1 /*
2 *******************************************************************************
3 * Implementation of (2^1+,2) cuckoo hashing, where 2^1+ indicates that each
4 * hash bucket contains 2^n cells, for n >= 1, and 2 indicates that two hash
5 * functions are employed. The original cuckoo hashing algorithm was described
6 * in:
7 *
8 * Pagh, R., F.F. Rodler (2004) Cuckoo Hashing. Journal of Algorithms
9 * 51(2):122-144.
10 *
11 * Generalization of cuckoo hashing was discussed in:
12 *
13 * Erlingsson, U., M. Manasse, F. McSherry (2006) A cool and practical
14 * alternative to traditional hash tables. In Proceedings of the 7th
15 * Workshop on Distributed Data and Structures (WDAS'06), Santa Clara, CA,
16 * January 2006.
17 *
18 * This implementation uses precisely two hash functions because that is the
19 * fewest that can work, and supporting multiple hashes is an implementation
20 * burden. Here is a reproduction of Figure 1 from Erlingsson et al. (2006)
21 * that shows approximate expected maximum load factors for various
22 * configurations:
23 *
24 * | #cells/bucket |
25 * #hashes | 1 | 2 | 4 | 8 |
26 * --------+-------+-------+-------+-------+
27 * 1 | 0.006 | 0.006 | 0.03 | 0.12 |
28 * 2 | 0.49 | 0.86 |>0.93< |>0.96< |
29 * 3 | 0.91 | 0.97 | 0.98 | 0.999 |
30 * 4 | 0.97 | 0.99 | 0.999 | |
31 *
32 * The number of cells per bucket is chosen such that a bucket fits in one cache
33 * line. So, on 32- and 64-bit systems, we use (8,2) and (4,2) cuckoo hashing,
34 * respectively.
35 *
36 ******************************************************************************/
37 #define JEMALLOC_CKH_C_
38 #include "jemalloc/internal/jemalloc_preamble.h"
39
40 #include "jemalloc/internal/ckh.h"
41
42 #include "jemalloc/internal/jemalloc_internal_includes.h"
43
44 #include "jemalloc/internal/assert.h"
45 #include "jemalloc/internal/hash.h"
46 #include "jemalloc/internal/malloc_io.h"
47 #include "jemalloc/internal/prng.h"
48 #include "jemalloc/internal/util.h"
49
50 /******************************************************************************/
51 /* Function prototypes for non-inline static functions. */
52
53 static bool ckh_grow(tsd_t *tsd, ckh_t *ckh);
54 static void ckh_shrink(tsd_t *tsd, ckh_t *ckh);
55
56 /******************************************************************************/
57
58 /*
59 * Search bucket for key and return the cell number if found; SIZE_T_MAX
60 * otherwise.
61 */
62 static size_t
ckh_bucket_search(ckh_t * ckh,size_t bucket,const void * key)63 ckh_bucket_search(ckh_t *ckh, size_t bucket, const void *key) {
64 ckhc_t *cell;
65 unsigned i;
66
67 for (i = 0; i < (ZU(1) << LG_CKH_BUCKET_CELLS); i++) {
68 cell = &ckh->tab[(bucket << LG_CKH_BUCKET_CELLS) + i];
69 if (cell->key != NULL && ckh->keycomp(key, cell->key)) {
70 return (bucket << LG_CKH_BUCKET_CELLS) + i;
71 }
72 }
73
74 return SIZE_T_MAX;
75 }
76
77 /*
78 * Search table for key and return cell number if found; SIZE_T_MAX otherwise.
79 */
80 static size_t
ckh_isearch(ckh_t * ckh,const void * key)81 ckh_isearch(ckh_t *ckh, const void *key) {
82 size_t hashes[2], bucket, cell;
83
84 assert(ckh != NULL);
85
86 ckh->hash(key, hashes);
87
88 /* Search primary bucket. */
89 bucket = hashes[0] & ((ZU(1) << ckh->lg_curbuckets) - 1);
90 cell = ckh_bucket_search(ckh, bucket, key);
91 if (cell != SIZE_T_MAX) {
92 return cell;
93 }
94
95 /* Search secondary bucket. */
96 bucket = hashes[1] & ((ZU(1) << ckh->lg_curbuckets) - 1);
97 cell = ckh_bucket_search(ckh, bucket, key);
98 return cell;
99 }
100
101 static bool
ckh_try_bucket_insert(ckh_t * ckh,size_t bucket,const void * key,const void * data)102 ckh_try_bucket_insert(ckh_t *ckh, size_t bucket, const void *key,
103 const void *data) {
104 ckhc_t *cell;
105 unsigned offset, i;
106
107 /*
108 * Cycle through the cells in the bucket, starting at a random position.
109 * The randomness avoids worst-case search overhead as buckets fill up.
110 */
111 offset = (unsigned)prng_lg_range_u64(&ckh->prng_state,
112 LG_CKH_BUCKET_CELLS);
113 for (i = 0; i < (ZU(1) << LG_CKH_BUCKET_CELLS); i++) {
114 cell = &ckh->tab[(bucket << LG_CKH_BUCKET_CELLS) +
115 ((i + offset) & ((ZU(1) << LG_CKH_BUCKET_CELLS) - 1))];
116 if (cell->key == NULL) {
117 cell->key = key;
118 cell->data = data;
119 ckh->count++;
120 return false;
121 }
122 }
123
124 return true;
125 }
126
127 /*
128 * No space is available in bucket. Randomly evict an item, then try to find an
129 * alternate location for that item. Iteratively repeat this
130 * eviction/relocation procedure until either success or detection of an
131 * eviction/relocation bucket cycle.
132 */
133 static bool
ckh_evict_reloc_insert(ckh_t * ckh,size_t argbucket,void const ** argkey,void const ** argdata)134 ckh_evict_reloc_insert(ckh_t *ckh, size_t argbucket, void const **argkey,
135 void const **argdata) {
136 const void *key, *data, *tkey, *tdata;
137 ckhc_t *cell;
138 size_t hashes[2], bucket, tbucket;
139 unsigned i;
140
141 bucket = argbucket;
142 key = *argkey;
143 data = *argdata;
144 while (true) {
145 /*
146 * Choose a random item within the bucket to evict. This is
147 * critical to correct function, because without (eventually)
148 * evicting all items within a bucket during iteration, it
149 * would be possible to get stuck in an infinite loop if there
150 * were an item for which both hashes indicated the same
151 * bucket.
152 */
153 i = (unsigned)prng_lg_range_u64(&ckh->prng_state,
154 LG_CKH_BUCKET_CELLS);
155 cell = &ckh->tab[(bucket << LG_CKH_BUCKET_CELLS) + i];
156 assert(cell->key != NULL);
157
158 /* Swap cell->{key,data} and {key,data} (evict). */
159 tkey = cell->key; tdata = cell->data;
160 cell->key = key; cell->data = data;
161 key = tkey; data = tdata;
162
163 #ifdef CKH_COUNT
164 ckh->nrelocs++;
165 #endif
166
167 /* Find the alternate bucket for the evicted item. */
168 ckh->hash(key, hashes);
169 tbucket = hashes[1] & ((ZU(1) << ckh->lg_curbuckets) - 1);
170 if (tbucket == bucket) {
171 tbucket = hashes[0] & ((ZU(1) << ckh->lg_curbuckets)
172 - 1);
173 /*
174 * It may be that (tbucket == bucket) still, if the
175 * item's hashes both indicate this bucket. However,
176 * we are guaranteed to eventually escape this bucket
177 * during iteration, assuming pseudo-random item
178 * selection (true randomness would make infinite
179 * looping a remote possibility). The reason we can
180 * never get trapped forever is that there are two
181 * cases:
182 *
183 * 1) This bucket == argbucket, so we will quickly
184 * detect an eviction cycle and terminate.
185 * 2) An item was evicted to this bucket from another,
186 * which means that at least one item in this bucket
187 * has hashes that indicate distinct buckets.
188 */
189 }
190 /* Check for a cycle. */
191 if (tbucket == argbucket) {
192 *argkey = key;
193 *argdata = data;
194 return true;
195 }
196
197 bucket = tbucket;
198 if (!ckh_try_bucket_insert(ckh, bucket, key, data)) {
199 return false;
200 }
201 }
202 }
203
204 static bool
ckh_try_insert(ckh_t * ckh,void const ** argkey,void const ** argdata)205 ckh_try_insert(ckh_t *ckh, void const**argkey, void const**argdata) {
206 size_t hashes[2], bucket;
207 const void *key = *argkey;
208 const void *data = *argdata;
209
210 ckh->hash(key, hashes);
211
212 /* Try to insert in primary bucket. */
213 bucket = hashes[0] & ((ZU(1) << ckh->lg_curbuckets) - 1);
214 if (!ckh_try_bucket_insert(ckh, bucket, key, data)) {
215 return false;
216 }
217
218 /* Try to insert in secondary bucket. */
219 bucket = hashes[1] & ((ZU(1) << ckh->lg_curbuckets) - 1);
220 if (!ckh_try_bucket_insert(ckh, bucket, key, data)) {
221 return false;
222 }
223
224 /*
225 * Try to find a place for this item via iterative eviction/relocation.
226 */
227 return ckh_evict_reloc_insert(ckh, bucket, argkey, argdata);
228 }
229
230 /*
231 * Try to rebuild the hash table from scratch by inserting all items from the
232 * old table into the new.
233 */
234 static bool
ckh_rebuild(ckh_t * ckh,ckhc_t * aTab)235 ckh_rebuild(ckh_t *ckh, ckhc_t *aTab) {
236 size_t count, i, nins;
237 const void *key, *data;
238
239 count = ckh->count;
240 ckh->count = 0;
241 for (i = nins = 0; nins < count; i++) {
242 if (aTab[i].key != NULL) {
243 key = aTab[i].key;
244 data = aTab[i].data;
245 if (ckh_try_insert(ckh, &key, &data)) {
246 ckh->count = count;
247 return true;
248 }
249 nins++;
250 }
251 }
252
253 return false;
254 }
255
256 static bool
ckh_grow(tsd_t * tsd,ckh_t * ckh)257 ckh_grow(tsd_t *tsd, ckh_t *ckh) {
258 bool ret;
259 ckhc_t *tab, *ttab;
260 unsigned lg_prevbuckets, lg_curcells;
261
262 #ifdef CKH_COUNT
263 ckh->ngrows++;
264 #endif
265
266 /*
267 * It is possible (though unlikely, given well behaved hashes) that the
268 * table will have to be doubled more than once in order to create a
269 * usable table.
270 */
271 lg_prevbuckets = ckh->lg_curbuckets;
272 lg_curcells = ckh->lg_curbuckets + LG_CKH_BUCKET_CELLS;
273 while (true) {
274 size_t usize;
275
276 lg_curcells++;
277 usize = sz_sa2u(sizeof(ckhc_t) << lg_curcells, CACHELINE);
278 if (unlikely(usize == 0 || usize > LARGE_MAXCLASS)) {
279 ret = true;
280 goto label_return;
281 }
282 tab = (ckhc_t *)ipallocztm(tsd_tsdn(tsd), usize, CACHELINE,
283 true, NULL, true, arena_ichoose(tsd, NULL));
284 if (tab == NULL) {
285 ret = true;
286 goto label_return;
287 }
288 /* Swap in new table. */
289 ttab = ckh->tab;
290 ckh->tab = tab;
291 tab = ttab;
292 ckh->lg_curbuckets = lg_curcells - LG_CKH_BUCKET_CELLS;
293
294 if (!ckh_rebuild(ckh, tab)) {
295 idalloctm(tsd_tsdn(tsd), tab, NULL, NULL, true, true);
296 break;
297 }
298
299 /* Rebuilding failed, so back out partially rebuilt table. */
300 idalloctm(tsd_tsdn(tsd), ckh->tab, NULL, NULL, true, true);
301 ckh->tab = tab;
302 ckh->lg_curbuckets = lg_prevbuckets;
303 }
304
305 ret = false;
306 label_return:
307 return ret;
308 }
309
310 static void
ckh_shrink(tsd_t * tsd,ckh_t * ckh)311 ckh_shrink(tsd_t *tsd, ckh_t *ckh) {
312 ckhc_t *tab, *ttab;
313 size_t usize;
314 unsigned lg_prevbuckets, lg_curcells;
315
316 /*
317 * It is possible (though unlikely, given well behaved hashes) that the
318 * table rebuild will fail.
319 */
320 lg_prevbuckets = ckh->lg_curbuckets;
321 lg_curcells = ckh->lg_curbuckets + LG_CKH_BUCKET_CELLS - 1;
322 usize = sz_sa2u(sizeof(ckhc_t) << lg_curcells, CACHELINE);
323 if (unlikely(usize == 0 || usize > LARGE_MAXCLASS)) {
324 return;
325 }
326 tab = (ckhc_t *)ipallocztm(tsd_tsdn(tsd), usize, CACHELINE, true, NULL,
327 true, arena_ichoose(tsd, NULL));
328 if (tab == NULL) {
329 /*
330 * An OOM error isn't worth propagating, since it doesn't
331 * prevent this or future operations from proceeding.
332 */
333 return;
334 }
335 /* Swap in new table. */
336 ttab = ckh->tab;
337 ckh->tab = tab;
338 tab = ttab;
339 ckh->lg_curbuckets = lg_curcells - LG_CKH_BUCKET_CELLS;
340
341 if (!ckh_rebuild(ckh, tab)) {
342 idalloctm(tsd_tsdn(tsd), tab, NULL, NULL, true, true);
343 #ifdef CKH_COUNT
344 ckh->nshrinks++;
345 #endif
346 return;
347 }
348
349 /* Rebuilding failed, so back out partially rebuilt table. */
350 idalloctm(tsd_tsdn(tsd), ckh->tab, NULL, NULL, true, true);
351 ckh->tab = tab;
352 ckh->lg_curbuckets = lg_prevbuckets;
353 #ifdef CKH_COUNT
354 ckh->nshrinkfails++;
355 #endif
356 }
357
358 bool
ckh_new(tsd_t * tsd,ckh_t * ckh,size_t minitems,ckh_hash_t * hash,ckh_keycomp_t * keycomp)359 ckh_new(tsd_t *tsd, ckh_t *ckh, size_t minitems, ckh_hash_t *hash,
360 ckh_keycomp_t *keycomp) {
361 bool ret;
362 size_t mincells, usize;
363 unsigned lg_mincells;
364
365 assert(minitems > 0);
366 assert(hash != NULL);
367 assert(keycomp != NULL);
368
369 #ifdef CKH_COUNT
370 ckh->ngrows = 0;
371 ckh->nshrinks = 0;
372 ckh->nshrinkfails = 0;
373 ckh->ninserts = 0;
374 ckh->nrelocs = 0;
375 #endif
376 ckh->prng_state = 42; /* Value doesn't really matter. */
377 ckh->count = 0;
378
379 /*
380 * Find the minimum power of 2 that is large enough to fit minitems
381 * entries. We are using (2+,2) cuckoo hashing, which has an expected
382 * maximum load factor of at least ~0.86, so 0.75 is a conservative load
383 * factor that will typically allow mincells items to fit without ever
384 * growing the table.
385 */
386 assert(LG_CKH_BUCKET_CELLS > 0);
387 mincells = ((minitems + (3 - (minitems % 3))) / 3) << 2;
388 for (lg_mincells = LG_CKH_BUCKET_CELLS;
389 (ZU(1) << lg_mincells) < mincells;
390 lg_mincells++) {
391 /* Do nothing. */
392 }
393 ckh->lg_minbuckets = lg_mincells - LG_CKH_BUCKET_CELLS;
394 ckh->lg_curbuckets = lg_mincells - LG_CKH_BUCKET_CELLS;
395 ckh->hash = hash;
396 ckh->keycomp = keycomp;
397
398 usize = sz_sa2u(sizeof(ckhc_t) << lg_mincells, CACHELINE);
399 if (unlikely(usize == 0 || usize > LARGE_MAXCLASS)) {
400 ret = true;
401 goto label_return;
402 }
403 ckh->tab = (ckhc_t *)ipallocztm(tsd_tsdn(tsd), usize, CACHELINE, true,
404 NULL, true, arena_ichoose(tsd, NULL));
405 if (ckh->tab == NULL) {
406 ret = true;
407 goto label_return;
408 }
409
410 ret = false;
411 label_return:
412 return ret;
413 }
414
415 void
ckh_delete(tsd_t * tsd,ckh_t * ckh)416 ckh_delete(tsd_t *tsd, ckh_t *ckh) {
417 assert(ckh != NULL);
418
419 #ifdef CKH_VERBOSE
420 malloc_printf(
421 "%s(%p): ngrows: %"FMTu64", nshrinks: %"FMTu64","
422 " nshrinkfails: %"FMTu64", ninserts: %"FMTu64","
423 " nrelocs: %"FMTu64"\n", __func__, ckh,
424 (unsigned long long)ckh->ngrows,
425 (unsigned long long)ckh->nshrinks,
426 (unsigned long long)ckh->nshrinkfails,
427 (unsigned long long)ckh->ninserts,
428 (unsigned long long)ckh->nrelocs);
429 #endif
430
431 idalloctm(tsd_tsdn(tsd), ckh->tab, NULL, NULL, true, true);
432 if (config_debug) {
433 memset(ckh, JEMALLOC_FREE_JUNK, sizeof(ckh_t));
434 }
435 }
436
437 size_t
ckh_count(ckh_t * ckh)438 ckh_count(ckh_t *ckh) {
439 assert(ckh != NULL);
440
441 return ckh->count;
442 }
443
444 bool
ckh_iter(ckh_t * ckh,size_t * tabind,void ** key,void ** data)445 ckh_iter(ckh_t *ckh, size_t *tabind, void **key, void **data) {
446 size_t i, ncells;
447
448 for (i = *tabind, ncells = (ZU(1) << (ckh->lg_curbuckets +
449 LG_CKH_BUCKET_CELLS)); i < ncells; i++) {
450 if (ckh->tab[i].key != NULL) {
451 if (key != NULL) {
452 *key = (void *)ckh->tab[i].key;
453 }
454 if (data != NULL) {
455 *data = (void *)ckh->tab[i].data;
456 }
457 *tabind = i + 1;
458 return false;
459 }
460 }
461
462 return true;
463 }
464
465 bool
ckh_insert(tsd_t * tsd,ckh_t * ckh,const void * key,const void * data)466 ckh_insert(tsd_t *tsd, ckh_t *ckh, const void *key, const void *data) {
467 bool ret;
468
469 assert(ckh != NULL);
470 assert(ckh_search(ckh, key, NULL, NULL));
471
472 #ifdef CKH_COUNT
473 ckh->ninserts++;
474 #endif
475
476 while (ckh_try_insert(ckh, &key, &data)) {
477 if (ckh_grow(tsd, ckh)) {
478 ret = true;
479 goto label_return;
480 }
481 }
482
483 ret = false;
484 label_return:
485 return ret;
486 }
487
488 bool
ckh_remove(tsd_t * tsd,ckh_t * ckh,const void * searchkey,void ** key,void ** data)489 ckh_remove(tsd_t *tsd, ckh_t *ckh, const void *searchkey, void **key,
490 void **data) {
491 size_t cell;
492
493 assert(ckh != NULL);
494
495 cell = ckh_isearch(ckh, searchkey);
496 if (cell != SIZE_T_MAX) {
497 if (key != NULL) {
498 *key = (void *)ckh->tab[cell].key;
499 }
500 if (data != NULL) {
501 *data = (void *)ckh->tab[cell].data;
502 }
503 ckh->tab[cell].key = NULL;
504 ckh->tab[cell].data = NULL; /* Not necessary. */
505
506 ckh->count--;
507 /* Try to halve the table if it is less than 1/4 full. */
508 if (ckh->count < (ZU(1) << (ckh->lg_curbuckets
509 + LG_CKH_BUCKET_CELLS - 2)) && ckh->lg_curbuckets
510 > ckh->lg_minbuckets) {
511 /* Ignore error due to OOM. */
512 ckh_shrink(tsd, ckh);
513 }
514
515 return false;
516 }
517
518 return true;
519 }
520
521 bool
ckh_search(ckh_t * ckh,const void * searchkey,void ** key,void ** data)522 ckh_search(ckh_t *ckh, const void *searchkey, void **key, void **data) {
523 size_t cell;
524
525 assert(ckh != NULL);
526
527 cell = ckh_isearch(ckh, searchkey);
528 if (cell != SIZE_T_MAX) {
529 if (key != NULL) {
530 *key = (void *)ckh->tab[cell].key;
531 }
532 if (data != NULL) {
533 *data = (void *)ckh->tab[cell].data;
534 }
535 return false;
536 }
537
538 return true;
539 }
540
541 void
ckh_string_hash(const void * key,size_t r_hash[2])542 ckh_string_hash(const void *key, size_t r_hash[2]) {
543 hash(key, strlen((const char *)key), 0x94122f33U, r_hash);
544 }
545
546 bool
ckh_string_keycomp(const void * k1,const void * k2)547 ckh_string_keycomp(const void *k1, const void *k2) {
548 assert(k1 != NULL);
549 assert(k2 != NULL);
550
551 return !strcmp((char *)k1, (char *)k2);
552 }
553
554 void
ckh_pointer_hash(const void * key,size_t r_hash[2])555 ckh_pointer_hash(const void *key, size_t r_hash[2]) {
556 union {
557 const void *v;
558 size_t i;
559 } u;
560
561 assert(sizeof(u.v) == sizeof(u.i));
562 u.v = key;
563 hash(&u.i, sizeof(u.i), 0xd983396eU, r_hash);
564 }
565
566 bool
ckh_pointer_keycomp(const void * k1,const void * k2)567 ckh_pointer_keycomp(const void *k1, const void *k2) {
568 return (k1 == k2);
569 }
570