/external/tensorflow/tensorflow/lite/kernels/internal/reference/ |
D | legacy_reference_ops.h | 37 inline void ShapeFromDims(const tflite::Dims<4>& dims, RuntimeShape* shape) { in ShapeFromDims() 42 inline void DepthwiseConv(const float* input_data, const Dims<4>& input_dims, in DepthwiseConv() 43 const float* filter_data, const Dims<4>& filter_dims, in DepthwiseConv() 44 const float* bias_data, const Dims<4>& bias_dims, in DepthwiseConv() 50 const Dims<4>& output_dims) { in DepthwiseConv() 69 inline void DepthwiseConv(const float* input_data, const Dims<4>& input_dims, in DepthwiseConv() 70 const float* filter_data, const Dims<4>& filter_dims, in DepthwiseConv() 71 const float* bias_data, const Dims<4>& bias_dims, in DepthwiseConv() 76 const Dims<4>& output_dims) { in DepthwiseConv() 85 void DepthwiseConv(const float* input_data, const Dims<4>& input_dims, in DepthwiseConv() [all …]
|
D | process_broadcast_shapes.h | 57 if (extended_shape0.Dims(i) == extended_shape1.Dims(i)) { in ProcessBroadcastShapes() 59 } else if (extended_shape0.Dims(i) == 1) { in ProcessBroadcastShapes() 63 } else if (extended_shape1.Dims(i) == 1) { in ProcessBroadcastShapes() 103 while (i >= 0 && shape_a->Dims(i) == shape_b->Dims(i)) { in ProcessBroadcastShapes() 104 params->broadcast_shape[4] *= shape_b->Dims(i); in ProcessBroadcastShapes() 109 while (i >= 0 && shape_a->Dims(i) == 1) { in ProcessBroadcastShapes() 110 params->broadcast_shape[3] *= shape_b->Dims(i); in ProcessBroadcastShapes() 113 while (i >= 0 && shape_a->Dims(i) == shape_b->Dims(i)) { in ProcessBroadcastShapes() 114 params->broadcast_shape[2] *= shape_a->Dims(i); in ProcessBroadcastShapes() 118 while (i >= 0 && shape_b->Dims(i) == 1) { in ProcessBroadcastShapes() [all …]
|
D | batch_matmul.h | 41 if (shape.Dims(x) == 1) { in extent() 46 prod *= shape.Dims(i); in extent() 62 extended_lhs_shape.Dims(0), extended_rhs_shape.Dims(0)); in BatchMatMul() 64 extended_lhs_shape.Dims(1), extended_rhs_shape.Dims(1)); in BatchMatMul() 66 extended_lhs_shape.Dims(2), extended_rhs_shape.Dims(2)); in BatchMatMul() 76 const int lhs_rows = extended_lhs_shape.Dims(3); in BatchMatMul() 77 const int rhs_cols = extended_rhs_shape.Dims(4); in BatchMatMul() 78 const int accum_depth = extended_lhs_shape.Dims(4); in BatchMatMul() 120 extended_lhs_shape.Dims(0), extended_rhs_shape.Dims(0)); in BatchMatMul() 122 extended_lhs_shape.Dims(1), extended_rhs_shape.Dims(1)); in BatchMatMul() [all …]
|
D | batch_to_space_nd.h | 32 new_shape.SetDim(0, shape.Dims(0)); in ExtendShapeBatchToSpace() 33 new_shape.SetDim(1, shape.Dims(1)); in ExtendShapeBatchToSpace() 34 new_shape.SetDim(3, shape.Dims(2)); in ExtendShapeBatchToSpace() 58 const int output_width = output_shape.Dims(2); in BatchToSpaceND() 59 const int output_height = output_shape.Dims(1); in BatchToSpaceND() 60 const int output_batch_size = output_shape.Dims(0); in BatchToSpaceND() 62 const int depth = input1_shape.Dims(3); in BatchToSpaceND() 63 const int input_width = input1_shape.Dims(2); in BatchToSpaceND() 64 const int input_height = input1_shape.Dims(1); in BatchToSpaceND() 65 const int input_batch_size = input1_shape.Dims(0); in BatchToSpaceND()
|
D | space_to_batch_nd.h | 33 new_shape.SetDim(0, shape.Dims(0)); in ExtendShapeSpaceToBatch() 34 new_shape.SetDim(1, shape.Dims(1)); in ExtendShapeSpaceToBatch() 35 new_shape.SetDim(3, shape.Dims(2)); in ExtendShapeSpaceToBatch() 61 const int depth = input1_shape.Dims(3); in SpaceToBatchND() 62 const int input_width = input1_shape.Dims(2); in SpaceToBatchND() 63 const int input_height = input1_shape.Dims(1); in SpaceToBatchND() 64 const int input_batch_size = input1_shape.Dims(0); in SpaceToBatchND() 66 const int output_width = output_shape.Dims(2); in SpaceToBatchND() 67 const int output_height = output_shape.Dims(1); in SpaceToBatchND() 68 const int output_batch_size = output_shape.Dims(0); in SpaceToBatchND()
|
D | strided_slice.h | 65 for (int offset_0 = start_0 * input_shape.Dims(1), in StridedSlice() 66 end_0 = stop_0 * input_shape.Dims(1), in StridedSlice() 67 step_0 = params_copy.strides[0] * input_shape.Dims(1); in StridedSlice() 70 for (int offset_1 = (offset_0 + start_1) * input_shape.Dims(2), in StridedSlice() 71 end_1 = (offset_0 + stop_1) * input_shape.Dims(2), in StridedSlice() 72 step_1 = params_copy.strides[1] * input_shape.Dims(2); in StridedSlice() 75 for (int offset_2 = (offset_1 + start_2) * input_shape.Dims(3), in StridedSlice() 76 end_2 = (offset_1 + stop_2) * input_shape.Dims(3), in StridedSlice() 77 step_2 = params_copy.strides[2] * input_shape.Dims(3); in StridedSlice() 80 for (int offset_3 = (offset_2 + start_3) * input_shape.Dims(4), in StridedSlice() [all …]
|
D | pooling.h | 34 const int input_height = input_shape.Dims(1); in AveragePool() 35 const int input_width = input_shape.Dims(2); in AveragePool() 36 const int output_height = output_shape.Dims(1); in AveragePool() 37 const int output_width = output_shape.Dims(2); in AveragePool() 90 const int input_height = input_shape.Dims(1); in AveragePool() 91 const int input_width = input_shape.Dims(2); in AveragePool() 92 const int output_height = output_shape.Dims(1); in AveragePool() 93 const int output_width = output_shape.Dims(2); in AveragePool() 143 const int input_height = input_shape.Dims(1); in L2Pool() 144 const int input_width = input_shape.Dims(2); in L2Pool() [all …]
|
D | space_to_depth.h | 36 const int input_depth = input_shape.Dims(3); in SpaceToDepth() 37 const int input_width = input_shape.Dims(2); in SpaceToDepth() 38 const int input_height = input_shape.Dims(1); in SpaceToDepth() 39 const int input_batch = input_shape.Dims(0); in SpaceToDepth() 41 const int output_depth = output_shape.Dims(3); in SpaceToDepth() 42 const int output_width = output_shape.Dims(2); in SpaceToDepth() 43 const int output_height = output_shape.Dims(1); in SpaceToDepth() 44 const int output_batch = output_shape.Dims(0); in SpaceToDepth()
|
D | depth_to_space.h | 36 const int input_depth = input_shape.Dims(3); in DepthToSpace() 37 const int input_width = input_shape.Dims(2); in DepthToSpace() 38 const int input_height = input_shape.Dims(1); in DepthToSpace() 39 const int input_batch = input_shape.Dims(0); in DepthToSpace() 41 const int output_depth = output_shape.Dims(3); in DepthToSpace() 42 const int output_width = output_shape.Dims(2); in DepthToSpace() 43 const int output_height = output_shape.Dims(1); in DepthToSpace() 44 const int output_batch = output_shape.Dims(0); in DepthToSpace()
|
D | conv.h | 51 const int input_height = input_shape.Dims(1); in Conv() 52 const int input_width = input_shape.Dims(2); in Conv() 53 const int filter_height = filter_shape.Dims(1); in Conv() 54 const int filter_width = filter_shape.Dims(2); in Conv() 55 const int output_height = output_shape.Dims(1); in Conv() 56 const int output_width = output_shape.Dims(2); in Conv() 134 const int input_height = input_shape.Dims(1); in Conv() 135 const int input_width = input_shape.Dims(2); in Conv() 136 const int filter_height = filter_shape.Dims(1); in Conv() 137 const int filter_width = filter_shape.Dims(2); in Conv() [all …]
|
D | conv3d.h | 41 const int input_width = input_shape.Dims(3); in Conv3D() 42 const int input_height = input_shape.Dims(2); in Conv3D() 43 const int input_depth = input_shape.Dims(1); in Conv3D() 44 const int filter_width = filter_shape.Dims(2); in Conv3D() 45 const int filter_height = filter_shape.Dims(1); in Conv3D() 46 const int filter_depth = filter_shape.Dims(0); in Conv3D() 47 const int output_width = output_shape.Dims(3); in Conv3D() 48 const int output_height = output_shape.Dims(2); in Conv3D() 49 const int output_depth = output_shape.Dims(1); in Conv3D()
|
D | concatenation.h | 46 concat_size += input_shapes[i]->Dims(axis); in Concatenation() 48 TFLITE_DCHECK_EQ(concat_size, output_shape.Dims(axis)); in Concatenation() 51 outer_size *= output_shape.Dims(i); in Concatenation() 57 base_inner_size *= output_shape.Dims(i); in Concatenation() 63 const int copy_size = input_shapes[i]->Dims(axis) * base_inner_size; in Concatenation() 97 concat_size += input_shapes[i]->Dims(axis); in ConcatenationWithScaling() 99 TFLITE_DCHECK_EQ(concat_size, output_shape.Dims(axis)); in ConcatenationWithScaling() 102 outer_size *= output_shape.Dims(i); in ConcatenationWithScaling() 108 base_inner_size *= output_shape.Dims(i); in ConcatenationWithScaling() 115 const int copy_size = input_shapes[i]->Dims(axis) * base_inner_size; in ConcatenationWithScaling()
|
/external/tensorflow/tensorflow/lite/kernels/internal/optimized/ |
D | batch_matmul.h | 51 if (shape.Dims(x) == 1) { in BatchMatMul() 56 prod *= shape.Dims(i); in BatchMatMul() 62 broadcast_dim(extended_lhs_shape.Dims(0), extended_rhs_shape.Dims(0)); in BatchMatMul() 64 broadcast_dim(extended_lhs_shape.Dims(1), extended_rhs_shape.Dims(1)); in BatchMatMul() 66 broadcast_dim(extended_lhs_shape.Dims(2), extended_rhs_shape.Dims(2)); in BatchMatMul() 76 const int lhs_rows = extended_lhs_shape.Dims(3); in BatchMatMul() 77 const int rhs_cols = extended_rhs_shape.Dims(4); in BatchMatMul() 78 const int accum_depth = extended_lhs_shape.Dims(4); in BatchMatMul() 142 if (shape.Dims(x) == 1) { in BatchMatMul() 147 prod *= shape.Dims(i); in BatchMatMul() [all …]
|
D | legacy_optimized_ops.h | 79 VectorMap<Scalar> MapAsVector(Scalar* data, const Dims<N>& dims) { in MapAsVector() 86 const Dims<N>& dims) { in MapAsMatrixWithFirstDimAsRows() 97 const Dims<N>& dims) { in MapAsMatrixWithLastDimAsCols() 108 const Dims<N>& dims) { in MapAsArrayWithFirstDimAsRows() 121 const Dims<N>& dims, in MapAsMatrixWithGivenNumberOfRows() 129 inline bool AreSameDims(const Dims<4>& dims1, const Dims<4>& dims2) { in AreSameDims() 138 inline void DepthwiseConv(const float* input_data, const Dims<4>& input_dims, in DepthwiseConv() 139 const float* filter_data, const Dims<4>& filter_dims, in DepthwiseConv() 140 const float* bias_data, const Dims<4>& bias_dims, in DepthwiseConv() 146 const Dims<4>& output_dims) { in DepthwiseConv() [all …]
|
D | im2col_utils.h | 139 const int input_height = input_shape.Dims(1); in DilatedIm2col() 140 const int input_width = input_shape.Dims(2); in DilatedIm2col() 142 const int filter_height = filter_shape.Dims(1); in DilatedIm2col() 143 const int filter_width = filter_shape.Dims(2); in DilatedIm2col() 144 const int output_height = output_shape.Dims(1); in DilatedIm2col() 145 const int output_width = output_shape.Dims(2); in DilatedIm2col() 225 const int input_depth = input_shape.Dims(3); in Im2col() 226 const int input_width = input_shape.Dims(2); in Im2col() 227 const int input_height = input_shape.Dims(1); in Im2col() 228 const int output_depth = output_shape.Dims(3); in Im2col() [all …]
|
/external/tensorflow/tensorflow/lite/kernels/internal/ |
D | types.h | 143 struct Dims { struct 213 inline int32_t Dims(int i) const { in Dims() function 326 inline tflite::Dims<4> ToRuntimeDims(const tflite::RuntimeShape& array_shape) { in ToRuntimeDims() 327 tflite::Dims<4> result; in ToRuntimeDims() 333 (i < dimensions_count) ? array_shape.Dims(dimensions_count - 1 - i) : 1; in ToRuntimeDims() 342 inline RuntimeShape DimsToShape(const tflite::Dims<4>& dims) { in DimsToShape() 427 inline int Offset(const Dims<4>& dims, int i0, int i1, int i2, int i3) { in Offset() 436 inline int Offset(const Dims<4>& dims, int* index) { in Offset() 449 int ArraySize(const Dims<N>& array, int index) { in ArraySize() 472 TFLITE_DCHECK_EQ(shape1.Dims(index1), shape2.Dims(index2)); in MatchingDim() [all …]
|
D | transpose_utils.cc | 26 *dim0 = input_shape.Dims(0); in IsTranspose2DApplicable() 27 *dim1 = input_shape.Dims(1); in IsTranspose2DApplicable() 45 *dim0 *= input_shape.Dims(i); in IsTranspose2DApplicable() 47 *dim1 *= input_shape.Dims(i); in IsTranspose2DApplicable() 61 if (input_shape->Dims(i) == 1) { in RemoveOneSizeDimensions() 84 if (input_shape->Dims(i) == 1) { in RemoveOneSizeDimensions() 87 input_shape->SetDim(new_dims_cnt, input_shape->Dims(i)); in RemoveOneSizeDimensions() 96 if (output_shape->Dims(i) == 1) { in RemoveOneSizeDimensions() 100 output_shape->SetDim(new_dims_cnt, output_shape->Dims(i)); in RemoveOneSizeDimensions() 130 flat_size /= input_shape.Dims(i); in Flatten() [all …]
|
/external/tensorflow/tensorflow/lite/micro/kernels/ceva/ |
D | types.h | 311 struct Dims { 376 inline int32_t Dims(int i) const { 489 inline tflite::Dims<4> ToRuntimeDims(const tflite::RuntimeShape& array_shape) { 490 tflite::Dims<4> result; 496 (i < dimensions_count) ? array_shape.Dims(dimensions_count - 1 - i) : 1; 505 inline RuntimeShape DimsToShape(const tflite::Dims<4>& dims) { 576 inline int Offset(const Dims<4>& dims, int i0, int i1, int i2, int i3) { 585 inline int Offset(const Dims<4>& dims, int* index) { 598 int ArraySize(const Dims<N>& array, int index) { 621 TFLITE_DCHECK_EQ(shape1.Dims(index1), shape2.Dims(index2)); [all …]
|
/external/tensorflow/tensorflow/core/kernels/image/ |
D | mirror_pad_op.h | 95 static constexpr int Dims = internal::array_size<PaddingDimensions>::value; 96 typedef DSizes<Index, Dims> Dimensions; 120 EIGEN_STATIC_ASSERT(Dims > 0, YOU_MADE_A_PROGRAMMING_MISTAKE) 131 for (int dim = 0; dim < Dims; ++dim) { 141 for (int i = 0; i < Dims - 1; ++i) { 146 input_strides_[numext::maxi(0, Dims - 1)] = 1; 147 output_strides_[numext::maxi(0, Dims - 1)] = 1; 148 for (int i = Dims - 1; i > 0; --i) { 174 coeff(array<Index, Dims> coords) const { 175 for (int dim = 0; dim < Dims; ++dim) { [all …]
|
/external/tensorflow/tensorflow/lite/kernels/internal/reference/integer_ops/ |
D | depthwise_conv.h | 51 const int input_height = input_shape.Dims(1); in DepthwiseConvPerChannel() 52 const int input_width = input_shape.Dims(2); in DepthwiseConvPerChannel() 53 const int input_depth = input_shape.Dims(3); in DepthwiseConvPerChannel() 54 const int filter_height = filter_shape.Dims(1); in DepthwiseConvPerChannel() 55 const int filter_width = filter_shape.Dims(2); in DepthwiseConvPerChannel() 56 const int output_height = output_shape.Dims(1); in DepthwiseConvPerChannel() 57 const int output_width = output_shape.Dims(2); in DepthwiseConvPerChannel() 148 const int input_height = input_shape.Dims(1); in DepthwiseConvPerChannel() 149 const int input_width = input_shape.Dims(2); in DepthwiseConvPerChannel() 150 const int input_depth = input_shape.Dims(3); in DepthwiseConvPerChannel() [all …]
|
/external/llvm-project/mlir/include/mlir/ExecutionEngine/ |
D | RunnerUtils.h | 73 template <typename T, int M, int... Dims> 74 std::ostream &operator<<(std::ostream &os, const Vector<T, M, Dims...> &v); 76 template <int... Dims> struct StaticSizeMult { 80 template <int N, int... Dims> struct StaticSizeMult<N, Dims...> { 81 static constexpr int value = N * StaticSizeMult<Dims...>::value; 90 template <typename T, int M, int... Dims> struct VectorDataPrinter { 91 static void print(std::ostream &os, const Vector<T, M, Dims...> &val); 94 template <typename T, int M, int... Dims> 95 void VectorDataPrinter<T, M, Dims...>::print(std::ostream &os, 96 const Vector<T, M, Dims...> &val) { [all …]
|
/external/tensorflow/tensorflow/core/kernels/ |
D | reverse_sequence_op.h | 28 template <typename T, typename Tlen, size_t Dims> 32 ReverseGenerator(typename TTypes<T, Dims>::ConstTensor input, int32 batch_dim, in ReverseGenerator() 40 operator()(const Eigen::array<Eigen::DenseIndex, Dims>& coords) const { in operator() 41 Eigen::array<Eigen::DenseIndex, Dims> new_coords = coords; in operator() 51 typename TTypes<T, Dims>::ConstTensor input_; 61 template <typename Device, typename T, typename Tlen, size_t Dims> 64 const Device& d, typename TTypes<T, Dims>::ConstTensor input, in Compute() 67 typename TTypes<T, Dims>::Tensor output) { in Compute() 68 generator::ReverseGenerator<T, Tlen, Dims> generator(input, batch_dim, in Compute()
|
D | argmax_op.h | 30 #define DECLARE_COMPUTE_SPEC(Dims) \ argument 31 EIGEN_ALWAYS_INLINE static void Reduce##Dims( \ 32 const Device& d, typename TTypes<T, Dims>::ConstTensor input, \ 33 const int32 dimension, typename TTypes<Tout, Dims - 1>::Tensor output) { \ 50 #define DECLARE_COMPUTE_SPEC(Dims) \ argument 51 EIGEN_ALWAYS_INLINE static void Reduce##Dims( \ 52 const Device& d, typename TTypes<T, Dims>::ConstTensor input, \ 53 const int32 dimension, typename TTypes<Tout, Dims - 1>::Tensor output) { \
|
/external/eigen/unsupported/Eigen/CXX11/src/Tensor/ |
D | TensorArgMax.h | 134 template<typename ReduceOp, typename Dims, typename XprType> 135 struct traits<TensorTupleReducerOp<ReduceOp, Dims, XprType> > : public traits<XprType> 143 static const int NumDimensions = XprTraits::NumDimensions - array_size<Dims>::value; 147 template<typename ReduceOp, typename Dims, typename XprType> 148 struct eval<TensorTupleReducerOp<ReduceOp, Dims, XprType>, Eigen::Dense> 150 typedef const TensorTupleReducerOp<ReduceOp, Dims, XprType>& type; 153 template<typename ReduceOp, typename Dims, typename XprType> 154 struct nested<TensorTupleReducerOp<ReduceOp, Dims, XprType>, 1, 155 typename eval<TensorTupleReducerOp<ReduceOp, Dims, XprType> >::type> 157 typedef TensorTupleReducerOp<ReduceOp, Dims, XprType> type; [all …]
|
/external/tensorflow/tensorflow/lite/kernels/perception/ |
D | dense_image_warp.cc | 41 const int channels = input_shape.Dims(3); in DenseImageWarp() 42 TFLITE_CHECK_EQ(flow_shape.Dims(3), 2); in DenseImageWarp() 110 TF_LITE_ENSURE_EQ(context, input_shape.Dims(0), flow_shape.Dims(0)); in Prepare() 111 TF_LITE_ENSURE_EQ(context, input_shape.Dims(1), flow_shape.Dims(1)); in Prepare() 112 TF_LITE_ENSURE_EQ(context, input_shape.Dims(2), flow_shape.Dims(2)); in Prepare() 113 TF_LITE_ENSURE_MSG(context, input_shape.Dims(1) >= 2, in Prepare() 115 TF_LITE_ENSURE_MSG(context, input_shape.Dims(2) >= 2, in Prepare() 117 TF_LITE_ENSURE_MSG(context, flow_shape.Dims(3) == 2, in Prepare()
|