; 854 // Analyzes the given capture or render signal. 855 virtual void Analyze(const AudioBuffer* audio) = 0; 856 // Returns a string representation of the module state. 857 virtual std::string ToString() const = 0; 858 ~CustomAudioAnalyzer()859 virtual ~CustomAudioAnalyzer() {} 860 }; 861 862 // Interface for a custom processing submodule. 863 class CustomProcessing { 864 public: 865 // (Re-)Initializes the submodule. 866 virtual void Initialize(int sample_rate_hz, int num_channels) = 0; 867 // Processes the given capture or render signal. 868 virtual void Process(AudioBuffer* audio) = 0; 869 // Returns a string representation of the module state. 870 virtual std::string ToString() const = 0; 871 // Handles RuntimeSettings. TODO(webrtc:9262): make pure virtual 872 // after updating dependencies. 873 virtual void SetRuntimeSetting(AudioProcessing::RuntimeSetting setting); 874 ~CustomProcessing()875 virtual ~CustomProcessing() {} 876 }; 877 878 // Interface for an echo detector submodule. 879 class EchoDetector : public rtc::RefCountInterface { 880 public: 881 // (Re-)Initializes the submodule. 882 virtual void Initialize(int capture_sample_rate_hz, 883 int num_capture_channels, 884 int render_sample_rate_hz, 885 int num_render_channels) = 0; 886 887 // Analysis (not changing) of the render signal. 888 virtual void AnalyzeRenderAudio(rtc::ArrayView<const float> render_audio) = 0; 889 890 // Analysis (not changing) of the capture signal. 891 virtual void AnalyzeCaptureAudio( 892 rtc::ArrayView<const float> capture_audio) = 0; 893 894 // Pack an AudioBuffer into a vector<float>. 895 static void PackRenderAudioBuffer(AudioBuffer* audio, 896 std::vector<float>* packed_buffer); 897 898 struct Metrics { 899 absl::optional<double> echo_likelihood; 900 absl::optional<double> echo_likelihood_recent_max; 901 }; 902 903 // Collect current metrics from the echo detector. 904 virtual Metrics GetMetrics() const = 0; 905 }; 906 907 } // namespace webrtc 908 909 #endif // MODULES_AUDIO_PROCESSING_INCLUDE_AUDIO_PROCESSING_H_ 910