1 /*
2 pybind11/numpy.h: Basic NumPy support, vectorize() wrapper
3
4 Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>
5
6 All rights reserved. Use of this source code is governed by a
7 BSD-style license that can be found in the LICENSE file.
8 */
9
10 #pragma once
11
12 #include "pybind11.h"
13 #include "complex.h"
14 #include <numeric>
15 #include <algorithm>
16 #include <array>
17 #include <cstdint>
18 #include <cstdlib>
19 #include <cstring>
20 #include <sstream>
21 #include <string>
22 #include <functional>
23 #include <type_traits>
24 #include <utility>
25 #include <vector>
26 #include <typeindex>
27
28 #if defined(_MSC_VER)
29 # pragma warning(push)
30 # pragma warning(disable: 4127) // warning C4127: Conditional expression is constant
31 #endif
32
33 /* This will be true on all flat address space platforms and allows us to reduce the
34 whole npy_intp / ssize_t / Py_intptr_t business down to just ssize_t for all size
35 and dimension types (e.g. shape, strides, indexing), instead of inflicting this
36 upon the library user. */
37 static_assert(sizeof(::pybind11::ssize_t) == sizeof(Py_intptr_t), "ssize_t != Py_intptr_t");
38 static_assert(std::is_signed<Py_intptr_t>::value, "Py_intptr_t must be signed");
39 // We now can reinterpret_cast between py::ssize_t and Py_intptr_t (MSVC + PyPy cares)
40
PYBIND11_NAMESPACE_BEGIN(PYBIND11_NAMESPACE)41 PYBIND11_NAMESPACE_BEGIN(PYBIND11_NAMESPACE)
42
43 class array; // Forward declaration
44
45 PYBIND11_NAMESPACE_BEGIN(detail)
46
47 template <> struct handle_type_name<array> { static constexpr auto name = _("numpy.ndarray"); };
48
49 template <typename type, typename SFINAE = void> struct npy_format_descriptor;
50
51 struct PyArrayDescr_Proxy {
52 PyObject_HEAD
53 PyObject *typeobj;
54 char kind;
55 char type;
56 char byteorder;
57 char flags;
58 int type_num;
59 int elsize;
60 int alignment;
61 char *subarray;
62 PyObject *fields;
63 PyObject *names;
64 };
65
66 struct PyArray_Proxy {
67 PyObject_HEAD
68 char *data;
69 int nd;
70 ssize_t *dimensions;
71 ssize_t *strides;
72 PyObject *base;
73 PyObject *descr;
74 int flags;
75 };
76
77 struct PyVoidScalarObject_Proxy {
78 PyObject_VAR_HEAD
79 char *obval;
80 PyArrayDescr_Proxy *descr;
81 int flags;
82 PyObject *base;
83 };
84
85 struct numpy_type_info {
86 PyObject* dtype_ptr;
87 std::string format_str;
88 };
89
90 struct numpy_internals {
91 std::unordered_map<std::type_index, numpy_type_info> registered_dtypes;
92
93 numpy_type_info *get_type_info(const std::type_info& tinfo, bool throw_if_missing = true) {
94 auto it = registered_dtypes.find(std::type_index(tinfo));
95 if (it != registered_dtypes.end())
96 return &(it->second);
97 if (throw_if_missing)
98 pybind11_fail(std::string("NumPy type info missing for ") + tinfo.name());
99 return nullptr;
100 }
101
102 template<typename T> numpy_type_info *get_type_info(bool throw_if_missing = true) {
103 return get_type_info(typeid(typename std::remove_cv<T>::type), throw_if_missing);
104 }
105 };
106
load_numpy_internals(numpy_internals * & ptr)107 inline PYBIND11_NOINLINE void load_numpy_internals(numpy_internals* &ptr) {
108 ptr = &get_or_create_shared_data<numpy_internals>("_numpy_internals");
109 }
110
get_numpy_internals()111 inline numpy_internals& get_numpy_internals() {
112 static numpy_internals* ptr = nullptr;
113 if (!ptr)
114 load_numpy_internals(ptr);
115 return *ptr;
116 }
117
118 template <typename T> struct same_size {
119 template <typename U> using as = bool_constant<sizeof(T) == sizeof(U)>;
120 };
121
platform_lookup()122 template <typename Concrete> constexpr int platform_lookup() { return -1; }
123
124 // Lookup a type according to its size, and return a value corresponding to the NumPy typenum.
125 template <typename Concrete, typename T, typename... Ts, typename... Ints>
platform_lookup(int I,Ints...Is)126 constexpr int platform_lookup(int I, Ints... Is) {
127 return sizeof(Concrete) == sizeof(T) ? I : platform_lookup<Concrete, Ts...>(Is...);
128 }
129
130 struct npy_api {
131 enum constants {
132 NPY_ARRAY_C_CONTIGUOUS_ = 0x0001,
133 NPY_ARRAY_F_CONTIGUOUS_ = 0x0002,
134 NPY_ARRAY_OWNDATA_ = 0x0004,
135 NPY_ARRAY_FORCECAST_ = 0x0010,
136 NPY_ARRAY_ENSUREARRAY_ = 0x0040,
137 NPY_ARRAY_ALIGNED_ = 0x0100,
138 NPY_ARRAY_WRITEABLE_ = 0x0400,
139 NPY_BOOL_ = 0,
140 NPY_BYTE_, NPY_UBYTE_,
141 NPY_SHORT_, NPY_USHORT_,
142 NPY_INT_, NPY_UINT_,
143 NPY_LONG_, NPY_ULONG_,
144 NPY_LONGLONG_, NPY_ULONGLONG_,
145 NPY_FLOAT_, NPY_DOUBLE_, NPY_LONGDOUBLE_,
146 NPY_CFLOAT_, NPY_CDOUBLE_, NPY_CLONGDOUBLE_,
147 NPY_OBJECT_ = 17,
148 NPY_STRING_, NPY_UNICODE_, NPY_VOID_,
149 // Platform-dependent normalization
150 NPY_INT8_ = NPY_BYTE_,
151 NPY_UINT8_ = NPY_UBYTE_,
152 NPY_INT16_ = NPY_SHORT_,
153 NPY_UINT16_ = NPY_USHORT_,
154 // `npy_common.h` defines the integer aliases. In order, it checks:
155 // NPY_BITSOF_LONG, NPY_BITSOF_LONGLONG, NPY_BITSOF_INT, NPY_BITSOF_SHORT, NPY_BITSOF_CHAR
156 // and assigns the alias to the first matching size, so we should check in this order.
157 NPY_INT32_ = platform_lookup<std::int32_t, long, int, short>(
158 NPY_LONG_, NPY_INT_, NPY_SHORT_),
159 NPY_UINT32_ = platform_lookup<std::uint32_t, unsigned long, unsigned int, unsigned short>(
160 NPY_ULONG_, NPY_UINT_, NPY_USHORT_),
161 NPY_INT64_ = platform_lookup<std::int64_t, long, long long, int>(
162 NPY_LONG_, NPY_LONGLONG_, NPY_INT_),
163 NPY_UINT64_ = platform_lookup<std::uint64_t, unsigned long, unsigned long long, unsigned int>(
164 NPY_ULONG_, NPY_ULONGLONG_, NPY_UINT_),
165 };
166
167 typedef struct {
168 Py_intptr_t *ptr;
169 int len;
170 } PyArray_Dims;
171
getnpy_api172 static npy_api& get() {
173 static npy_api api = lookup();
174 return api;
175 }
176
PyArray_Check_npy_api177 bool PyArray_Check_(PyObject *obj) const {
178 return (bool) PyObject_TypeCheck(obj, PyArray_Type_);
179 }
PyArrayDescr_Check_npy_api180 bool PyArrayDescr_Check_(PyObject *obj) const {
181 return (bool) PyObject_TypeCheck(obj, PyArrayDescr_Type_);
182 }
183
184 unsigned int (*PyArray_GetNDArrayCFeatureVersion_)();
185 PyObject *(*PyArray_DescrFromType_)(int);
186 PyObject *(*PyArray_NewFromDescr_)
187 (PyTypeObject *, PyObject *, int, Py_intptr_t const *,
188 Py_intptr_t const *, void *, int, PyObject *);
189 // Unused. Not removed because that affects ABI of the class.
190 PyObject *(*PyArray_DescrNewFromType_)(int);
191 int (*PyArray_CopyInto_)(PyObject *, PyObject *);
192 PyObject *(*PyArray_NewCopy_)(PyObject *, int);
193 PyTypeObject *PyArray_Type_;
194 PyTypeObject *PyVoidArrType_Type_;
195 PyTypeObject *PyArrayDescr_Type_;
196 PyObject *(*PyArray_DescrFromScalar_)(PyObject *);
197 PyObject *(*PyArray_FromAny_) (PyObject *, PyObject *, int, int, int, PyObject *);
198 int (*PyArray_DescrConverter_) (PyObject *, PyObject **);
199 bool (*PyArray_EquivTypes_) (PyObject *, PyObject *);
200 int (*PyArray_GetArrayParamsFromObject_)(PyObject *, PyObject *, unsigned char, PyObject **, int *,
201 Py_intptr_t *, PyObject **, PyObject *);
202 PyObject *(*PyArray_Squeeze_)(PyObject *);
203 // Unused. Not removed because that affects ABI of the class.
204 int (*PyArray_SetBaseObject_)(PyObject *, PyObject *);
205 PyObject* (*PyArray_Resize_)(PyObject*, PyArray_Dims*, int, int);
206 private:
207 enum functions {
208 API_PyArray_GetNDArrayCFeatureVersion = 211,
209 API_PyArray_Type = 2,
210 API_PyArrayDescr_Type = 3,
211 API_PyVoidArrType_Type = 39,
212 API_PyArray_DescrFromType = 45,
213 API_PyArray_DescrFromScalar = 57,
214 API_PyArray_FromAny = 69,
215 API_PyArray_Resize = 80,
216 API_PyArray_CopyInto = 82,
217 API_PyArray_NewCopy = 85,
218 API_PyArray_NewFromDescr = 94,
219 API_PyArray_DescrNewFromType = 96,
220 API_PyArray_DescrConverter = 174,
221 API_PyArray_EquivTypes = 182,
222 API_PyArray_GetArrayParamsFromObject = 278,
223 API_PyArray_Squeeze = 136,
224 API_PyArray_SetBaseObject = 282
225 };
226
lookupnpy_api227 static npy_api lookup() {
228 module_ m = module_::import("numpy.core.multiarray");
229 auto c = m.attr("_ARRAY_API");
230 #if PY_MAJOR_VERSION >= 3
231 void **api_ptr = (void **) PyCapsule_GetPointer(c.ptr(), NULL);
232 #else
233 void **api_ptr = (void **) PyCObject_AsVoidPtr(c.ptr());
234 #endif
235 npy_api api;
236 #define DECL_NPY_API(Func) api.Func##_ = (decltype(api.Func##_)) api_ptr[API_##Func];
237 DECL_NPY_API(PyArray_GetNDArrayCFeatureVersion);
238 if (api.PyArray_GetNDArrayCFeatureVersion_() < 0x7)
239 pybind11_fail("pybind11 numpy support requires numpy >= 1.7.0");
240 DECL_NPY_API(PyArray_Type);
241 DECL_NPY_API(PyVoidArrType_Type);
242 DECL_NPY_API(PyArrayDescr_Type);
243 DECL_NPY_API(PyArray_DescrFromType);
244 DECL_NPY_API(PyArray_DescrFromScalar);
245 DECL_NPY_API(PyArray_FromAny);
246 DECL_NPY_API(PyArray_Resize);
247 DECL_NPY_API(PyArray_CopyInto);
248 DECL_NPY_API(PyArray_NewCopy);
249 DECL_NPY_API(PyArray_NewFromDescr);
250 DECL_NPY_API(PyArray_DescrNewFromType);
251 DECL_NPY_API(PyArray_DescrConverter);
252 DECL_NPY_API(PyArray_EquivTypes);
253 DECL_NPY_API(PyArray_GetArrayParamsFromObject);
254 DECL_NPY_API(PyArray_Squeeze);
255 DECL_NPY_API(PyArray_SetBaseObject);
256 #undef DECL_NPY_API
257 return api;
258 }
259 };
260
array_proxy(void * ptr)261 inline PyArray_Proxy* array_proxy(void* ptr) {
262 return reinterpret_cast<PyArray_Proxy*>(ptr);
263 }
264
array_proxy(const void * ptr)265 inline const PyArray_Proxy* array_proxy(const void* ptr) {
266 return reinterpret_cast<const PyArray_Proxy*>(ptr);
267 }
268
array_descriptor_proxy(PyObject * ptr)269 inline PyArrayDescr_Proxy* array_descriptor_proxy(PyObject* ptr) {
270 return reinterpret_cast<PyArrayDescr_Proxy*>(ptr);
271 }
272
array_descriptor_proxy(const PyObject * ptr)273 inline const PyArrayDescr_Proxy* array_descriptor_proxy(const PyObject* ptr) {
274 return reinterpret_cast<const PyArrayDescr_Proxy*>(ptr);
275 }
276
check_flags(const void * ptr,int flag)277 inline bool check_flags(const void* ptr, int flag) {
278 return (flag == (array_proxy(ptr)->flags & flag));
279 }
280
281 template <typename T> struct is_std_array : std::false_type { };
282 template <typename T, size_t N> struct is_std_array<std::array<T, N>> : std::true_type { };
283 template <typename T> struct is_complex : std::false_type { };
284 template <typename T> struct is_complex<std::complex<T>> : std::true_type { };
285
286 template <typename T> struct array_info_scalar {
287 using type = T;
288 static constexpr bool is_array = false;
289 static constexpr bool is_empty = false;
290 static constexpr auto extents = _("");
291 static void append_extents(list& /* shape */) { }
292 };
293 // Computes underlying type and a comma-separated list of extents for array
294 // types (any mix of std::array and built-in arrays). An array of char is
295 // treated as scalar because it gets special handling.
296 template <typename T> struct array_info : array_info_scalar<T> { };
297 template <typename T, size_t N> struct array_info<std::array<T, N>> {
298 using type = typename array_info<T>::type;
299 static constexpr bool is_array = true;
300 static constexpr bool is_empty = (N == 0) || array_info<T>::is_empty;
301 static constexpr size_t extent = N;
302
303 // appends the extents to shape
304 static void append_extents(list& shape) {
305 shape.append(N);
306 array_info<T>::append_extents(shape);
307 }
308
309 static constexpr auto extents = _<array_info<T>::is_array>(
310 concat(_<N>(), array_info<T>::extents), _<N>()
311 );
312 };
313 // For numpy we have special handling for arrays of characters, so we don't include
314 // the size in the array extents.
315 template <size_t N> struct array_info<char[N]> : array_info_scalar<char[N]> { };
316 template <size_t N> struct array_info<std::array<char, N>> : array_info_scalar<std::array<char, N>> { };
317 template <typename T, size_t N> struct array_info<T[N]> : array_info<std::array<T, N>> { };
318 template <typename T> using remove_all_extents_t = typename array_info<T>::type;
319
320 template <typename T> using is_pod_struct = all_of<
321 std::is_standard_layout<T>, // since we're accessing directly in memory we need a standard layout type
322 #if !defined(__GNUG__) || defined(_LIBCPP_VERSION) || defined(_GLIBCXX_USE_CXX11_ABI)
323 // _GLIBCXX_USE_CXX11_ABI indicates that we're using libstdc++ from GCC 5 or newer, independent
324 // of the actual compiler (Clang can also use libstdc++, but it always defines __GNUC__ == 4).
325 std::is_trivially_copyable<T>,
326 #else
327 // GCC 4 doesn't implement is_trivially_copyable, so approximate it
328 std::is_trivially_destructible<T>,
329 satisfies_any_of<T, std::has_trivial_copy_constructor, std::has_trivial_copy_assign>,
330 #endif
331 satisfies_none_of<T, std::is_reference, std::is_array, is_std_array, std::is_arithmetic, is_complex, std::is_enum>
332 >;
333
334 // Replacement for std::is_pod (deprecated in C++20)
335 template <typename T> using is_pod = all_of<
336 std::is_standard_layout<T>,
337 std::is_trivial<T>
338 >;
339
340 template <ssize_t Dim = 0, typename Strides> ssize_t byte_offset_unsafe(const Strides &) { return 0; }
341 template <ssize_t Dim = 0, typename Strides, typename... Ix>
342 ssize_t byte_offset_unsafe(const Strides &strides, ssize_t i, Ix... index) {
343 return i * strides[Dim] + byte_offset_unsafe<Dim + 1>(strides, index...);
344 }
345
346 /**
347 * Proxy class providing unsafe, unchecked const access to array data. This is constructed through
348 * the `unchecked<T, N>()` method of `array` or the `unchecked<N>()` method of `array_t<T>`. `Dims`
349 * will be -1 for dimensions determined at runtime.
350 */
351 template <typename T, ssize_t Dims>
352 class unchecked_reference {
353 protected:
354 static constexpr bool Dynamic = Dims < 0;
355 const unsigned char *data_;
356 // Storing the shape & strides in local variables (i.e. these arrays) allows the compiler to
357 // make large performance gains on big, nested loops, but requires compile-time dimensions
358 conditional_t<Dynamic, const ssize_t *, std::array<ssize_t, (size_t) Dims>>
359 shape_, strides_;
360 const ssize_t dims_;
361
362 friend class pybind11::array;
363 // Constructor for compile-time dimensions:
364 template <bool Dyn = Dynamic>
365 unchecked_reference(const void *data, const ssize_t *shape, const ssize_t *strides, enable_if_t<!Dyn, ssize_t>)
366 : data_{reinterpret_cast<const unsigned char *>(data)}, dims_{Dims} {
367 for (size_t i = 0; i < (size_t) dims_; i++) {
368 shape_[i] = shape[i];
369 strides_[i] = strides[i];
370 }
371 }
372 // Constructor for runtime dimensions:
373 template <bool Dyn = Dynamic>
374 unchecked_reference(const void *data, const ssize_t *shape, const ssize_t *strides, enable_if_t<Dyn, ssize_t> dims)
375 : data_{reinterpret_cast<const unsigned char *>(data)}, shape_{shape}, strides_{strides}, dims_{dims} {}
376
377 public:
378 /**
379 * Unchecked const reference access to data at the given indices. For a compile-time known
380 * number of dimensions, this requires the correct number of arguments; for run-time
381 * dimensionality, this is not checked (and so is up to the caller to use safely).
382 */
383 template <typename... Ix> const T &operator()(Ix... index) const {
384 static_assert(ssize_t{sizeof...(Ix)} == Dims || Dynamic,
385 "Invalid number of indices for unchecked array reference");
386 return *reinterpret_cast<const T *>(data_ + byte_offset_unsafe(strides_, ssize_t(index)...));
387 }
388 /**
389 * Unchecked const reference access to data; this operator only participates if the reference
390 * is to a 1-dimensional array. When present, this is exactly equivalent to `obj(index)`.
391 */
392 template <ssize_t D = Dims, typename = enable_if_t<D == 1 || Dynamic>>
393 const T &operator[](ssize_t index) const { return operator()(index); }
394
395 /// Pointer access to the data at the given indices.
396 template <typename... Ix> const T *data(Ix... ix) const { return &operator()(ssize_t(ix)...); }
397
398 /// Returns the item size, i.e. sizeof(T)
399 constexpr static ssize_t itemsize() { return sizeof(T); }
400
401 /// Returns the shape (i.e. size) of dimension `dim`
402 ssize_t shape(ssize_t dim) const { return shape_[(size_t) dim]; }
403
404 /// Returns the number of dimensions of the array
405 ssize_t ndim() const { return dims_; }
406
407 /// Returns the total number of elements in the referenced array, i.e. the product of the shapes
408 template <bool Dyn = Dynamic>
409 enable_if_t<!Dyn, ssize_t> size() const {
410 return std::accumulate(shape_.begin(), shape_.end(), (ssize_t) 1, std::multiplies<ssize_t>());
411 }
412 template <bool Dyn = Dynamic>
413 enable_if_t<Dyn, ssize_t> size() const {
414 return std::accumulate(shape_, shape_ + ndim(), (ssize_t) 1, std::multiplies<ssize_t>());
415 }
416
417 /// Returns the total number of bytes used by the referenced data. Note that the actual span in
418 /// memory may be larger if the referenced array has non-contiguous strides (e.g. for a slice).
419 ssize_t nbytes() const {
420 return size() * itemsize();
421 }
422 };
423
424 template <typename T, ssize_t Dims>
425 class unchecked_mutable_reference : public unchecked_reference<T, Dims> {
426 friend class pybind11::array;
427 using ConstBase = unchecked_reference<T, Dims>;
428 using ConstBase::ConstBase;
429 using ConstBase::Dynamic;
430 public:
431 // Bring in const-qualified versions from base class
432 using ConstBase::operator();
433 using ConstBase::operator[];
434
435 /// Mutable, unchecked access to data at the given indices.
436 template <typename... Ix> T& operator()(Ix... index) {
437 static_assert(ssize_t{sizeof...(Ix)} == Dims || Dynamic,
438 "Invalid number of indices for unchecked array reference");
439 return const_cast<T &>(ConstBase::operator()(index...));
440 }
441 /**
442 * Mutable, unchecked access data at the given index; this operator only participates if the
443 * reference is to a 1-dimensional array (or has runtime dimensions). When present, this is
444 * exactly equivalent to `obj(index)`.
445 */
446 template <ssize_t D = Dims, typename = enable_if_t<D == 1 || Dynamic>>
447 T &operator[](ssize_t index) { return operator()(index); }
448
449 /// Mutable pointer access to the data at the given indices.
450 template <typename... Ix> T *mutable_data(Ix... ix) { return &operator()(ssize_t(ix)...); }
451 };
452
453 template <typename T, ssize_t Dim>
454 struct type_caster<unchecked_reference<T, Dim>> {
455 static_assert(Dim == 0 && Dim > 0 /* always fail */, "unchecked array proxy object is not castable");
456 };
457 template <typename T, ssize_t Dim>
458 struct type_caster<unchecked_mutable_reference<T, Dim>> : type_caster<unchecked_reference<T, Dim>> {};
459
460 PYBIND11_NAMESPACE_END(detail)
461
462 class dtype : public object {
463 public:
464 PYBIND11_OBJECT_DEFAULT(dtype, object, detail::npy_api::get().PyArrayDescr_Check_);
465
466 explicit dtype(const buffer_info &info) {
467 dtype descr(_dtype_from_pep3118()(PYBIND11_STR_TYPE(info.format)));
468 // If info.itemsize == 0, use the value calculated from the format string
469 m_ptr = descr.strip_padding(info.itemsize ? info.itemsize : descr.itemsize()).release().ptr();
470 }
471
472 explicit dtype(const std::string &format) {
473 m_ptr = from_args(pybind11::str(format)).release().ptr();
474 }
475
476 dtype(const char *format) : dtype(std::string(format)) { }
477
478 dtype(list names, list formats, list offsets, ssize_t itemsize) {
479 dict args;
480 args["names"] = names;
481 args["formats"] = formats;
482 args["offsets"] = offsets;
483 args["itemsize"] = pybind11::int_(itemsize);
484 m_ptr = from_args(args).release().ptr();
485 }
486
487 /// This is essentially the same as calling numpy.dtype(args) in Python.
488 static dtype from_args(object args) {
489 PyObject *ptr = nullptr;
490 if (!detail::npy_api::get().PyArray_DescrConverter_(args.ptr(), &ptr) || !ptr)
491 throw error_already_set();
492 return reinterpret_steal<dtype>(ptr);
493 }
494
495 /// Return dtype associated with a C++ type.
496 template <typename T> static dtype of() {
497 return detail::npy_format_descriptor<typename std::remove_cv<T>::type>::dtype();
498 }
499
500 /// Size of the data type in bytes.
501 ssize_t itemsize() const {
502 return detail::array_descriptor_proxy(m_ptr)->elsize;
503 }
504
505 /// Returns true for structured data types.
506 bool has_fields() const {
507 return detail::array_descriptor_proxy(m_ptr)->names != nullptr;
508 }
509
510 /// Single-character type code.
511 char kind() const {
512 return detail::array_descriptor_proxy(m_ptr)->kind;
513 }
514
515 private:
516 static object _dtype_from_pep3118() {
517 static PyObject *obj = module_::import("numpy.core._internal")
518 .attr("_dtype_from_pep3118").cast<object>().release().ptr();
519 return reinterpret_borrow<object>(obj);
520 }
521
522 dtype strip_padding(ssize_t itemsize) {
523 // Recursively strip all void fields with empty names that are generated for
524 // padding fields (as of NumPy v1.11).
525 if (!has_fields())
526 return *this;
527
528 struct field_descr { PYBIND11_STR_TYPE name; object format; pybind11::int_ offset; };
529 std::vector<field_descr> field_descriptors;
530
531 for (auto field : attr("fields").attr("items")()) {
532 auto spec = field.cast<tuple>();
533 auto name = spec[0].cast<pybind11::str>();
534 auto format = spec[1].cast<tuple>()[0].cast<dtype>();
535 auto offset = spec[1].cast<tuple>()[1].cast<pybind11::int_>();
536 if (!len(name) && format.kind() == 'V')
537 continue;
538 field_descriptors.push_back({(PYBIND11_STR_TYPE) name, format.strip_padding(format.itemsize()), offset});
539 }
540
541 std::sort(field_descriptors.begin(), field_descriptors.end(),
542 [](const field_descr& a, const field_descr& b) {
543 return a.offset.cast<int>() < b.offset.cast<int>();
544 });
545
546 list names, formats, offsets;
547 for (auto& descr : field_descriptors) {
548 names.append(descr.name);
549 formats.append(descr.format);
550 offsets.append(descr.offset);
551 }
552 return dtype(names, formats, offsets, itemsize);
553 }
554 };
555
556 class array : public buffer {
557 public:
558 PYBIND11_OBJECT_CVT(array, buffer, detail::npy_api::get().PyArray_Check_, raw_array)
559
560 enum {
561 c_style = detail::npy_api::NPY_ARRAY_C_CONTIGUOUS_,
562 f_style = detail::npy_api::NPY_ARRAY_F_CONTIGUOUS_,
563 forcecast = detail::npy_api::NPY_ARRAY_FORCECAST_
564 };
565
566 array() : array(0, static_cast<const double *>(nullptr)) {}
567
568 using ShapeContainer = detail::any_container<ssize_t>;
569 using StridesContainer = detail::any_container<ssize_t>;
570
571 // Constructs an array taking shape/strides from arbitrary container types
572 array(const pybind11::dtype &dt, ShapeContainer shape, StridesContainer strides,
573 const void *ptr = nullptr, handle base = handle()) {
574
575 if (strides->empty())
576 *strides = detail::c_strides(*shape, dt.itemsize());
577
578 auto ndim = shape->size();
579 if (ndim != strides->size())
580 pybind11_fail("NumPy: shape ndim doesn't match strides ndim");
581 auto descr = dt;
582
583 int flags = 0;
584 if (base && ptr) {
585 if (isinstance<array>(base))
586 /* Copy flags from base (except ownership bit) */
587 flags = reinterpret_borrow<array>(base).flags() & ~detail::npy_api::NPY_ARRAY_OWNDATA_;
588 else
589 /* Writable by default, easy to downgrade later on if needed */
590 flags = detail::npy_api::NPY_ARRAY_WRITEABLE_;
591 }
592
593 auto &api = detail::npy_api::get();
594 auto tmp = reinterpret_steal<object>(api.PyArray_NewFromDescr_(
595 api.PyArray_Type_, descr.release().ptr(), (int) ndim,
596 // Use reinterpret_cast for PyPy on Windows (remove if fixed, checked on 7.3.1)
597 reinterpret_cast<Py_intptr_t*>(shape->data()),
598 reinterpret_cast<Py_intptr_t*>(strides->data()),
599 const_cast<void *>(ptr), flags, nullptr));
600 if (!tmp)
601 throw error_already_set();
602 if (ptr) {
603 if (base) {
604 api.PyArray_SetBaseObject_(tmp.ptr(), base.inc_ref().ptr());
605 } else {
606 tmp = reinterpret_steal<object>(api.PyArray_NewCopy_(tmp.ptr(), -1 /* any order */));
607 }
608 }
609 m_ptr = tmp.release().ptr();
610 }
611
612 array(const pybind11::dtype &dt, ShapeContainer shape, const void *ptr = nullptr, handle base = handle())
613 : array(dt, std::move(shape), {}, ptr, base) { }
614
615 template <typename T, typename = detail::enable_if_t<std::is_integral<T>::value && !std::is_same<bool, T>::value>>
616 array(const pybind11::dtype &dt, T count, const void *ptr = nullptr, handle base = handle())
617 : array(dt, {{count}}, ptr, base) { }
618
619 template <typename T>
620 array(ShapeContainer shape, StridesContainer strides, const T *ptr, handle base = handle())
621 : array(pybind11::dtype::of<T>(), std::move(shape), std::move(strides), ptr, base) { }
622
623 template <typename T>
624 array(ShapeContainer shape, const T *ptr, handle base = handle())
625 : array(std::move(shape), {}, ptr, base) { }
626
627 template <typename T>
628 explicit array(ssize_t count, const T *ptr, handle base = handle()) : array({count}, {}, ptr, base) { }
629
630 explicit array(const buffer_info &info, handle base = handle())
631 : array(pybind11::dtype(info), info.shape, info.strides, info.ptr, base) { }
632
633 /// Array descriptor (dtype)
634 pybind11::dtype dtype() const {
635 return reinterpret_borrow<pybind11::dtype>(detail::array_proxy(m_ptr)->descr);
636 }
637
638 /// Total number of elements
639 ssize_t size() const {
640 return std::accumulate(shape(), shape() + ndim(), (ssize_t) 1, std::multiplies<ssize_t>());
641 }
642
643 /// Byte size of a single element
644 ssize_t itemsize() const {
645 return detail::array_descriptor_proxy(detail::array_proxy(m_ptr)->descr)->elsize;
646 }
647
648 /// Total number of bytes
649 ssize_t nbytes() const {
650 return size() * itemsize();
651 }
652
653 /// Number of dimensions
654 ssize_t ndim() const {
655 return detail::array_proxy(m_ptr)->nd;
656 }
657
658 /// Base object
659 object base() const {
660 return reinterpret_borrow<object>(detail::array_proxy(m_ptr)->base);
661 }
662
663 /// Dimensions of the array
664 const ssize_t* shape() const {
665 return detail::array_proxy(m_ptr)->dimensions;
666 }
667
668 /// Dimension along a given axis
669 ssize_t shape(ssize_t dim) const {
670 if (dim >= ndim())
671 fail_dim_check(dim, "invalid axis");
672 return shape()[dim];
673 }
674
675 /// Strides of the array
676 const ssize_t* strides() const {
677 return detail::array_proxy(m_ptr)->strides;
678 }
679
680 /// Stride along a given axis
681 ssize_t strides(ssize_t dim) const {
682 if (dim >= ndim())
683 fail_dim_check(dim, "invalid axis");
684 return strides()[dim];
685 }
686
687 /// Return the NumPy array flags
688 int flags() const {
689 return detail::array_proxy(m_ptr)->flags;
690 }
691
692 /// If set, the array is writeable (otherwise the buffer is read-only)
693 bool writeable() const {
694 return detail::check_flags(m_ptr, detail::npy_api::NPY_ARRAY_WRITEABLE_);
695 }
696
697 /// If set, the array owns the data (will be freed when the array is deleted)
698 bool owndata() const {
699 return detail::check_flags(m_ptr, detail::npy_api::NPY_ARRAY_OWNDATA_);
700 }
701
702 /// Pointer to the contained data. If index is not provided, points to the
703 /// beginning of the buffer. May throw if the index would lead to out of bounds access.
704 template<typename... Ix> const void* data(Ix... index) const {
705 return static_cast<const void *>(detail::array_proxy(m_ptr)->data + offset_at(index...));
706 }
707
708 /// Mutable pointer to the contained data. If index is not provided, points to the
709 /// beginning of the buffer. May throw if the index would lead to out of bounds access.
710 /// May throw if the array is not writeable.
711 template<typename... Ix> void* mutable_data(Ix... index) {
712 check_writeable();
713 return static_cast<void *>(detail::array_proxy(m_ptr)->data + offset_at(index...));
714 }
715
716 /// Byte offset from beginning of the array to a given index (full or partial).
717 /// May throw if the index would lead to out of bounds access.
718 template<typename... Ix> ssize_t offset_at(Ix... index) const {
719 if ((ssize_t) sizeof...(index) > ndim())
720 fail_dim_check(sizeof...(index), "too many indices for an array");
721 return byte_offset(ssize_t(index)...);
722 }
723
724 ssize_t offset_at() const { return 0; }
725
726 /// Item count from beginning of the array to a given index (full or partial).
727 /// May throw if the index would lead to out of bounds access.
728 template<typename... Ix> ssize_t index_at(Ix... index) const {
729 return offset_at(index...) / itemsize();
730 }
731
732 /**
733 * Returns a proxy object that provides access to the array's data without bounds or
734 * dimensionality checking. Will throw if the array is missing the `writeable` flag. Use with
735 * care: the array must not be destroyed or reshaped for the duration of the returned object,
736 * and the caller must take care not to access invalid dimensions or dimension indices.
737 */
738 template <typename T, ssize_t Dims = -1> detail::unchecked_mutable_reference<T, Dims> mutable_unchecked() & {
739 if (Dims >= 0 && ndim() != Dims)
740 throw std::domain_error("array has incorrect number of dimensions: " + std::to_string(ndim()) +
741 "; expected " + std::to_string(Dims));
742 return detail::unchecked_mutable_reference<T, Dims>(mutable_data(), shape(), strides(), ndim());
743 }
744
745 /**
746 * Returns a proxy object that provides const access to the array's data without bounds or
747 * dimensionality checking. Unlike `mutable_unchecked()`, this does not require that the
748 * underlying array have the `writable` flag. Use with care: the array must not be destroyed or
749 * reshaped for the duration of the returned object, and the caller must take care not to access
750 * invalid dimensions or dimension indices.
751 */
752 template <typename T, ssize_t Dims = -1> detail::unchecked_reference<T, Dims> unchecked() const & {
753 if (Dims >= 0 && ndim() != Dims)
754 throw std::domain_error("array has incorrect number of dimensions: " + std::to_string(ndim()) +
755 "; expected " + std::to_string(Dims));
756 return detail::unchecked_reference<T, Dims>(data(), shape(), strides(), ndim());
757 }
758
759 /// Return a new view with all of the dimensions of length 1 removed
760 array squeeze() {
761 auto& api = detail::npy_api::get();
762 return reinterpret_steal<array>(api.PyArray_Squeeze_(m_ptr));
763 }
764
765 /// Resize array to given shape
766 /// If refcheck is true and more that one reference exist to this array
767 /// then resize will succeed only if it makes a reshape, i.e. original size doesn't change
768 void resize(ShapeContainer new_shape, bool refcheck = true) {
769 detail::npy_api::PyArray_Dims d = {
770 // Use reinterpret_cast for PyPy on Windows (remove if fixed, checked on 7.3.1)
771 reinterpret_cast<Py_intptr_t*>(new_shape->data()),
772 int(new_shape->size())
773 };
774 // try to resize, set ordering param to -1 cause it's not used anyway
775 auto new_array = reinterpret_steal<object>(
776 detail::npy_api::get().PyArray_Resize_(m_ptr, &d, int(refcheck), -1)
777 );
778 if (!new_array) throw error_already_set();
779 if (isinstance<array>(new_array)) { *this = std::move(new_array); }
780 }
781
782 /// Ensure that the argument is a NumPy array
783 /// In case of an error, nullptr is returned and the Python error is cleared.
784 static array ensure(handle h, int ExtraFlags = 0) {
785 auto result = reinterpret_steal<array>(raw_array(h.ptr(), ExtraFlags));
786 if (!result)
787 PyErr_Clear();
788 return result;
789 }
790
791 protected:
792 template<typename, typename> friend struct detail::npy_format_descriptor;
793
794 void fail_dim_check(ssize_t dim, const std::string& msg) const {
795 throw index_error(msg + ": " + std::to_string(dim) +
796 " (ndim = " + std::to_string(ndim()) + ")");
797 }
798
799 template<typename... Ix> ssize_t byte_offset(Ix... index) const {
800 check_dimensions(index...);
801 return detail::byte_offset_unsafe(strides(), ssize_t(index)...);
802 }
803
804 void check_writeable() const {
805 if (!writeable())
806 throw std::domain_error("array is not writeable");
807 }
808
809 template<typename... Ix> void check_dimensions(Ix... index) const {
810 check_dimensions_impl(ssize_t(0), shape(), ssize_t(index)...);
811 }
812
813 void check_dimensions_impl(ssize_t, const ssize_t*) const { }
814
815 template<typename... Ix> void check_dimensions_impl(ssize_t axis, const ssize_t* shape, ssize_t i, Ix... index) const {
816 if (i >= *shape) {
817 throw index_error(std::string("index ") + std::to_string(i) +
818 " is out of bounds for axis " + std::to_string(axis) +
819 " with size " + std::to_string(*shape));
820 }
821 check_dimensions_impl(axis + 1, shape + 1, index...);
822 }
823
824 /// Create array from any object -- always returns a new reference
825 static PyObject *raw_array(PyObject *ptr, int ExtraFlags = 0) {
826 if (ptr == nullptr) {
827 PyErr_SetString(PyExc_ValueError, "cannot create a pybind11::array from a nullptr");
828 return nullptr;
829 }
830 return detail::npy_api::get().PyArray_FromAny_(
831 ptr, nullptr, 0, 0, detail::npy_api::NPY_ARRAY_ENSUREARRAY_ | ExtraFlags, nullptr);
832 }
833 };
834
835 template <typename T, int ExtraFlags = array::forcecast> class array_t : public array {
836 private:
837 struct private_ctor {};
838 // Delegating constructor needed when both moving and accessing in the same constructor
839 array_t(private_ctor, ShapeContainer &&shape, StridesContainer &&strides, const T *ptr, handle base)
840 : array(std::move(shape), std::move(strides), ptr, base) {}
841 public:
842 static_assert(!detail::array_info<T>::is_array, "Array types cannot be used with array_t");
843
844 using value_type = T;
845
846 array_t() : array(0, static_cast<const T *>(nullptr)) {}
847 array_t(handle h, borrowed_t) : array(h, borrowed_t{}) { }
848 array_t(handle h, stolen_t) : array(h, stolen_t{}) { }
849
850 PYBIND11_DEPRECATED("Use array_t<T>::ensure() instead")
851 array_t(handle h, bool is_borrowed) : array(raw_array_t(h.ptr()), stolen_t{}) {
852 if (!m_ptr) PyErr_Clear();
853 if (!is_borrowed) Py_XDECREF(h.ptr());
854 }
855
856 array_t(const object &o) : array(raw_array_t(o.ptr()), stolen_t{}) {
857 if (!m_ptr) throw error_already_set();
858 }
859
860 explicit array_t(const buffer_info& info, handle base = handle()) : array(info, base) { }
861
862 array_t(ShapeContainer shape, StridesContainer strides, const T *ptr = nullptr, handle base = handle())
863 : array(std::move(shape), std::move(strides), ptr, base) { }
864
865 explicit array_t(ShapeContainer shape, const T *ptr = nullptr, handle base = handle())
866 : array_t(private_ctor{}, std::move(shape),
867 ExtraFlags & f_style
868 ? detail::f_strides(*shape, itemsize())
869 : detail::c_strides(*shape, itemsize()),
870 ptr, base) { }
871
872 explicit array_t(ssize_t count, const T *ptr = nullptr, handle base = handle())
873 : array({count}, {}, ptr, base) { }
874
875 constexpr ssize_t itemsize() const {
876 return sizeof(T);
877 }
878
879 template<typename... Ix> ssize_t index_at(Ix... index) const {
880 return offset_at(index...) / itemsize();
881 }
882
883 template<typename... Ix> const T* data(Ix... index) const {
884 return static_cast<const T*>(array::data(index...));
885 }
886
887 template<typename... Ix> T* mutable_data(Ix... index) {
888 return static_cast<T*>(array::mutable_data(index...));
889 }
890
891 // Reference to element at a given index
892 template<typename... Ix> const T& at(Ix... index) const {
893 if ((ssize_t) sizeof...(index) != ndim())
894 fail_dim_check(sizeof...(index), "index dimension mismatch");
895 return *(static_cast<const T*>(array::data()) + byte_offset(ssize_t(index)...) / itemsize());
896 }
897
898 // Mutable reference to element at a given index
899 template<typename... Ix> T& mutable_at(Ix... index) {
900 if ((ssize_t) sizeof...(index) != ndim())
901 fail_dim_check(sizeof...(index), "index dimension mismatch");
902 return *(static_cast<T*>(array::mutable_data()) + byte_offset(ssize_t(index)...) / itemsize());
903 }
904
905 /**
906 * Returns a proxy object that provides access to the array's data without bounds or
907 * dimensionality checking. Will throw if the array is missing the `writeable` flag. Use with
908 * care: the array must not be destroyed or reshaped for the duration of the returned object,
909 * and the caller must take care not to access invalid dimensions or dimension indices.
910 */
911 template <ssize_t Dims = -1> detail::unchecked_mutable_reference<T, Dims> mutable_unchecked() & {
912 return array::mutable_unchecked<T, Dims>();
913 }
914
915 /**
916 * Returns a proxy object that provides const access to the array's data without bounds or
917 * dimensionality checking. Unlike `unchecked()`, this does not require that the underlying
918 * array have the `writable` flag. Use with care: the array must not be destroyed or reshaped
919 * for the duration of the returned object, and the caller must take care not to access invalid
920 * dimensions or dimension indices.
921 */
922 template <ssize_t Dims = -1> detail::unchecked_reference<T, Dims> unchecked() const & {
923 return array::unchecked<T, Dims>();
924 }
925
926 /// Ensure that the argument is a NumPy array of the correct dtype (and if not, try to convert
927 /// it). In case of an error, nullptr is returned and the Python error is cleared.
928 static array_t ensure(handle h) {
929 auto result = reinterpret_steal<array_t>(raw_array_t(h.ptr()));
930 if (!result)
931 PyErr_Clear();
932 return result;
933 }
934
935 static bool check_(handle h) {
936 const auto &api = detail::npy_api::get();
937 return api.PyArray_Check_(h.ptr())
938 && api.PyArray_EquivTypes_(detail::array_proxy(h.ptr())->descr, dtype::of<T>().ptr())
939 && detail::check_flags(h.ptr(), ExtraFlags & (array::c_style | array::f_style));
940 }
941
942 protected:
943 /// Create array from any object -- always returns a new reference
944 static PyObject *raw_array_t(PyObject *ptr) {
945 if (ptr == nullptr) {
946 PyErr_SetString(PyExc_ValueError, "cannot create a pybind11::array_t from a nullptr");
947 return nullptr;
948 }
949 return detail::npy_api::get().PyArray_FromAny_(
950 ptr, dtype::of<T>().release().ptr(), 0, 0,
951 detail::npy_api::NPY_ARRAY_ENSUREARRAY_ | ExtraFlags, nullptr);
952 }
953 };
954
955 template <typename T>
956 struct format_descriptor<T, detail::enable_if_t<detail::is_pod_struct<T>::value>> {
957 static std::string format() {
958 return detail::npy_format_descriptor<typename std::remove_cv<T>::type>::format();
959 }
960 };
961
962 template <size_t N> struct format_descriptor<char[N]> {
963 static std::string format() { return std::to_string(N) + "s"; }
964 };
965 template <size_t N> struct format_descriptor<std::array<char, N>> {
966 static std::string format() { return std::to_string(N) + "s"; }
967 };
968
969 template <typename T>
970 struct format_descriptor<T, detail::enable_if_t<std::is_enum<T>::value>> {
971 static std::string format() {
972 return format_descriptor<
973 typename std::remove_cv<typename std::underlying_type<T>::type>::type>::format();
974 }
975 };
976
977 template <typename T>
978 struct format_descriptor<T, detail::enable_if_t<detail::array_info<T>::is_array>> {
979 static std::string format() {
980 using namespace detail;
981 static constexpr auto extents = _("(") + array_info<T>::extents + _(")");
982 return extents.text + format_descriptor<remove_all_extents_t<T>>::format();
983 }
984 };
985
986 PYBIND11_NAMESPACE_BEGIN(detail)
987 template <typename T, int ExtraFlags>
988 struct pyobject_caster<array_t<T, ExtraFlags>> {
989 using type = array_t<T, ExtraFlags>;
990
991 bool load(handle src, bool convert) {
992 if (!convert && !type::check_(src))
993 return false;
994 value = type::ensure(src);
995 return static_cast<bool>(value);
996 }
997
998 static handle cast(const handle &src, return_value_policy /* policy */, handle /* parent */) {
999 return src.inc_ref();
1000 }
1001 PYBIND11_TYPE_CASTER(type, handle_type_name<type>::name);
1002 };
1003
1004 template <typename T>
1005 struct compare_buffer_info<T, detail::enable_if_t<detail::is_pod_struct<T>::value>> {
1006 static bool compare(const buffer_info& b) {
1007 return npy_api::get().PyArray_EquivTypes_(dtype::of<T>().ptr(), dtype(b).ptr());
1008 }
1009 };
1010
1011 template <typename T, typename = void>
1012 struct npy_format_descriptor_name;
1013
1014 template <typename T>
1015 struct npy_format_descriptor_name<T, enable_if_t<std::is_integral<T>::value>> {
1016 static constexpr auto name = _<std::is_same<T, bool>::value>(
1017 _("bool"), _<std::is_signed<T>::value>("numpy.int", "numpy.uint") + _<sizeof(T)*8>()
1018 );
1019 };
1020
1021 template <typename T>
1022 struct npy_format_descriptor_name<T, enable_if_t<std::is_floating_point<T>::value>> {
1023 static constexpr auto name = _<std::is_same<T, float>::value || std::is_same<T, double>::value>(
1024 _("numpy.float") + _<sizeof(T)*8>(), _("numpy.longdouble")
1025 );
1026 };
1027
1028 template <typename T>
1029 struct npy_format_descriptor_name<T, enable_if_t<is_complex<T>::value>> {
1030 static constexpr auto name = _<std::is_same<typename T::value_type, float>::value
1031 || std::is_same<typename T::value_type, double>::value>(
1032 _("numpy.complex") + _<sizeof(typename T::value_type)*16>(), _("numpy.longcomplex")
1033 );
1034 };
1035
1036 template <typename T>
1037 struct npy_format_descriptor<T, enable_if_t<satisfies_any_of<T, std::is_arithmetic, is_complex>::value>>
1038 : npy_format_descriptor_name<T> {
1039 private:
1040 // NB: the order here must match the one in common.h
1041 constexpr static const int values[15] = {
1042 npy_api::NPY_BOOL_,
1043 npy_api::NPY_BYTE_, npy_api::NPY_UBYTE_, npy_api::NPY_INT16_, npy_api::NPY_UINT16_,
1044 npy_api::NPY_INT32_, npy_api::NPY_UINT32_, npy_api::NPY_INT64_, npy_api::NPY_UINT64_,
1045 npy_api::NPY_FLOAT_, npy_api::NPY_DOUBLE_, npy_api::NPY_LONGDOUBLE_,
1046 npy_api::NPY_CFLOAT_, npy_api::NPY_CDOUBLE_, npy_api::NPY_CLONGDOUBLE_
1047 };
1048
1049 public:
1050 static constexpr int value = values[detail::is_fmt_numeric<T>::index];
1051
1052 static pybind11::dtype dtype() {
1053 if (auto ptr = npy_api::get().PyArray_DescrFromType_(value))
1054 return reinterpret_steal<pybind11::dtype>(ptr);
1055 pybind11_fail("Unsupported buffer format!");
1056 }
1057 };
1058
1059 #define PYBIND11_DECL_CHAR_FMT \
1060 static constexpr auto name = _("S") + _<N>(); \
1061 static pybind11::dtype dtype() { return pybind11::dtype(std::string("S") + std::to_string(N)); }
1062 template <size_t N> struct npy_format_descriptor<char[N]> { PYBIND11_DECL_CHAR_FMT };
1063 template <size_t N> struct npy_format_descriptor<std::array<char, N>> { PYBIND11_DECL_CHAR_FMT };
1064 #undef PYBIND11_DECL_CHAR_FMT
1065
1066 template<typename T> struct npy_format_descriptor<T, enable_if_t<array_info<T>::is_array>> {
1067 private:
1068 using base_descr = npy_format_descriptor<typename array_info<T>::type>;
1069 public:
1070 static_assert(!array_info<T>::is_empty, "Zero-sized arrays are not supported");
1071
1072 static constexpr auto name = _("(") + array_info<T>::extents + _(")") + base_descr::name;
1073 static pybind11::dtype dtype() {
1074 list shape;
1075 array_info<T>::append_extents(shape);
1076 return pybind11::dtype::from_args(pybind11::make_tuple(base_descr::dtype(), shape));
1077 }
1078 };
1079
1080 template<typename T> struct npy_format_descriptor<T, enable_if_t<std::is_enum<T>::value>> {
1081 private:
1082 using base_descr = npy_format_descriptor<typename std::underlying_type<T>::type>;
1083 public:
1084 static constexpr auto name = base_descr::name;
1085 static pybind11::dtype dtype() { return base_descr::dtype(); }
1086 };
1087
1088 struct field_descriptor {
1089 const char *name;
1090 ssize_t offset;
1091 ssize_t size;
1092 std::string format;
1093 dtype descr;
1094 };
1095
1096 inline PYBIND11_NOINLINE void register_structured_dtype(
1097 any_container<field_descriptor> fields,
1098 const std::type_info& tinfo, ssize_t itemsize,
1099 bool (*direct_converter)(PyObject *, void *&)) {
1100
1101 auto& numpy_internals = get_numpy_internals();
1102 if (numpy_internals.get_type_info(tinfo, false))
1103 pybind11_fail("NumPy: dtype is already registered");
1104
1105 // Use ordered fields because order matters as of NumPy 1.14:
1106 // https://docs.scipy.org/doc/numpy/release.html#multiple-field-indexing-assignment-of-structured-arrays
1107 std::vector<field_descriptor> ordered_fields(std::move(fields));
1108 std::sort(ordered_fields.begin(), ordered_fields.end(),
1109 [](const field_descriptor &a, const field_descriptor &b) { return a.offset < b.offset; });
1110
1111 list names, formats, offsets;
1112 for (auto& field : ordered_fields) {
1113 if (!field.descr)
1114 pybind11_fail(std::string("NumPy: unsupported field dtype: `") +
1115 field.name + "` @ " + tinfo.name());
1116 names.append(PYBIND11_STR_TYPE(field.name));
1117 formats.append(field.descr);
1118 offsets.append(pybind11::int_(field.offset));
1119 }
1120 auto dtype_ptr = pybind11::dtype(names, formats, offsets, itemsize).release().ptr();
1121
1122 // There is an existing bug in NumPy (as of v1.11): trailing bytes are
1123 // not encoded explicitly into the format string. This will supposedly
1124 // get fixed in v1.12; for further details, see these:
1125 // - https://github.com/numpy/numpy/issues/7797
1126 // - https://github.com/numpy/numpy/pull/7798
1127 // Because of this, we won't use numpy's logic to generate buffer format
1128 // strings and will just do it ourselves.
1129 ssize_t offset = 0;
1130 std::ostringstream oss;
1131 // mark the structure as unaligned with '^', because numpy and C++ don't
1132 // always agree about alignment (particularly for complex), and we're
1133 // explicitly listing all our padding. This depends on none of the fields
1134 // overriding the endianness. Putting the ^ in front of individual fields
1135 // isn't guaranteed to work due to https://github.com/numpy/numpy/issues/9049
1136 oss << "^T{";
1137 for (auto& field : ordered_fields) {
1138 if (field.offset > offset)
1139 oss << (field.offset - offset) << 'x';
1140 oss << field.format << ':' << field.name << ':';
1141 offset = field.offset + field.size;
1142 }
1143 if (itemsize > offset)
1144 oss << (itemsize - offset) << 'x';
1145 oss << '}';
1146 auto format_str = oss.str();
1147
1148 // Sanity check: verify that NumPy properly parses our buffer format string
1149 auto& api = npy_api::get();
1150 auto arr = array(buffer_info(nullptr, itemsize, format_str, 1));
1151 if (!api.PyArray_EquivTypes_(dtype_ptr, arr.dtype().ptr()))
1152 pybind11_fail("NumPy: invalid buffer descriptor!");
1153
1154 auto tindex = std::type_index(tinfo);
1155 numpy_internals.registered_dtypes[tindex] = { dtype_ptr, format_str };
1156 get_internals().direct_conversions[tindex].push_back(direct_converter);
1157 }
1158
1159 template <typename T, typename SFINAE> struct npy_format_descriptor {
1160 static_assert(is_pod_struct<T>::value, "Attempt to use a non-POD or unimplemented POD type as a numpy dtype");
1161
1162 static constexpr auto name = make_caster<T>::name;
1163
1164 static pybind11::dtype dtype() {
1165 return reinterpret_borrow<pybind11::dtype>(dtype_ptr());
1166 }
1167
1168 static std::string format() {
1169 static auto format_str = get_numpy_internals().get_type_info<T>(true)->format_str;
1170 return format_str;
1171 }
1172
1173 static void register_dtype(any_container<field_descriptor> fields) {
1174 register_structured_dtype(std::move(fields), typeid(typename std::remove_cv<T>::type),
1175 sizeof(T), &direct_converter);
1176 }
1177
1178 private:
1179 static PyObject* dtype_ptr() {
1180 static PyObject* ptr = get_numpy_internals().get_type_info<T>(true)->dtype_ptr;
1181 return ptr;
1182 }
1183
1184 static bool direct_converter(PyObject *obj, void*& value) {
1185 auto& api = npy_api::get();
1186 if (!PyObject_TypeCheck(obj, api.PyVoidArrType_Type_))
1187 return false;
1188 if (auto descr = reinterpret_steal<object>(api.PyArray_DescrFromScalar_(obj))) {
1189 if (api.PyArray_EquivTypes_(dtype_ptr(), descr.ptr())) {
1190 value = ((PyVoidScalarObject_Proxy *) obj)->obval;
1191 return true;
1192 }
1193 }
1194 return false;
1195 }
1196 };
1197
1198 #ifdef __CLION_IDE__ // replace heavy macro with dummy code for the IDE (doesn't affect code)
1199 # define PYBIND11_NUMPY_DTYPE(Type, ...) ((void)0)
1200 # define PYBIND11_NUMPY_DTYPE_EX(Type, ...) ((void)0)
1201 #else
1202
1203 #define PYBIND11_FIELD_DESCRIPTOR_EX(T, Field, Name) \
1204 ::pybind11::detail::field_descriptor { \
1205 Name, offsetof(T, Field), sizeof(decltype(std::declval<T>().Field)), \
1206 ::pybind11::format_descriptor<decltype(std::declval<T>().Field)>::format(), \
1207 ::pybind11::detail::npy_format_descriptor<decltype(std::declval<T>().Field)>::dtype() \
1208 }
1209
1210 // Extract name, offset and format descriptor for a struct field
1211 #define PYBIND11_FIELD_DESCRIPTOR(T, Field) PYBIND11_FIELD_DESCRIPTOR_EX(T, Field, #Field)
1212
1213 // The main idea of this macro is borrowed from https://github.com/swansontec/map-macro
1214 // (C) William Swanson, Paul Fultz
1215 #define PYBIND11_EVAL0(...) __VA_ARGS__
1216 #define PYBIND11_EVAL1(...) PYBIND11_EVAL0 (PYBIND11_EVAL0 (PYBIND11_EVAL0 (__VA_ARGS__)))
1217 #define PYBIND11_EVAL2(...) PYBIND11_EVAL1 (PYBIND11_EVAL1 (PYBIND11_EVAL1 (__VA_ARGS__)))
1218 #define PYBIND11_EVAL3(...) PYBIND11_EVAL2 (PYBIND11_EVAL2 (PYBIND11_EVAL2 (__VA_ARGS__)))
1219 #define PYBIND11_EVAL4(...) PYBIND11_EVAL3 (PYBIND11_EVAL3 (PYBIND11_EVAL3 (__VA_ARGS__)))
1220 #define PYBIND11_EVAL(...) PYBIND11_EVAL4 (PYBIND11_EVAL4 (PYBIND11_EVAL4 (__VA_ARGS__)))
1221 #define PYBIND11_MAP_END(...)
1222 #define PYBIND11_MAP_OUT
1223 #define PYBIND11_MAP_COMMA ,
1224 #define PYBIND11_MAP_GET_END() 0, PYBIND11_MAP_END
1225 #define PYBIND11_MAP_NEXT0(test, next, ...) next PYBIND11_MAP_OUT
1226 #define PYBIND11_MAP_NEXT1(test, next) PYBIND11_MAP_NEXT0 (test, next, 0)
1227 #define PYBIND11_MAP_NEXT(test, next) PYBIND11_MAP_NEXT1 (PYBIND11_MAP_GET_END test, next)
1228 #if defined(_MSC_VER) && !defined(__clang__) // MSVC is not as eager to expand macros, hence this workaround
1229 #define PYBIND11_MAP_LIST_NEXT1(test, next) \
1230 PYBIND11_EVAL0 (PYBIND11_MAP_NEXT0 (test, PYBIND11_MAP_COMMA next, 0))
1231 #else
1232 #define PYBIND11_MAP_LIST_NEXT1(test, next) \
1233 PYBIND11_MAP_NEXT0 (test, PYBIND11_MAP_COMMA next, 0)
1234 #endif
1235 #define PYBIND11_MAP_LIST_NEXT(test, next) \
1236 PYBIND11_MAP_LIST_NEXT1 (PYBIND11_MAP_GET_END test, next)
1237 #define PYBIND11_MAP_LIST0(f, t, x, peek, ...) \
1238 f(t, x) PYBIND11_MAP_LIST_NEXT (peek, PYBIND11_MAP_LIST1) (f, t, peek, __VA_ARGS__)
1239 #define PYBIND11_MAP_LIST1(f, t, x, peek, ...) \
1240 f(t, x) PYBIND11_MAP_LIST_NEXT (peek, PYBIND11_MAP_LIST0) (f, t, peek, __VA_ARGS__)
1241 // PYBIND11_MAP_LIST(f, t, a1, a2, ...) expands to f(t, a1), f(t, a2), ...
1242 #define PYBIND11_MAP_LIST(f, t, ...) \
1243 PYBIND11_EVAL (PYBIND11_MAP_LIST1 (f, t, __VA_ARGS__, (), 0))
1244
1245 #define PYBIND11_NUMPY_DTYPE(Type, ...) \
1246 ::pybind11::detail::npy_format_descriptor<Type>::register_dtype \
1247 (::std::vector<::pybind11::detail::field_descriptor> \
1248 {PYBIND11_MAP_LIST (PYBIND11_FIELD_DESCRIPTOR, Type, __VA_ARGS__)})
1249
1250 #if defined(_MSC_VER) && !defined(__clang__)
1251 #define PYBIND11_MAP2_LIST_NEXT1(test, next) \
1252 PYBIND11_EVAL0 (PYBIND11_MAP_NEXT0 (test, PYBIND11_MAP_COMMA next, 0))
1253 #else
1254 #define PYBIND11_MAP2_LIST_NEXT1(test, next) \
1255 PYBIND11_MAP_NEXT0 (test, PYBIND11_MAP_COMMA next, 0)
1256 #endif
1257 #define PYBIND11_MAP2_LIST_NEXT(test, next) \
1258 PYBIND11_MAP2_LIST_NEXT1 (PYBIND11_MAP_GET_END test, next)
1259 #define PYBIND11_MAP2_LIST0(f, t, x1, x2, peek, ...) \
1260 f(t, x1, x2) PYBIND11_MAP2_LIST_NEXT (peek, PYBIND11_MAP2_LIST1) (f, t, peek, __VA_ARGS__)
1261 #define PYBIND11_MAP2_LIST1(f, t, x1, x2, peek, ...) \
1262 f(t, x1, x2) PYBIND11_MAP2_LIST_NEXT (peek, PYBIND11_MAP2_LIST0) (f, t, peek, __VA_ARGS__)
1263 // PYBIND11_MAP2_LIST(f, t, a1, a2, ...) expands to f(t, a1, a2), f(t, a3, a4), ...
1264 #define PYBIND11_MAP2_LIST(f, t, ...) \
1265 PYBIND11_EVAL (PYBIND11_MAP2_LIST1 (f, t, __VA_ARGS__, (), 0))
1266
1267 #define PYBIND11_NUMPY_DTYPE_EX(Type, ...) \
1268 ::pybind11::detail::npy_format_descriptor<Type>::register_dtype \
1269 (::std::vector<::pybind11::detail::field_descriptor> \
1270 {PYBIND11_MAP2_LIST (PYBIND11_FIELD_DESCRIPTOR_EX, Type, __VA_ARGS__)})
1271
1272 #endif // __CLION_IDE__
1273
1274 class common_iterator {
1275 public:
1276 using container_type = std::vector<ssize_t>;
1277 using value_type = container_type::value_type;
1278 using size_type = container_type::size_type;
1279
1280 common_iterator() : p_ptr(0), m_strides() {}
1281
1282 common_iterator(void* ptr, const container_type& strides, const container_type& shape)
1283 : p_ptr(reinterpret_cast<char*>(ptr)), m_strides(strides.size()) {
1284 m_strides.back() = static_cast<value_type>(strides.back());
1285 for (size_type i = m_strides.size() - 1; i != 0; --i) {
1286 size_type j = i - 1;
1287 auto s = static_cast<value_type>(shape[i]);
1288 m_strides[j] = strides[j] + m_strides[i] - strides[i] * s;
1289 }
1290 }
1291
1292 void increment(size_type dim) {
1293 p_ptr += m_strides[dim];
1294 }
1295
1296 void* data() const {
1297 return p_ptr;
1298 }
1299
1300 private:
1301 char* p_ptr;
1302 container_type m_strides;
1303 };
1304
1305 template <size_t N> class multi_array_iterator {
1306 public:
1307 using container_type = std::vector<ssize_t>;
1308
1309 multi_array_iterator(const std::array<buffer_info, N> &buffers,
1310 const container_type &shape)
1311 : m_shape(shape.size()), m_index(shape.size(), 0),
1312 m_common_iterator() {
1313
1314 // Manual copy to avoid conversion warning if using std::copy
1315 for (size_t i = 0; i < shape.size(); ++i)
1316 m_shape[i] = shape[i];
1317
1318 container_type strides(shape.size());
1319 for (size_t i = 0; i < N; ++i)
1320 init_common_iterator(buffers[i], shape, m_common_iterator[i], strides);
1321 }
1322
1323 multi_array_iterator& operator++() {
1324 for (size_t j = m_index.size(); j != 0; --j) {
1325 size_t i = j - 1;
1326 if (++m_index[i] != m_shape[i]) {
1327 increment_common_iterator(i);
1328 break;
1329 } else {
1330 m_index[i] = 0;
1331 }
1332 }
1333 return *this;
1334 }
1335
1336 template <size_t K, class T = void> T* data() const {
1337 return reinterpret_cast<T*>(m_common_iterator[K].data());
1338 }
1339
1340 private:
1341
1342 using common_iter = common_iterator;
1343
1344 void init_common_iterator(const buffer_info &buffer,
1345 const container_type &shape,
1346 common_iter &iterator,
1347 container_type &strides) {
1348 auto buffer_shape_iter = buffer.shape.rbegin();
1349 auto buffer_strides_iter = buffer.strides.rbegin();
1350 auto shape_iter = shape.rbegin();
1351 auto strides_iter = strides.rbegin();
1352
1353 while (buffer_shape_iter != buffer.shape.rend()) {
1354 if (*shape_iter == *buffer_shape_iter)
1355 *strides_iter = *buffer_strides_iter;
1356 else
1357 *strides_iter = 0;
1358
1359 ++buffer_shape_iter;
1360 ++buffer_strides_iter;
1361 ++shape_iter;
1362 ++strides_iter;
1363 }
1364
1365 std::fill(strides_iter, strides.rend(), 0);
1366 iterator = common_iter(buffer.ptr, strides, shape);
1367 }
1368
1369 void increment_common_iterator(size_t dim) {
1370 for (auto &iter : m_common_iterator)
1371 iter.increment(dim);
1372 }
1373
1374 container_type m_shape;
1375 container_type m_index;
1376 std::array<common_iter, N> m_common_iterator;
1377 };
1378
1379 enum class broadcast_trivial { non_trivial, c_trivial, f_trivial };
1380
1381 // Populates the shape and number of dimensions for the set of buffers. Returns a broadcast_trivial
1382 // enum value indicating whether the broadcast is "trivial"--that is, has each buffer being either a
1383 // singleton or a full-size, C-contiguous (`c_trivial`) or Fortran-contiguous (`f_trivial`) storage
1384 // buffer; returns `non_trivial` otherwise.
1385 template <size_t N>
1386 broadcast_trivial broadcast(const std::array<buffer_info, N> &buffers, ssize_t &ndim, std::vector<ssize_t> &shape) {
1387 ndim = std::accumulate(buffers.begin(), buffers.end(), ssize_t(0), [](ssize_t res, const buffer_info &buf) {
1388 return std::max(res, buf.ndim);
1389 });
1390
1391 shape.clear();
1392 shape.resize((size_t) ndim, 1);
1393
1394 // Figure out the output size, and make sure all input arrays conform (i.e. are either size 1 or
1395 // the full size).
1396 for (size_t i = 0; i < N; ++i) {
1397 auto res_iter = shape.rbegin();
1398 auto end = buffers[i].shape.rend();
1399 for (auto shape_iter = buffers[i].shape.rbegin(); shape_iter != end; ++shape_iter, ++res_iter) {
1400 const auto &dim_size_in = *shape_iter;
1401 auto &dim_size_out = *res_iter;
1402
1403 // Each input dimension can either be 1 or `n`, but `n` values must match across buffers
1404 if (dim_size_out == 1)
1405 dim_size_out = dim_size_in;
1406 else if (dim_size_in != 1 && dim_size_in != dim_size_out)
1407 pybind11_fail("pybind11::vectorize: incompatible size/dimension of inputs!");
1408 }
1409 }
1410
1411 bool trivial_broadcast_c = true;
1412 bool trivial_broadcast_f = true;
1413 for (size_t i = 0; i < N && (trivial_broadcast_c || trivial_broadcast_f); ++i) {
1414 if (buffers[i].size == 1)
1415 continue;
1416
1417 // Require the same number of dimensions:
1418 if (buffers[i].ndim != ndim)
1419 return broadcast_trivial::non_trivial;
1420
1421 // Require all dimensions be full-size:
1422 if (!std::equal(buffers[i].shape.cbegin(), buffers[i].shape.cend(), shape.cbegin()))
1423 return broadcast_trivial::non_trivial;
1424
1425 // Check for C contiguity (but only if previous inputs were also C contiguous)
1426 if (trivial_broadcast_c) {
1427 ssize_t expect_stride = buffers[i].itemsize;
1428 auto end = buffers[i].shape.crend();
1429 for (auto shape_iter = buffers[i].shape.crbegin(), stride_iter = buffers[i].strides.crbegin();
1430 trivial_broadcast_c && shape_iter != end; ++shape_iter, ++stride_iter) {
1431 if (expect_stride == *stride_iter)
1432 expect_stride *= *shape_iter;
1433 else
1434 trivial_broadcast_c = false;
1435 }
1436 }
1437
1438 // Check for Fortran contiguity (if previous inputs were also F contiguous)
1439 if (trivial_broadcast_f) {
1440 ssize_t expect_stride = buffers[i].itemsize;
1441 auto end = buffers[i].shape.cend();
1442 for (auto shape_iter = buffers[i].shape.cbegin(), stride_iter = buffers[i].strides.cbegin();
1443 trivial_broadcast_f && shape_iter != end; ++shape_iter, ++stride_iter) {
1444 if (expect_stride == *stride_iter)
1445 expect_stride *= *shape_iter;
1446 else
1447 trivial_broadcast_f = false;
1448 }
1449 }
1450 }
1451
1452 return
1453 trivial_broadcast_c ? broadcast_trivial::c_trivial :
1454 trivial_broadcast_f ? broadcast_trivial::f_trivial :
1455 broadcast_trivial::non_trivial;
1456 }
1457
1458 template <typename T>
1459 struct vectorize_arg {
1460 static_assert(!std::is_rvalue_reference<T>::value, "Functions with rvalue reference arguments cannot be vectorized");
1461 // The wrapped function gets called with this type:
1462 using call_type = remove_reference_t<T>;
1463 // Is this a vectorized argument?
1464 static constexpr bool vectorize =
1465 satisfies_any_of<call_type, std::is_arithmetic, is_complex, is_pod>::value &&
1466 satisfies_none_of<call_type, std::is_pointer, std::is_array, is_std_array, std::is_enum>::value &&
1467 (!std::is_reference<T>::value ||
1468 (std::is_lvalue_reference<T>::value && std::is_const<call_type>::value));
1469 // Accept this type: an array for vectorized types, otherwise the type as-is:
1470 using type = conditional_t<vectorize, array_t<remove_cv_t<call_type>, array::forcecast>, T>;
1471 };
1472
1473
1474 // py::vectorize when a return type is present
1475 template <typename Func, typename Return, typename... Args>
1476 struct vectorize_returned_array {
1477 using Type = array_t<Return>;
1478
1479 static Type create(broadcast_trivial trivial, const std::vector<ssize_t> &shape) {
1480 if (trivial == broadcast_trivial::f_trivial)
1481 return array_t<Return, array::f_style>(shape);
1482 else
1483 return array_t<Return>(shape);
1484 }
1485
1486 static Return *mutable_data(Type &array) {
1487 return array.mutable_data();
1488 }
1489
1490 static Return call(Func &f, Args &... args) {
1491 return f(args...);
1492 }
1493
1494 static void call(Return *out, size_t i, Func &f, Args &... args) {
1495 out[i] = f(args...);
1496 }
1497 };
1498
1499 // py::vectorize when a return type is not present
1500 template <typename Func, typename... Args>
1501 struct vectorize_returned_array<Func, void, Args...> {
1502 using Type = none;
1503
1504 static Type create(broadcast_trivial, const std::vector<ssize_t> &) {
1505 return none();
1506 }
1507
1508 static void *mutable_data(Type &) {
1509 return nullptr;
1510 }
1511
1512 static detail::void_type call(Func &f, Args &... args) {
1513 f(args...);
1514 return {};
1515 }
1516
1517 static void call(void *, size_t, Func &f, Args &... args) {
1518 f(args...);
1519 }
1520 };
1521
1522
1523 template <typename Func, typename Return, typename... Args>
1524 struct vectorize_helper {
1525
1526 // NVCC for some reason breaks if NVectorized is private
1527 #ifdef __CUDACC__
1528 public:
1529 #else
1530 private:
1531 #endif
1532
1533 static constexpr size_t N = sizeof...(Args);
1534 static constexpr size_t NVectorized = constexpr_sum(vectorize_arg<Args>::vectorize...);
1535 static_assert(NVectorized >= 1,
1536 "pybind11::vectorize(...) requires a function with at least one vectorizable argument");
1537
1538 public:
1539 template <typename T>
1540 explicit vectorize_helper(T &&f) : f(std::forward<T>(f)) { }
1541
1542 object operator()(typename vectorize_arg<Args>::type... args) {
1543 return run(args...,
1544 make_index_sequence<N>(),
1545 select_indices<vectorize_arg<Args>::vectorize...>(),
1546 make_index_sequence<NVectorized>());
1547 }
1548
1549 private:
1550 remove_reference_t<Func> f;
1551
1552 // Internal compiler error in MSVC 19.16.27025.1 (Visual Studio 2017 15.9.4), when compiling with "/permissive-" flag
1553 // when arg_call_types is manually inlined.
1554 using arg_call_types = std::tuple<typename vectorize_arg<Args>::call_type...>;
1555 template <size_t Index> using param_n_t = typename std::tuple_element<Index, arg_call_types>::type;
1556
1557 using returned_array = vectorize_returned_array<Func, Return, Args...>;
1558
1559 // Runs a vectorized function given arguments tuple and three index sequences:
1560 // - Index is the full set of 0 ... (N-1) argument indices;
1561 // - VIndex is the subset of argument indices with vectorized parameters, letting us access
1562 // vectorized arguments (anything not in this sequence is passed through)
1563 // - BIndex is a incremental sequence (beginning at 0) of the same size as VIndex, so that
1564 // we can store vectorized buffer_infos in an array (argument VIndex has its buffer at
1565 // index BIndex in the array).
1566 template <size_t... Index, size_t... VIndex, size_t... BIndex> object run(
1567 typename vectorize_arg<Args>::type &...args,
1568 index_sequence<Index...> i_seq, index_sequence<VIndex...> vi_seq, index_sequence<BIndex...> bi_seq) {
1569
1570 // Pointers to values the function was called with; the vectorized ones set here will start
1571 // out as array_t<T> pointers, but they will be changed them to T pointers before we make
1572 // call the wrapped function. Non-vectorized pointers are left as-is.
1573 std::array<void *, N> params{{ &args... }};
1574
1575 // The array of `buffer_info`s of vectorized arguments:
1576 std::array<buffer_info, NVectorized> buffers{{ reinterpret_cast<array *>(params[VIndex])->request()... }};
1577
1578 /* Determine dimensions parameters of output array */
1579 ssize_t nd = 0;
1580 std::vector<ssize_t> shape(0);
1581 auto trivial = broadcast(buffers, nd, shape);
1582 auto ndim = (size_t) nd;
1583
1584 size_t size = std::accumulate(shape.begin(), shape.end(), (size_t) 1, std::multiplies<size_t>());
1585
1586 // If all arguments are 0-dimension arrays (i.e. single values) return a plain value (i.e.
1587 // not wrapped in an array).
1588 if (size == 1 && ndim == 0) {
1589 PYBIND11_EXPAND_SIDE_EFFECTS(params[VIndex] = buffers[BIndex].ptr);
1590 return cast(returned_array::call(f, *reinterpret_cast<param_n_t<Index> *>(params[Index])...));
1591 }
1592
1593 auto result = returned_array::create(trivial, shape);
1594
1595 if (size == 0) return std::move(result);
1596
1597 /* Call the function */
1598 auto mutable_data = returned_array::mutable_data(result);
1599 if (trivial == broadcast_trivial::non_trivial)
1600 apply_broadcast(buffers, params, mutable_data, size, shape, i_seq, vi_seq, bi_seq);
1601 else
1602 apply_trivial(buffers, params, mutable_data, size, i_seq, vi_seq, bi_seq);
1603
1604 return std::move(result);
1605 }
1606
1607 template <size_t... Index, size_t... VIndex, size_t... BIndex>
1608 void apply_trivial(std::array<buffer_info, NVectorized> &buffers,
1609 std::array<void *, N> ¶ms,
1610 Return *out,
1611 size_t size,
1612 index_sequence<Index...>, index_sequence<VIndex...>, index_sequence<BIndex...>) {
1613
1614 // Initialize an array of mutable byte references and sizes with references set to the
1615 // appropriate pointer in `params`; as we iterate, we'll increment each pointer by its size
1616 // (except for singletons, which get an increment of 0).
1617 std::array<std::pair<unsigned char *&, const size_t>, NVectorized> vecparams{{
1618 std::pair<unsigned char *&, const size_t>(
1619 reinterpret_cast<unsigned char *&>(params[VIndex] = buffers[BIndex].ptr),
1620 buffers[BIndex].size == 1 ? 0 : sizeof(param_n_t<VIndex>)
1621 )...
1622 }};
1623
1624 for (size_t i = 0; i < size; ++i) {
1625 returned_array::call(out, i, f, *reinterpret_cast<param_n_t<Index> *>(params[Index])...);
1626 for (auto &x : vecparams) x.first += x.second;
1627 }
1628 }
1629
1630 template <size_t... Index, size_t... VIndex, size_t... BIndex>
1631 void apply_broadcast(std::array<buffer_info, NVectorized> &buffers,
1632 std::array<void *, N> ¶ms,
1633 Return *out,
1634 size_t size,
1635 const std::vector<ssize_t> &output_shape,
1636 index_sequence<Index...>, index_sequence<VIndex...>, index_sequence<BIndex...>) {
1637
1638 multi_array_iterator<NVectorized> input_iter(buffers, output_shape);
1639
1640 for (size_t i = 0; i < size; ++i, ++input_iter) {
1641 PYBIND11_EXPAND_SIDE_EFFECTS((
1642 params[VIndex] = input_iter.template data<BIndex>()
1643 ));
1644 returned_array::call(out, i, f, *reinterpret_cast<param_n_t<Index> *>(std::get<Index>(params))...);
1645 }
1646 }
1647 };
1648
1649 template <typename Func, typename Return, typename... Args>
1650 vectorize_helper<Func, Return, Args...>
1651 vectorize_extractor(const Func &f, Return (*) (Args ...)) {
1652 return detail::vectorize_helper<Func, Return, Args...>(f);
1653 }
1654
1655 template <typename T, int Flags> struct handle_type_name<array_t<T, Flags>> {
1656 static constexpr auto name = _("numpy.ndarray[") + npy_format_descriptor<T>::name + _("]");
1657 };
1658
1659 PYBIND11_NAMESPACE_END(detail)
1660
1661 // Vanilla pointer vectorizer:
1662 template <typename Return, typename... Args>
1663 detail::vectorize_helper<Return (*)(Args...), Return, Args...>
1664 vectorize(Return (*f) (Args ...)) {
1665 return detail::vectorize_helper<Return (*)(Args...), Return, Args...>(f);
1666 }
1667
1668 // lambda vectorizer:
1669 template <typename Func, detail::enable_if_t<detail::is_lambda<Func>::value, int> = 0>
1670 auto vectorize(Func &&f) -> decltype(
1671 detail::vectorize_extractor(std::forward<Func>(f), (detail::function_signature_t<Func> *) nullptr)) {
1672 return detail::vectorize_extractor(std::forward<Func>(f), (detail::function_signature_t<Func> *) nullptr);
1673 }
1674
1675 // Vectorize a class method (non-const):
1676 template <typename Return, typename Class, typename... Args,
1677 typename Helper = detail::vectorize_helper<decltype(std::mem_fn(std::declval<Return (Class::*)(Args...)>())), Return, Class *, Args...>>
1678 Helper vectorize(Return (Class::*f)(Args...)) {
1679 return Helper(std::mem_fn(f));
1680 }
1681
1682 // Vectorize a class method (const):
1683 template <typename Return, typename Class, typename... Args,
1684 typename Helper = detail::vectorize_helper<decltype(std::mem_fn(std::declval<Return (Class::*)(Args...) const>())), Return, const Class *, Args...>>
1685 Helper vectorize(Return (Class::*f)(Args...) const) {
1686 return Helper(std::mem_fn(f));
1687 }
1688
1689 PYBIND11_NAMESPACE_END(PYBIND11_NAMESPACE)
1690
1691 #if defined(_MSC_VER)
1692 #pragma warning(pop)
1693 #endif
1694