1 /*
2 * z_Windows_NT_util.cpp -- platform specific routines.
3 */
4
5 //===----------------------------------------------------------------------===//
6 //
7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
8 // See https://llvm.org/LICENSE.txt for license information.
9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "kmp.h"
14 #include "kmp_affinity.h"
15 #include "kmp_i18n.h"
16 #include "kmp_io.h"
17 #include "kmp_itt.h"
18 #include "kmp_wait_release.h"
19
20 /* This code is related to NtQuerySystemInformation() function. This function
21 is used in the Load balance algorithm for OMP_DYNAMIC=true to find the
22 number of running threads in the system. */
23
24 #include <ntsecapi.h> // UNICODE_STRING
25 #include <ntstatus.h>
26
27 enum SYSTEM_INFORMATION_CLASS {
28 SystemProcessInformation = 5
29 }; // SYSTEM_INFORMATION_CLASS
30
31 struct CLIENT_ID {
32 HANDLE UniqueProcess;
33 HANDLE UniqueThread;
34 }; // struct CLIENT_ID
35
36 enum THREAD_STATE {
37 StateInitialized,
38 StateReady,
39 StateRunning,
40 StateStandby,
41 StateTerminated,
42 StateWait,
43 StateTransition,
44 StateUnknown
45 }; // enum THREAD_STATE
46
47 struct VM_COUNTERS {
48 SIZE_T PeakVirtualSize;
49 SIZE_T VirtualSize;
50 ULONG PageFaultCount;
51 SIZE_T PeakWorkingSetSize;
52 SIZE_T WorkingSetSize;
53 SIZE_T QuotaPeakPagedPoolUsage;
54 SIZE_T QuotaPagedPoolUsage;
55 SIZE_T QuotaPeakNonPagedPoolUsage;
56 SIZE_T QuotaNonPagedPoolUsage;
57 SIZE_T PagefileUsage;
58 SIZE_T PeakPagefileUsage;
59 SIZE_T PrivatePageCount;
60 }; // struct VM_COUNTERS
61
62 struct SYSTEM_THREAD {
63 LARGE_INTEGER KernelTime;
64 LARGE_INTEGER UserTime;
65 LARGE_INTEGER CreateTime;
66 ULONG WaitTime;
67 LPVOID StartAddress;
68 CLIENT_ID ClientId;
69 DWORD Priority;
70 LONG BasePriority;
71 ULONG ContextSwitchCount;
72 THREAD_STATE State;
73 ULONG WaitReason;
74 }; // SYSTEM_THREAD
75
76 KMP_BUILD_ASSERT(offsetof(SYSTEM_THREAD, KernelTime) == 0);
77 #if KMP_ARCH_X86
78 KMP_BUILD_ASSERT(offsetof(SYSTEM_THREAD, StartAddress) == 28);
79 KMP_BUILD_ASSERT(offsetof(SYSTEM_THREAD, State) == 52);
80 #else
81 KMP_BUILD_ASSERT(offsetof(SYSTEM_THREAD, StartAddress) == 32);
82 KMP_BUILD_ASSERT(offsetof(SYSTEM_THREAD, State) == 68);
83 #endif
84
85 struct SYSTEM_PROCESS_INFORMATION {
86 ULONG NextEntryOffset;
87 ULONG NumberOfThreads;
88 LARGE_INTEGER Reserved[3];
89 LARGE_INTEGER CreateTime;
90 LARGE_INTEGER UserTime;
91 LARGE_INTEGER KernelTime;
92 UNICODE_STRING ImageName;
93 DWORD BasePriority;
94 HANDLE ProcessId;
95 HANDLE ParentProcessId;
96 ULONG HandleCount;
97 ULONG Reserved2[2];
98 VM_COUNTERS VMCounters;
99 IO_COUNTERS IOCounters;
100 SYSTEM_THREAD Threads[1];
101 }; // SYSTEM_PROCESS_INFORMATION
102 typedef SYSTEM_PROCESS_INFORMATION *PSYSTEM_PROCESS_INFORMATION;
103
104 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, NextEntryOffset) == 0);
105 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, CreateTime) == 32);
106 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, ImageName) == 56);
107 #if KMP_ARCH_X86
108 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, ProcessId) == 68);
109 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, HandleCount) == 76);
110 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, VMCounters) == 88);
111 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, IOCounters) == 136);
112 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, Threads) == 184);
113 #else
114 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, ProcessId) == 80);
115 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, HandleCount) == 96);
116 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, VMCounters) == 112);
117 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, IOCounters) == 208);
118 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, Threads) == 256);
119 #endif
120
121 typedef NTSTATUS(NTAPI *NtQuerySystemInformation_t)(SYSTEM_INFORMATION_CLASS,
122 PVOID, ULONG, PULONG);
123 NtQuerySystemInformation_t NtQuerySystemInformation = NULL;
124
125 HMODULE ntdll = NULL;
126
127 /* End of NtQuerySystemInformation()-related code */
128
129 static HMODULE kernel32 = NULL;
130
131 #if KMP_HANDLE_SIGNALS
132 typedef void (*sig_func_t)(int);
133 static sig_func_t __kmp_sighldrs[NSIG];
134 static int __kmp_siginstalled[NSIG];
135 #endif
136
137 #if KMP_USE_MONITOR
138 static HANDLE __kmp_monitor_ev;
139 #endif
140 static kmp_int64 __kmp_win32_time;
141 double __kmp_win32_tick;
142
143 int __kmp_init_runtime = FALSE;
144 CRITICAL_SECTION __kmp_win32_section;
145
__kmp_win32_mutex_init(kmp_win32_mutex_t * mx)146 void __kmp_win32_mutex_init(kmp_win32_mutex_t *mx) {
147 InitializeCriticalSection(&mx->cs);
148 #if USE_ITT_BUILD
149 __kmp_itt_system_object_created(&mx->cs, "Critical Section");
150 #endif /* USE_ITT_BUILD */
151 }
152
__kmp_win32_mutex_destroy(kmp_win32_mutex_t * mx)153 void __kmp_win32_mutex_destroy(kmp_win32_mutex_t *mx) {
154 DeleteCriticalSection(&mx->cs);
155 }
156
__kmp_win32_mutex_lock(kmp_win32_mutex_t * mx)157 void __kmp_win32_mutex_lock(kmp_win32_mutex_t *mx) {
158 EnterCriticalSection(&mx->cs);
159 }
160
__kmp_win32_mutex_trylock(kmp_win32_mutex_t * mx)161 int __kmp_win32_mutex_trylock(kmp_win32_mutex_t *mx) {
162 return TryEnterCriticalSection(&mx->cs);
163 }
164
__kmp_win32_mutex_unlock(kmp_win32_mutex_t * mx)165 void __kmp_win32_mutex_unlock(kmp_win32_mutex_t *mx) {
166 LeaveCriticalSection(&mx->cs);
167 }
168
__kmp_win32_cond_init(kmp_win32_cond_t * cv)169 void __kmp_win32_cond_init(kmp_win32_cond_t *cv) {
170 cv->waiters_count_ = 0;
171 cv->wait_generation_count_ = 0;
172 cv->release_count_ = 0;
173
174 /* Initialize the critical section */
175 __kmp_win32_mutex_init(&cv->waiters_count_lock_);
176
177 /* Create a manual-reset event. */
178 cv->event_ = CreateEvent(NULL, // no security
179 TRUE, // manual-reset
180 FALSE, // non-signaled initially
181 NULL); // unnamed
182 #if USE_ITT_BUILD
183 __kmp_itt_system_object_created(cv->event_, "Event");
184 #endif /* USE_ITT_BUILD */
185 }
186
__kmp_win32_cond_destroy(kmp_win32_cond_t * cv)187 void __kmp_win32_cond_destroy(kmp_win32_cond_t *cv) {
188 __kmp_win32_mutex_destroy(&cv->waiters_count_lock_);
189 __kmp_free_handle(cv->event_);
190 memset(cv, '\0', sizeof(*cv));
191 }
192
193 /* TODO associate cv with a team instead of a thread so as to optimize
194 the case where we wake up a whole team */
195
196 template <class C>
__kmp_win32_cond_wait(kmp_win32_cond_t * cv,kmp_win32_mutex_t * mx,kmp_info_t * th,C * flag)197 static void __kmp_win32_cond_wait(kmp_win32_cond_t *cv, kmp_win32_mutex_t *mx,
198 kmp_info_t *th, C *flag) {
199 int my_generation;
200 int last_waiter;
201
202 /* Avoid race conditions */
203 __kmp_win32_mutex_lock(&cv->waiters_count_lock_);
204
205 /* Increment count of waiters */
206 cv->waiters_count_++;
207
208 /* Store current generation in our activation record. */
209 my_generation = cv->wait_generation_count_;
210
211 __kmp_win32_mutex_unlock(&cv->waiters_count_lock_);
212 __kmp_win32_mutex_unlock(mx);
213
214 for (;;) {
215 int wait_done = 0;
216 DWORD res, timeout = 5000; // just tried to quess an appropriate number
217 /* Wait until the event is signaled */
218 res = WaitForSingleObject(cv->event_, timeout);
219
220 if (res == WAIT_OBJECT_0) {
221 // event signaled
222 __kmp_win32_mutex_lock(&cv->waiters_count_lock_);
223 /* Exit the loop when the <cv->event_> is signaled and there are still
224 waiting threads from this <wait_generation> that haven't been released
225 from this wait yet. */
226 wait_done = (cv->release_count_ > 0) &&
227 (cv->wait_generation_count_ != my_generation);
228 __kmp_win32_mutex_unlock(&cv->waiters_count_lock_);
229 } else if (res == WAIT_TIMEOUT || res == WAIT_FAILED) {
230 // check if the flag and cv counters are in consistent state
231 // as MS sent us debug dump whith inconsistent state of data
232 __kmp_win32_mutex_lock(mx);
233 typename C::flag_t old_f = flag->set_sleeping();
234 if (!flag->done_check_val(old_f & ~KMP_BARRIER_SLEEP_STATE)) {
235 __kmp_win32_mutex_unlock(mx);
236 continue;
237 }
238 // condition fulfilled, exiting
239 old_f = flag->unset_sleeping();
240 KMP_DEBUG_ASSERT(old_f & KMP_BARRIER_SLEEP_STATE);
241 TCW_PTR(th->th.th_sleep_loc, NULL);
242 KF_TRACE(50, ("__kmp_win32_cond_wait: exiting, condition "
243 "fulfilled: flag's loc(%p): %u => %u\n",
244 flag->get(), old_f, *(flag->get())));
245
246 __kmp_win32_mutex_lock(&cv->waiters_count_lock_);
247 KMP_DEBUG_ASSERT(cv->waiters_count_ > 0);
248 cv->release_count_ = cv->waiters_count_;
249 cv->wait_generation_count_++;
250 wait_done = 1;
251 __kmp_win32_mutex_unlock(&cv->waiters_count_lock_);
252
253 __kmp_win32_mutex_unlock(mx);
254 }
255 /* there used to be a semicolon after the if statement, it looked like a
256 bug, so i removed it */
257 if (wait_done)
258 break;
259 }
260
261 __kmp_win32_mutex_lock(mx);
262 __kmp_win32_mutex_lock(&cv->waiters_count_lock_);
263
264 cv->waiters_count_--;
265 cv->release_count_--;
266
267 last_waiter = (cv->release_count_ == 0);
268
269 __kmp_win32_mutex_unlock(&cv->waiters_count_lock_);
270
271 if (last_waiter) {
272 /* We're the last waiter to be notified, so reset the manual event. */
273 ResetEvent(cv->event_);
274 }
275 }
276
__kmp_win32_cond_broadcast(kmp_win32_cond_t * cv)277 void __kmp_win32_cond_broadcast(kmp_win32_cond_t *cv) {
278 __kmp_win32_mutex_lock(&cv->waiters_count_lock_);
279
280 if (cv->waiters_count_ > 0) {
281 SetEvent(cv->event_);
282 /* Release all the threads in this generation. */
283
284 cv->release_count_ = cv->waiters_count_;
285
286 /* Start a new generation. */
287 cv->wait_generation_count_++;
288 }
289
290 __kmp_win32_mutex_unlock(&cv->waiters_count_lock_);
291 }
292
__kmp_win32_cond_signal(kmp_win32_cond_t * cv)293 void __kmp_win32_cond_signal(kmp_win32_cond_t *cv) {
294 __kmp_win32_cond_broadcast(cv);
295 }
296
__kmp_enable(int new_state)297 void __kmp_enable(int new_state) {
298 if (__kmp_init_runtime)
299 LeaveCriticalSection(&__kmp_win32_section);
300 }
301
__kmp_disable(int * old_state)302 void __kmp_disable(int *old_state) {
303 *old_state = 0;
304
305 if (__kmp_init_runtime)
306 EnterCriticalSection(&__kmp_win32_section);
307 }
308
__kmp_suspend_initialize(void)309 void __kmp_suspend_initialize(void) { /* do nothing */
310 }
311
__kmp_suspend_initialize_thread(kmp_info_t * th)312 void __kmp_suspend_initialize_thread(kmp_info_t *th) {
313 int old_value = KMP_ATOMIC_LD_RLX(&th->th.th_suspend_init);
314 int new_value = TRUE;
315 // Return if already initialized
316 if (old_value == new_value)
317 return;
318 // Wait, then return if being initialized
319 if (old_value == -1 ||
320 !__kmp_atomic_compare_store(&th->th.th_suspend_init, old_value, -1)) {
321 while (KMP_ATOMIC_LD_ACQ(&th->th.th_suspend_init) != new_value) {
322 KMP_CPU_PAUSE();
323 }
324 } else {
325 // Claim to be the initializer and do initializations
326 __kmp_win32_cond_init(&th->th.th_suspend_cv);
327 __kmp_win32_mutex_init(&th->th.th_suspend_mx);
328 KMP_ATOMIC_ST_REL(&th->th.th_suspend_init, new_value);
329 }
330 }
331
__kmp_suspend_uninitialize_thread(kmp_info_t * th)332 void __kmp_suspend_uninitialize_thread(kmp_info_t *th) {
333 if (KMP_ATOMIC_LD_ACQ(&th->th.th_suspend_init)) {
334 /* this means we have initialize the suspension pthread objects for this
335 thread in this instance of the process */
336 __kmp_win32_cond_destroy(&th->th.th_suspend_cv);
337 __kmp_win32_mutex_destroy(&th->th.th_suspend_mx);
338 KMP_ATOMIC_ST_REL(&th->th.th_suspend_init, FALSE);
339 }
340 }
341
__kmp_try_suspend_mx(kmp_info_t * th)342 int __kmp_try_suspend_mx(kmp_info_t *th) {
343 return __kmp_win32_mutex_trylock(&th->th.th_suspend_mx);
344 }
345
__kmp_lock_suspend_mx(kmp_info_t * th)346 void __kmp_lock_suspend_mx(kmp_info_t *th) {
347 __kmp_win32_mutex_lock(&th->th.th_suspend_mx);
348 }
349
__kmp_unlock_suspend_mx(kmp_info_t * th)350 void __kmp_unlock_suspend_mx(kmp_info_t *th) {
351 __kmp_win32_mutex_unlock(&th->th.th_suspend_mx);
352 }
353
354 /* This routine puts the calling thread to sleep after setting the
355 sleep bit for the indicated flag variable to true. */
356 template <class C>
__kmp_suspend_template(int th_gtid,C * flag)357 static inline void __kmp_suspend_template(int th_gtid, C *flag) {
358 kmp_info_t *th = __kmp_threads[th_gtid];
359 int status;
360 typename C::flag_t old_spin;
361
362 KF_TRACE(30, ("__kmp_suspend_template: T#%d enter for flag's loc(%p)\n",
363 th_gtid, flag->get()));
364
365 __kmp_suspend_initialize_thread(th);
366 __kmp_lock_suspend_mx(th);
367
368 KF_TRACE(10, ("__kmp_suspend_template: T#%d setting sleep bit for flag's"
369 " loc(%p)\n",
370 th_gtid, flag->get()));
371
372 /* TODO: shouldn't this use release semantics to ensure that
373 __kmp_suspend_initialize_thread gets called first? */
374 old_spin = flag->set_sleeping();
375 if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME &&
376 __kmp_pause_status != kmp_soft_paused) {
377 flag->unset_sleeping();
378 __kmp_unlock_suspend_mx(th);
379 return;
380 }
381
382 KF_TRACE(5, ("__kmp_suspend_template: T#%d set sleep bit for flag's"
383 " loc(%p)==%d\n",
384 th_gtid, flag->get(), *(flag->get())));
385
386 if (flag->done_check_val(old_spin)) {
387 old_spin = flag->unset_sleeping();
388 KF_TRACE(5, ("__kmp_suspend_template: T#%d false alarm, reset sleep bit "
389 "for flag's loc(%p)\n",
390 th_gtid, flag->get()));
391 } else {
392 #ifdef DEBUG_SUSPEND
393 __kmp_suspend_count++;
394 #endif
395 /* Encapsulate in a loop as the documentation states that this may "with
396 low probability" return when the condition variable has not been signaled
397 or broadcast */
398 int deactivated = FALSE;
399 TCW_PTR(th->th.th_sleep_loc, (void *)flag);
400 while (flag->is_sleeping()) {
401 KF_TRACE(15, ("__kmp_suspend_template: T#%d about to perform "
402 "kmp_win32_cond_wait()\n",
403 th_gtid));
404 // Mark the thread as no longer active (only in the first iteration of the
405 // loop).
406 if (!deactivated) {
407 th->th.th_active = FALSE;
408 if (th->th.th_active_in_pool) {
409 th->th.th_active_in_pool = FALSE;
410 KMP_ATOMIC_DEC(&__kmp_thread_pool_active_nth);
411 KMP_DEBUG_ASSERT(TCR_4(__kmp_thread_pool_active_nth) >= 0);
412 }
413 deactivated = TRUE;
414 __kmp_win32_cond_wait(&th->th.th_suspend_cv, &th->th.th_suspend_mx, th,
415 flag);
416 } else {
417 __kmp_win32_cond_wait(&th->th.th_suspend_cv, &th->th.th_suspend_mx, th,
418 flag);
419 }
420
421 #ifdef KMP_DEBUG
422 if (flag->is_sleeping()) {
423 KF_TRACE(100,
424 ("__kmp_suspend_template: T#%d spurious wakeup\n", th_gtid));
425 }
426 #endif /* KMP_DEBUG */
427
428 } // while
429
430 // Mark the thread as active again (if it was previous marked as inactive)
431 if (deactivated) {
432 th->th.th_active = TRUE;
433 if (TCR_4(th->th.th_in_pool)) {
434 KMP_ATOMIC_INC(&__kmp_thread_pool_active_nth);
435 th->th.th_active_in_pool = TRUE;
436 }
437 }
438 }
439
440 __kmp_unlock_suspend_mx(th);
441 KF_TRACE(30, ("__kmp_suspend_template: T#%d exit\n", th_gtid));
442 }
443
444 template <bool C, bool S>
__kmp_suspend_32(int th_gtid,kmp_flag_32<C,S> * flag)445 void __kmp_suspend_32(int th_gtid, kmp_flag_32<C, S> *flag) {
446 __kmp_suspend_template(th_gtid, flag);
447 }
448 template <bool C, bool S>
__kmp_suspend_64(int th_gtid,kmp_flag_64<C,S> * flag)449 void __kmp_suspend_64(int th_gtid, kmp_flag_64<C, S> *flag) {
450 __kmp_suspend_template(th_gtid, flag);
451 }
__kmp_suspend_oncore(int th_gtid,kmp_flag_oncore * flag)452 void __kmp_suspend_oncore(int th_gtid, kmp_flag_oncore *flag) {
453 __kmp_suspend_template(th_gtid, flag);
454 }
455
456 template void __kmp_suspend_32<false, false>(int, kmp_flag_32<false, false> *);
457 template void __kmp_suspend_64<false, true>(int, kmp_flag_64<false, true> *);
458 template void __kmp_suspend_64<true, false>(int, kmp_flag_64<true, false> *);
459
460 /* This routine signals the thread specified by target_gtid to wake up
461 after setting the sleep bit indicated by the flag argument to FALSE */
462 template <class C>
__kmp_resume_template(int target_gtid,C * flag)463 static inline void __kmp_resume_template(int target_gtid, C *flag) {
464 kmp_info_t *th = __kmp_threads[target_gtid];
465 int status;
466
467 #ifdef KMP_DEBUG
468 int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1;
469 #endif
470
471 KF_TRACE(30, ("__kmp_resume_template: T#%d wants to wakeup T#%d enter\n",
472 gtid, target_gtid));
473
474 __kmp_suspend_initialize_thread(th);
475 __kmp_lock_suspend_mx(th);
476
477 if (!flag) { // coming from __kmp_null_resume_wrapper
478 flag = (C *)th->th.th_sleep_loc;
479 }
480
481 // First, check if the flag is null or its type has changed. If so, someone
482 // else woke it up.
483 if (!flag || flag->get_type() != flag->get_ptr_type()) { // get_ptr_type
484 // simply shows what
485 // flag was cast to
486 KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already "
487 "awake: flag's loc(%p)\n",
488 gtid, target_gtid, NULL));
489 __kmp_unlock_suspend_mx(th);
490 return;
491 } else {
492 typename C::flag_t old_spin = flag->unset_sleeping();
493 if (!flag->is_sleeping_val(old_spin)) {
494 KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already "
495 "awake: flag's loc(%p): %u => %u\n",
496 gtid, target_gtid, flag->get(), old_spin, *(flag->get())));
497 __kmp_unlock_suspend_mx(th);
498 return;
499 }
500 }
501 TCW_PTR(th->th.th_sleep_loc, NULL);
502 KF_TRACE(5, ("__kmp_resume_template: T#%d about to wakeup T#%d, reset sleep "
503 "bit for flag's loc(%p)\n",
504 gtid, target_gtid, flag->get()));
505
506 __kmp_win32_cond_signal(&th->th.th_suspend_cv);
507 __kmp_unlock_suspend_mx(th);
508
509 KF_TRACE(30, ("__kmp_resume_template: T#%d exiting after signaling wake up"
510 " for T#%d\n",
511 gtid, target_gtid));
512 }
513
514 template <bool C, bool S>
__kmp_resume_32(int target_gtid,kmp_flag_32<C,S> * flag)515 void __kmp_resume_32(int target_gtid, kmp_flag_32<C, S> *flag) {
516 __kmp_resume_template(target_gtid, flag);
517 }
518 template <bool C, bool S>
__kmp_resume_64(int target_gtid,kmp_flag_64<C,S> * flag)519 void __kmp_resume_64(int target_gtid, kmp_flag_64<C, S> *flag) {
520 __kmp_resume_template(target_gtid, flag);
521 }
__kmp_resume_oncore(int target_gtid,kmp_flag_oncore * flag)522 void __kmp_resume_oncore(int target_gtid, kmp_flag_oncore *flag) {
523 __kmp_resume_template(target_gtid, flag);
524 }
525
526 template void __kmp_resume_32<false, true>(int, kmp_flag_32<false, true> *);
527 template void __kmp_resume_64<false, true>(int, kmp_flag_64<false, true> *);
528
__kmp_yield()529 void __kmp_yield() { Sleep(0); }
530
__kmp_gtid_set_specific(int gtid)531 void __kmp_gtid_set_specific(int gtid) {
532 if (__kmp_init_gtid) {
533 KA_TRACE(50, ("__kmp_gtid_set_specific: T#%d key:%d\n", gtid,
534 __kmp_gtid_threadprivate_key));
535 if (!TlsSetValue(__kmp_gtid_threadprivate_key, (LPVOID)(gtid + 1)))
536 KMP_FATAL(TLSSetValueFailed);
537 } else {
538 KA_TRACE(50, ("__kmp_gtid_set_specific: runtime shutdown, returning\n"));
539 }
540 }
541
__kmp_gtid_get_specific()542 int __kmp_gtid_get_specific() {
543 int gtid;
544 if (!__kmp_init_gtid) {
545 KA_TRACE(50, ("__kmp_gtid_get_specific: runtime shutdown, returning "
546 "KMP_GTID_SHUTDOWN\n"));
547 return KMP_GTID_SHUTDOWN;
548 }
549 gtid = (int)(kmp_intptr_t)TlsGetValue(__kmp_gtid_threadprivate_key);
550 if (gtid == 0) {
551 gtid = KMP_GTID_DNE;
552 } else {
553 gtid--;
554 }
555 KA_TRACE(50, ("__kmp_gtid_get_specific: key:%d gtid:%d\n",
556 __kmp_gtid_threadprivate_key, gtid));
557 return gtid;
558 }
559
__kmp_affinity_bind_thread(int proc)560 void __kmp_affinity_bind_thread(int proc) {
561 if (__kmp_num_proc_groups > 1) {
562 // Form the GROUP_AFFINITY struct directly, rather than filling
563 // out a bit vector and calling __kmp_set_system_affinity().
564 GROUP_AFFINITY ga;
565 KMP_DEBUG_ASSERT((proc >= 0) && (proc < (__kmp_num_proc_groups * CHAR_BIT *
566 sizeof(DWORD_PTR))));
567 ga.Group = proc / (CHAR_BIT * sizeof(DWORD_PTR));
568 ga.Mask = (unsigned long long)1 << (proc % (CHAR_BIT * sizeof(DWORD_PTR)));
569 ga.Reserved[0] = ga.Reserved[1] = ga.Reserved[2] = 0;
570
571 KMP_DEBUG_ASSERT(__kmp_SetThreadGroupAffinity != NULL);
572 if (__kmp_SetThreadGroupAffinity(GetCurrentThread(), &ga, NULL) == 0) {
573 DWORD error = GetLastError();
574 if (__kmp_affinity_verbose) { // AC: continue silently if not verbose
575 kmp_msg_t err_code = KMP_ERR(error);
576 __kmp_msg(kmp_ms_warning, KMP_MSG(CantSetThreadAffMask), err_code,
577 __kmp_msg_null);
578 if (__kmp_generate_warnings == kmp_warnings_off) {
579 __kmp_str_free(&err_code.str);
580 }
581 }
582 }
583 } else {
584 kmp_affin_mask_t *mask;
585 KMP_CPU_ALLOC_ON_STACK(mask);
586 KMP_CPU_ZERO(mask);
587 KMP_CPU_SET(proc, mask);
588 __kmp_set_system_affinity(mask, TRUE);
589 KMP_CPU_FREE_FROM_STACK(mask);
590 }
591 }
592
__kmp_affinity_determine_capable(const char * env_var)593 void __kmp_affinity_determine_capable(const char *env_var) {
594 // All versions of Windows* OS (since Win '95) support SetThreadAffinityMask().
595
596 #if KMP_GROUP_AFFINITY
597 KMP_AFFINITY_ENABLE(__kmp_num_proc_groups * sizeof(DWORD_PTR));
598 #else
599 KMP_AFFINITY_ENABLE(sizeof(DWORD_PTR));
600 #endif
601
602 KA_TRACE(10, ("__kmp_affinity_determine_capable: "
603 "Windows* OS affinity interface functional (mask size = "
604 "%" KMP_SIZE_T_SPEC ").\n",
605 __kmp_affin_mask_size));
606 }
607
__kmp_read_cpu_time(void)608 double __kmp_read_cpu_time(void) {
609 FILETIME CreationTime, ExitTime, KernelTime, UserTime;
610 int status;
611 double cpu_time;
612
613 cpu_time = 0;
614
615 status = GetProcessTimes(GetCurrentProcess(), &CreationTime, &ExitTime,
616 &KernelTime, &UserTime);
617
618 if (status) {
619 double sec = 0;
620
621 sec += KernelTime.dwHighDateTime;
622 sec += UserTime.dwHighDateTime;
623
624 /* Shift left by 32 bits */
625 sec *= (double)(1 << 16) * (double)(1 << 16);
626
627 sec += KernelTime.dwLowDateTime;
628 sec += UserTime.dwLowDateTime;
629
630 cpu_time += (sec * 100.0) / KMP_NSEC_PER_SEC;
631 }
632
633 return cpu_time;
634 }
635
__kmp_read_system_info(struct kmp_sys_info * info)636 int __kmp_read_system_info(struct kmp_sys_info *info) {
637 info->maxrss = 0; /* the maximum resident set size utilized (in kilobytes) */
638 info->minflt = 0; /* the number of page faults serviced without any I/O */
639 info->majflt = 0; /* the number of page faults serviced that required I/O */
640 info->nswap = 0; // the number of times a process was "swapped" out of memory
641 info->inblock = 0; // the number of times the file system had to perform input
642 info->oublock = 0; // number of times the file system had to perform output
643 info->nvcsw = 0; /* the number of times a context switch was voluntarily */
644 info->nivcsw = 0; /* the number of times a context switch was forced */
645
646 return 1;
647 }
648
__kmp_runtime_initialize(void)649 void __kmp_runtime_initialize(void) {
650 SYSTEM_INFO info;
651 kmp_str_buf_t path;
652 UINT path_size;
653
654 if (__kmp_init_runtime) {
655 return;
656 }
657
658 #if KMP_DYNAMIC_LIB
659 /* Pin dynamic library for the lifetime of application */
660 {
661 // First, turn off error message boxes
662 UINT err_mode = SetErrorMode(SEM_FAILCRITICALERRORS);
663 HMODULE h;
664 BOOL ret = GetModuleHandleEx(GET_MODULE_HANDLE_EX_FLAG_FROM_ADDRESS |
665 GET_MODULE_HANDLE_EX_FLAG_PIN,
666 (LPCTSTR)&__kmp_serial_initialize, &h);
667 KMP_DEBUG_ASSERT2(h && ret, "OpenMP RTL cannot find itself loaded");
668 SetErrorMode(err_mode); // Restore error mode
669 KA_TRACE(10, ("__kmp_runtime_initialize: dynamic library pinned\n"));
670 }
671 #endif
672
673 InitializeCriticalSection(&__kmp_win32_section);
674 #if USE_ITT_BUILD
675 __kmp_itt_system_object_created(&__kmp_win32_section, "Critical Section");
676 #endif /* USE_ITT_BUILD */
677 __kmp_initialize_system_tick();
678
679 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64)
680 if (!__kmp_cpuinfo.initialized) {
681 __kmp_query_cpuid(&__kmp_cpuinfo);
682 }
683 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
684
685 /* Set up minimum number of threads to switch to TLS gtid */
686 #if KMP_OS_WINDOWS && !KMP_DYNAMIC_LIB
687 // Windows* OS, static library.
688 /* New thread may use stack space previously used by another thread,
689 currently terminated. On Windows* OS, in case of static linking, we do not
690 know the moment of thread termination, and our structures (__kmp_threads
691 and __kmp_root arrays) are still keep info about dead threads. This leads
692 to problem in __kmp_get_global_thread_id() function: it wrongly finds gtid
693 (by searching through stack addresses of all known threads) for
694 unregistered foreign tread.
695
696 Setting __kmp_tls_gtid_min to 0 workarounds this problem:
697 __kmp_get_global_thread_id() does not search through stacks, but get gtid
698 from TLS immediately.
699 --ln
700 */
701 __kmp_tls_gtid_min = 0;
702 #else
703 __kmp_tls_gtid_min = KMP_TLS_GTID_MIN;
704 #endif
705
706 /* for the static library */
707 if (!__kmp_gtid_threadprivate_key) {
708 __kmp_gtid_threadprivate_key = TlsAlloc();
709 if (__kmp_gtid_threadprivate_key == TLS_OUT_OF_INDEXES) {
710 KMP_FATAL(TLSOutOfIndexes);
711 }
712 }
713
714 // Load ntdll.dll.
715 /* Simple GetModuleHandle( "ntdll.dl" ) is not suitable due to security issue
716 (see http://www.microsoft.com/technet/security/advisory/2269637.mspx). We
717 have to specify full path to the library. */
718 __kmp_str_buf_init(&path);
719 path_size = GetSystemDirectory(path.str, path.size);
720 KMP_DEBUG_ASSERT(path_size > 0);
721 if (path_size >= path.size) {
722 // Buffer is too short. Expand the buffer and try again.
723 __kmp_str_buf_reserve(&path, path_size);
724 path_size = GetSystemDirectory(path.str, path.size);
725 KMP_DEBUG_ASSERT(path_size > 0);
726 }
727 if (path_size > 0 && path_size < path.size) {
728 // Now we have system directory name in the buffer.
729 // Append backslash and name of dll to form full path,
730 path.used = path_size;
731 __kmp_str_buf_print(&path, "\\%s", "ntdll.dll");
732
733 // Now load ntdll using full path.
734 ntdll = GetModuleHandle(path.str);
735 }
736
737 KMP_DEBUG_ASSERT(ntdll != NULL);
738 if (ntdll != NULL) {
739 NtQuerySystemInformation = (NtQuerySystemInformation_t)GetProcAddress(
740 ntdll, "NtQuerySystemInformation");
741 }
742 KMP_DEBUG_ASSERT(NtQuerySystemInformation != NULL);
743
744 #if KMP_GROUP_AFFINITY
745 // Load kernel32.dll.
746 // Same caveat - must use full system path name.
747 if (path_size > 0 && path_size < path.size) {
748 // Truncate the buffer back to just the system path length,
749 // discarding "\\ntdll.dll", and replacing it with "kernel32.dll".
750 path.used = path_size;
751 __kmp_str_buf_print(&path, "\\%s", "kernel32.dll");
752
753 // Load kernel32.dll using full path.
754 kernel32 = GetModuleHandle(path.str);
755 KA_TRACE(10, ("__kmp_runtime_initialize: kernel32.dll = %s\n", path.str));
756
757 // Load the function pointers to kernel32.dll routines
758 // that may or may not exist on this system.
759 if (kernel32 != NULL) {
760 __kmp_GetActiveProcessorCount =
761 (kmp_GetActiveProcessorCount_t)GetProcAddress(
762 kernel32, "GetActiveProcessorCount");
763 __kmp_GetActiveProcessorGroupCount =
764 (kmp_GetActiveProcessorGroupCount_t)GetProcAddress(
765 kernel32, "GetActiveProcessorGroupCount");
766 __kmp_GetThreadGroupAffinity =
767 (kmp_GetThreadGroupAffinity_t)GetProcAddress(
768 kernel32, "GetThreadGroupAffinity");
769 __kmp_SetThreadGroupAffinity =
770 (kmp_SetThreadGroupAffinity_t)GetProcAddress(
771 kernel32, "SetThreadGroupAffinity");
772
773 KA_TRACE(10, ("__kmp_runtime_initialize: __kmp_GetActiveProcessorCount"
774 " = %p\n",
775 __kmp_GetActiveProcessorCount));
776 KA_TRACE(10, ("__kmp_runtime_initialize: "
777 "__kmp_GetActiveProcessorGroupCount = %p\n",
778 __kmp_GetActiveProcessorGroupCount));
779 KA_TRACE(10, ("__kmp_runtime_initialize:__kmp_GetThreadGroupAffinity"
780 " = %p\n",
781 __kmp_GetThreadGroupAffinity));
782 KA_TRACE(10, ("__kmp_runtime_initialize: __kmp_SetThreadGroupAffinity"
783 " = %p\n",
784 __kmp_SetThreadGroupAffinity));
785 KA_TRACE(10, ("__kmp_runtime_initialize: sizeof(kmp_affin_mask_t) = %d\n",
786 sizeof(kmp_affin_mask_t)));
787
788 // See if group affinity is supported on this system.
789 // If so, calculate the #groups and #procs.
790 //
791 // Group affinity was introduced with Windows* 7 OS and
792 // Windows* Server 2008 R2 OS.
793 if ((__kmp_GetActiveProcessorCount != NULL) &&
794 (__kmp_GetActiveProcessorGroupCount != NULL) &&
795 (__kmp_GetThreadGroupAffinity != NULL) &&
796 (__kmp_SetThreadGroupAffinity != NULL) &&
797 ((__kmp_num_proc_groups = __kmp_GetActiveProcessorGroupCount()) >
798 1)) {
799 // Calculate the total number of active OS procs.
800 int i;
801
802 KA_TRACE(10, ("__kmp_runtime_initialize: %d processor groups"
803 " detected\n",
804 __kmp_num_proc_groups));
805
806 __kmp_xproc = 0;
807
808 for (i = 0; i < __kmp_num_proc_groups; i++) {
809 DWORD size = __kmp_GetActiveProcessorCount(i);
810 __kmp_xproc += size;
811 KA_TRACE(10, ("__kmp_runtime_initialize: proc group %d size = %d\n",
812 i, size));
813 }
814 } else {
815 KA_TRACE(10, ("__kmp_runtime_initialize: %d processor groups"
816 " detected\n",
817 __kmp_num_proc_groups));
818 }
819 }
820 }
821 if (__kmp_num_proc_groups <= 1) {
822 GetSystemInfo(&info);
823 __kmp_xproc = info.dwNumberOfProcessors;
824 }
825 #else
826 GetSystemInfo(&info);
827 __kmp_xproc = info.dwNumberOfProcessors;
828 #endif /* KMP_GROUP_AFFINITY */
829
830 // If the OS said there were 0 procs, take a guess and use a value of 2.
831 // This is done for Linux* OS, also. Do we need error / warning?
832 if (__kmp_xproc <= 0) {
833 __kmp_xproc = 2;
834 }
835
836 KA_TRACE(5,
837 ("__kmp_runtime_initialize: total processors = %d\n", __kmp_xproc));
838
839 __kmp_str_buf_free(&path);
840
841 #if USE_ITT_BUILD
842 __kmp_itt_initialize();
843 #endif /* USE_ITT_BUILD */
844
845 __kmp_init_runtime = TRUE;
846 } // __kmp_runtime_initialize
847
__kmp_runtime_destroy(void)848 void __kmp_runtime_destroy(void) {
849 if (!__kmp_init_runtime) {
850 return;
851 }
852
853 #if USE_ITT_BUILD
854 __kmp_itt_destroy();
855 #endif /* USE_ITT_BUILD */
856
857 /* we can't DeleteCriticalsection( & __kmp_win32_section ); */
858 /* due to the KX_TRACE() commands */
859 KA_TRACE(40, ("__kmp_runtime_destroy\n"));
860
861 if (__kmp_gtid_threadprivate_key) {
862 TlsFree(__kmp_gtid_threadprivate_key);
863 __kmp_gtid_threadprivate_key = 0;
864 }
865
866 __kmp_affinity_uninitialize();
867 DeleteCriticalSection(&__kmp_win32_section);
868
869 ntdll = NULL;
870 NtQuerySystemInformation = NULL;
871
872 #if KMP_ARCH_X86_64
873 kernel32 = NULL;
874 __kmp_GetActiveProcessorCount = NULL;
875 __kmp_GetActiveProcessorGroupCount = NULL;
876 __kmp_GetThreadGroupAffinity = NULL;
877 __kmp_SetThreadGroupAffinity = NULL;
878 #endif // KMP_ARCH_X86_64
879
880 __kmp_init_runtime = FALSE;
881 }
882
__kmp_terminate_thread(int gtid)883 void __kmp_terminate_thread(int gtid) {
884 kmp_info_t *th = __kmp_threads[gtid];
885
886 if (!th)
887 return;
888
889 KA_TRACE(10, ("__kmp_terminate_thread: kill (%d)\n", gtid));
890
891 if (TerminateThread(th->th.th_info.ds.ds_thread, (DWORD)-1) == FALSE) {
892 /* It's OK, the thread may have exited already */
893 }
894 __kmp_free_handle(th->th.th_info.ds.ds_thread);
895 }
896
__kmp_clear_system_time(void)897 void __kmp_clear_system_time(void) {
898 BOOL status;
899 LARGE_INTEGER time;
900 status = QueryPerformanceCounter(&time);
901 __kmp_win32_time = (kmp_int64)time.QuadPart;
902 }
903
__kmp_initialize_system_tick(void)904 void __kmp_initialize_system_tick(void) {
905 {
906 BOOL status;
907 LARGE_INTEGER freq;
908
909 status = QueryPerformanceFrequency(&freq);
910 if (!status) {
911 DWORD error = GetLastError();
912 __kmp_fatal(KMP_MSG(FunctionError, "QueryPerformanceFrequency()"),
913 KMP_ERR(error), __kmp_msg_null);
914
915 } else {
916 __kmp_win32_tick = ((double)1.0) / (double)freq.QuadPart;
917 }
918 }
919 }
920
921 /* Calculate the elapsed wall clock time for the user */
922
__kmp_elapsed(double * t)923 void __kmp_elapsed(double *t) {
924 BOOL status;
925 LARGE_INTEGER now;
926 status = QueryPerformanceCounter(&now);
927 *t = ((double)now.QuadPart) * __kmp_win32_tick;
928 }
929
930 /* Calculate the elapsed wall clock tick for the user */
931
__kmp_elapsed_tick(double * t)932 void __kmp_elapsed_tick(double *t) { *t = __kmp_win32_tick; }
933
__kmp_read_system_time(double * delta)934 void __kmp_read_system_time(double *delta) {
935 if (delta != NULL) {
936 BOOL status;
937 LARGE_INTEGER now;
938
939 status = QueryPerformanceCounter(&now);
940
941 *delta = ((double)(((kmp_int64)now.QuadPart) - __kmp_win32_time)) *
942 __kmp_win32_tick;
943 }
944 }
945
946 /* Return the current time stamp in nsec */
__kmp_now_nsec()947 kmp_uint64 __kmp_now_nsec() {
948 LARGE_INTEGER now;
949 QueryPerformanceCounter(&now);
950 return 1e9 * __kmp_win32_tick * now.QuadPart;
951 }
952
953 extern "C"
__kmp_launch_worker(void * arg)954 void *__stdcall __kmp_launch_worker(void *arg) {
955 volatile void *stack_data;
956 void *exit_val;
957 void *padding = 0;
958 kmp_info_t *this_thr = (kmp_info_t *)arg;
959 int gtid;
960
961 gtid = this_thr->th.th_info.ds.ds_gtid;
962 __kmp_gtid_set_specific(gtid);
963 #ifdef KMP_TDATA_GTID
964 #error "This define causes problems with LoadLibrary() + declspec(thread) " \
965 "on Windows* OS. See CQ50564, tests kmp_load_library*.c and this MSDN " \
966 "reference: http://support.microsoft.com/kb/118816"
967 //__kmp_gtid = gtid;
968 #endif
969
970 #if USE_ITT_BUILD
971 __kmp_itt_thread_name(gtid);
972 #endif /* USE_ITT_BUILD */
973
974 __kmp_affinity_set_init_mask(gtid, FALSE);
975
976 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
977 // Set FP control regs to be a copy of the parallel initialization thread's.
978 __kmp_clear_x87_fpu_status_word();
979 __kmp_load_x87_fpu_control_word(&__kmp_init_x87_fpu_control_word);
980 __kmp_load_mxcsr(&__kmp_init_mxcsr);
981 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
982
983 if (__kmp_stkoffset > 0 && gtid > 0) {
984 padding = KMP_ALLOCA(gtid * __kmp_stkoffset);
985 }
986
987 KMP_FSYNC_RELEASING(&this_thr->th.th_info.ds.ds_alive);
988 this_thr->th.th_info.ds.ds_thread_id = GetCurrentThreadId();
989 TCW_4(this_thr->th.th_info.ds.ds_alive, TRUE);
990
991 if (TCR_4(__kmp_gtid_mode) <
992 2) { // check stack only if it is used to get gtid
993 TCW_PTR(this_thr->th.th_info.ds.ds_stackbase, &stack_data);
994 KMP_ASSERT(this_thr->th.th_info.ds.ds_stackgrow == FALSE);
995 __kmp_check_stack_overlap(this_thr);
996 }
997 KMP_MB();
998 exit_val = __kmp_launch_thread(this_thr);
999 KMP_FSYNC_RELEASING(&this_thr->th.th_info.ds.ds_alive);
1000 TCW_4(this_thr->th.th_info.ds.ds_alive, FALSE);
1001 KMP_MB();
1002 return exit_val;
1003 }
1004
1005 #if KMP_USE_MONITOR
1006 /* The monitor thread controls all of the threads in the complex */
1007
__kmp_launch_monitor(void * arg)1008 void *__stdcall __kmp_launch_monitor(void *arg) {
1009 DWORD wait_status;
1010 kmp_thread_t monitor;
1011 int status;
1012 int interval;
1013 kmp_info_t *this_thr = (kmp_info_t *)arg;
1014
1015 KMP_DEBUG_ASSERT(__kmp_init_monitor);
1016 TCW_4(__kmp_init_monitor, 2); // AC: Signal library that monitor has started
1017 // TODO: hide "2" in enum (like {true,false,started})
1018 this_thr->th.th_info.ds.ds_thread_id = GetCurrentThreadId();
1019 TCW_4(this_thr->th.th_info.ds.ds_alive, TRUE);
1020
1021 KMP_MB(); /* Flush all pending memory write invalidates. */
1022 KA_TRACE(10, ("__kmp_launch_monitor: launched\n"));
1023
1024 monitor = GetCurrentThread();
1025
1026 /* set thread priority */
1027 status = SetThreadPriority(monitor, THREAD_PRIORITY_HIGHEST);
1028 if (!status) {
1029 DWORD error = GetLastError();
1030 __kmp_fatal(KMP_MSG(CantSetThreadPriority), KMP_ERR(error), __kmp_msg_null);
1031 }
1032
1033 /* register us as monitor */
1034 __kmp_gtid_set_specific(KMP_GTID_MONITOR);
1035 #ifdef KMP_TDATA_GTID
1036 #error "This define causes problems with LoadLibrary() + declspec(thread) " \
1037 "on Windows* OS. See CQ50564, tests kmp_load_library*.c and this MSDN " \
1038 "reference: http://support.microsoft.com/kb/118816"
1039 //__kmp_gtid = KMP_GTID_MONITOR;
1040 #endif
1041
1042 #if USE_ITT_BUILD
1043 __kmp_itt_thread_ignore(); // Instruct Intel(R) Threading Tools to ignore
1044 // monitor thread.
1045 #endif /* USE_ITT_BUILD */
1046
1047 KMP_MB(); /* Flush all pending memory write invalidates. */
1048
1049 interval = (1000 / __kmp_monitor_wakeups); /* in milliseconds */
1050
1051 while (!TCR_4(__kmp_global.g.g_done)) {
1052 /* This thread monitors the state of the system */
1053
1054 KA_TRACE(15, ("__kmp_launch_monitor: update\n"));
1055
1056 wait_status = WaitForSingleObject(__kmp_monitor_ev, interval);
1057
1058 if (wait_status == WAIT_TIMEOUT) {
1059 TCW_4(__kmp_global.g.g_time.dt.t_value,
1060 TCR_4(__kmp_global.g.g_time.dt.t_value) + 1);
1061 }
1062
1063 KMP_MB(); /* Flush all pending memory write invalidates. */
1064 }
1065
1066 KA_TRACE(10, ("__kmp_launch_monitor: finished\n"));
1067
1068 status = SetThreadPriority(monitor, THREAD_PRIORITY_NORMAL);
1069 if (!status) {
1070 DWORD error = GetLastError();
1071 __kmp_fatal(KMP_MSG(CantSetThreadPriority), KMP_ERR(error), __kmp_msg_null);
1072 }
1073
1074 if (__kmp_global.g.g_abort != 0) {
1075 /* now we need to terminate the worker threads */
1076 /* the value of t_abort is the signal we caught */
1077 int gtid;
1078
1079 KA_TRACE(10, ("__kmp_launch_monitor: terminate sig=%d\n",
1080 (__kmp_global.g.g_abort)));
1081
1082 /* terminate the OpenMP worker threads */
1083 /* TODO this is not valid for sibling threads!!
1084 * the uber master might not be 0 anymore.. */
1085 for (gtid = 1; gtid < __kmp_threads_capacity; ++gtid)
1086 __kmp_terminate_thread(gtid);
1087
1088 __kmp_cleanup();
1089
1090 Sleep(0);
1091
1092 KA_TRACE(10,
1093 ("__kmp_launch_monitor: raise sig=%d\n", __kmp_global.g.g_abort));
1094
1095 if (__kmp_global.g.g_abort > 0) {
1096 raise(__kmp_global.g.g_abort);
1097 }
1098 }
1099
1100 TCW_4(this_thr->th.th_info.ds.ds_alive, FALSE);
1101
1102 KMP_MB();
1103 return arg;
1104 }
1105 #endif
1106
__kmp_create_worker(int gtid,kmp_info_t * th,size_t stack_size)1107 void __kmp_create_worker(int gtid, kmp_info_t *th, size_t stack_size) {
1108 kmp_thread_t handle;
1109 DWORD idThread;
1110
1111 KA_TRACE(10, ("__kmp_create_worker: try to create thread (%d)\n", gtid));
1112
1113 th->th.th_info.ds.ds_gtid = gtid;
1114
1115 if (KMP_UBER_GTID(gtid)) {
1116 int stack_data;
1117
1118 /* TODO: GetCurrentThread() returns a pseudo-handle that is unsuitable for
1119 other threads to use. Is it appropriate to just use GetCurrentThread?
1120 When should we close this handle? When unregistering the root? */
1121 {
1122 BOOL rc;
1123 rc = DuplicateHandle(GetCurrentProcess(), GetCurrentThread(),
1124 GetCurrentProcess(), &th->th.th_info.ds.ds_thread, 0,
1125 FALSE, DUPLICATE_SAME_ACCESS);
1126 KMP_ASSERT(rc);
1127 KA_TRACE(10, (" __kmp_create_worker: ROOT Handle duplicated, th = %p, "
1128 "handle = %" KMP_UINTPTR_SPEC "\n",
1129 (LPVOID)th, th->th.th_info.ds.ds_thread));
1130 th->th.th_info.ds.ds_thread_id = GetCurrentThreadId();
1131 }
1132 if (TCR_4(__kmp_gtid_mode) < 2) { // check stack only if used to get gtid
1133 /* we will dynamically update the stack range if gtid_mode == 1 */
1134 TCW_PTR(th->th.th_info.ds.ds_stackbase, &stack_data);
1135 TCW_PTR(th->th.th_info.ds.ds_stacksize, 0);
1136 TCW_4(th->th.th_info.ds.ds_stackgrow, TRUE);
1137 __kmp_check_stack_overlap(th);
1138 }
1139 } else {
1140 KMP_MB(); /* Flush all pending memory write invalidates. */
1141
1142 /* Set stack size for this thread now. */
1143 KA_TRACE(10,
1144 ("__kmp_create_worker: stack_size = %" KMP_SIZE_T_SPEC " bytes\n",
1145 stack_size));
1146
1147 stack_size += gtid * __kmp_stkoffset;
1148
1149 TCW_PTR(th->th.th_info.ds.ds_stacksize, stack_size);
1150 TCW_4(th->th.th_info.ds.ds_stackgrow, FALSE);
1151
1152 KA_TRACE(10,
1153 ("__kmp_create_worker: (before) stack_size = %" KMP_SIZE_T_SPEC
1154 " bytes, &__kmp_launch_worker = %p, th = %p, &idThread = %p\n",
1155 (SIZE_T)stack_size, (LPTHREAD_START_ROUTINE)&__kmp_launch_worker,
1156 (LPVOID)th, &idThread));
1157
1158 handle = CreateThread(
1159 NULL, (SIZE_T)stack_size, (LPTHREAD_START_ROUTINE)__kmp_launch_worker,
1160 (LPVOID)th, STACK_SIZE_PARAM_IS_A_RESERVATION, &idThread);
1161
1162 KA_TRACE(10,
1163 ("__kmp_create_worker: (after) stack_size = %" KMP_SIZE_T_SPEC
1164 " bytes, &__kmp_launch_worker = %p, th = %p, "
1165 "idThread = %u, handle = %" KMP_UINTPTR_SPEC "\n",
1166 (SIZE_T)stack_size, (LPTHREAD_START_ROUTINE)&__kmp_launch_worker,
1167 (LPVOID)th, idThread, handle));
1168
1169 if (handle == 0) {
1170 DWORD error = GetLastError();
1171 __kmp_fatal(KMP_MSG(CantCreateThread), KMP_ERR(error), __kmp_msg_null);
1172 } else {
1173 th->th.th_info.ds.ds_thread = handle;
1174 }
1175
1176 KMP_MB(); /* Flush all pending memory write invalidates. */
1177 }
1178
1179 KA_TRACE(10, ("__kmp_create_worker: done creating thread (%d)\n", gtid));
1180 }
1181
__kmp_still_running(kmp_info_t * th)1182 int __kmp_still_running(kmp_info_t *th) {
1183 return (WAIT_TIMEOUT == WaitForSingleObject(th->th.th_info.ds.ds_thread, 0));
1184 }
1185
1186 #if KMP_USE_MONITOR
__kmp_create_monitor(kmp_info_t * th)1187 void __kmp_create_monitor(kmp_info_t *th) {
1188 kmp_thread_t handle;
1189 DWORD idThread;
1190 int ideal, new_ideal;
1191
1192 if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME) {
1193 // We don't need monitor thread in case of MAX_BLOCKTIME
1194 KA_TRACE(10, ("__kmp_create_monitor: skipping monitor thread because of "
1195 "MAX blocktime\n"));
1196 th->th.th_info.ds.ds_tid = 0; // this makes reap_monitor no-op
1197 th->th.th_info.ds.ds_gtid = 0;
1198 TCW_4(__kmp_init_monitor, 2); // Signal to stop waiting for monitor creation
1199 return;
1200 }
1201 KA_TRACE(10, ("__kmp_create_monitor: try to create monitor\n"));
1202
1203 KMP_MB(); /* Flush all pending memory write invalidates. */
1204
1205 __kmp_monitor_ev = CreateEvent(NULL, TRUE, FALSE, NULL);
1206 if (__kmp_monitor_ev == NULL) {
1207 DWORD error = GetLastError();
1208 __kmp_fatal(KMP_MSG(CantCreateEvent), KMP_ERR(error), __kmp_msg_null);
1209 }
1210 #if USE_ITT_BUILD
1211 __kmp_itt_system_object_created(__kmp_monitor_ev, "Event");
1212 #endif /* USE_ITT_BUILD */
1213
1214 th->th.th_info.ds.ds_tid = KMP_GTID_MONITOR;
1215 th->th.th_info.ds.ds_gtid = KMP_GTID_MONITOR;
1216
1217 // FIXME - on Windows* OS, if __kmp_monitor_stksize = 0, figure out how
1218 // to automatically expand stacksize based on CreateThread error code.
1219 if (__kmp_monitor_stksize == 0) {
1220 __kmp_monitor_stksize = KMP_DEFAULT_MONITOR_STKSIZE;
1221 }
1222 if (__kmp_monitor_stksize < __kmp_sys_min_stksize) {
1223 __kmp_monitor_stksize = __kmp_sys_min_stksize;
1224 }
1225
1226 KA_TRACE(10, ("__kmp_create_monitor: requested stacksize = %d bytes\n",
1227 (int)__kmp_monitor_stksize));
1228
1229 TCW_4(__kmp_global.g.g_time.dt.t_value, 0);
1230
1231 handle =
1232 CreateThread(NULL, (SIZE_T)__kmp_monitor_stksize,
1233 (LPTHREAD_START_ROUTINE)__kmp_launch_monitor, (LPVOID)th,
1234 STACK_SIZE_PARAM_IS_A_RESERVATION, &idThread);
1235 if (handle == 0) {
1236 DWORD error = GetLastError();
1237 __kmp_fatal(KMP_MSG(CantCreateThread), KMP_ERR(error), __kmp_msg_null);
1238 } else
1239 th->th.th_info.ds.ds_thread = handle;
1240
1241 KMP_MB(); /* Flush all pending memory write invalidates. */
1242
1243 KA_TRACE(10, ("__kmp_create_monitor: monitor created %p\n",
1244 (void *)th->th.th_info.ds.ds_thread));
1245 }
1246 #endif
1247
1248 /* Check to see if thread is still alive.
1249 NOTE: The ExitProcess(code) system call causes all threads to Terminate
1250 with a exit_val = code. Because of this we can not rely on exit_val having
1251 any particular value. So this routine may return STILL_ALIVE in exit_val
1252 even after the thread is dead. */
1253
__kmp_is_thread_alive(kmp_info_t * th,DWORD * exit_val)1254 int __kmp_is_thread_alive(kmp_info_t *th, DWORD *exit_val) {
1255 DWORD rc;
1256 rc = GetExitCodeThread(th->th.th_info.ds.ds_thread, exit_val);
1257 if (rc == 0) {
1258 DWORD error = GetLastError();
1259 __kmp_fatal(KMP_MSG(FunctionError, "GetExitCodeThread()"), KMP_ERR(error),
1260 __kmp_msg_null);
1261 }
1262 return (*exit_val == STILL_ACTIVE);
1263 }
1264
__kmp_exit_thread(int exit_status)1265 void __kmp_exit_thread(int exit_status) {
1266 ExitThread(exit_status);
1267 } // __kmp_exit_thread
1268
1269 // This is a common part for both __kmp_reap_worker() and __kmp_reap_monitor().
__kmp_reap_common(kmp_info_t * th)1270 static void __kmp_reap_common(kmp_info_t *th) {
1271 DWORD exit_val;
1272
1273 KMP_MB(); /* Flush all pending memory write invalidates. */
1274
1275 KA_TRACE(
1276 10, ("__kmp_reap_common: try to reap (%d)\n", th->th.th_info.ds.ds_gtid));
1277
1278 /* 2006-10-19:
1279 There are two opposite situations:
1280 1. Windows* OS keep thread alive after it resets ds_alive flag and
1281 exits from thread function. (For example, see C70770/Q394281 "unloading of
1282 dll based on OMP is very slow".)
1283 2. Windows* OS may kill thread before it resets ds_alive flag.
1284
1285 Right solution seems to be waiting for *either* thread termination *or*
1286 ds_alive resetting. */
1287 {
1288 // TODO: This code is very similar to KMP_WAIT. Need to generalize
1289 // KMP_WAIT to cover this usage also.
1290 void *obj = NULL;
1291 kmp_uint32 spins;
1292 #if USE_ITT_BUILD
1293 KMP_FSYNC_SPIN_INIT(obj, (void *)&th->th.th_info.ds.ds_alive);
1294 #endif /* USE_ITT_BUILD */
1295 KMP_INIT_YIELD(spins);
1296 do {
1297 #if USE_ITT_BUILD
1298 KMP_FSYNC_SPIN_PREPARE(obj);
1299 #endif /* USE_ITT_BUILD */
1300 __kmp_is_thread_alive(th, &exit_val);
1301 KMP_YIELD_OVERSUB_ELSE_SPIN(spins);
1302 } while (exit_val == STILL_ACTIVE && TCR_4(th->th.th_info.ds.ds_alive));
1303 #if USE_ITT_BUILD
1304 if (exit_val == STILL_ACTIVE) {
1305 KMP_FSYNC_CANCEL(obj);
1306 } else {
1307 KMP_FSYNC_SPIN_ACQUIRED(obj);
1308 }
1309 #endif /* USE_ITT_BUILD */
1310 }
1311
1312 __kmp_free_handle(th->th.th_info.ds.ds_thread);
1313
1314 /* NOTE: The ExitProcess(code) system call causes all threads to Terminate
1315 with a exit_val = code. Because of this we can not rely on exit_val having
1316 any particular value. */
1317 if (exit_val == STILL_ACTIVE) {
1318 KA_TRACE(1, ("__kmp_reap_common: thread still active.\n"));
1319 } else if ((void *)exit_val != (void *)th) {
1320 KA_TRACE(1, ("__kmp_reap_common: ExitProcess / TerminateThread used?\n"));
1321 }
1322
1323 KA_TRACE(10,
1324 ("__kmp_reap_common: done reaping (%d), handle = %" KMP_UINTPTR_SPEC
1325 "\n",
1326 th->th.th_info.ds.ds_gtid, th->th.th_info.ds.ds_thread));
1327
1328 th->th.th_info.ds.ds_thread = 0;
1329 th->th.th_info.ds.ds_tid = KMP_GTID_DNE;
1330 th->th.th_info.ds.ds_gtid = KMP_GTID_DNE;
1331 th->th.th_info.ds.ds_thread_id = 0;
1332
1333 KMP_MB(); /* Flush all pending memory write invalidates. */
1334 }
1335
1336 #if KMP_USE_MONITOR
__kmp_reap_monitor(kmp_info_t * th)1337 void __kmp_reap_monitor(kmp_info_t *th) {
1338 int status;
1339
1340 KA_TRACE(10, ("__kmp_reap_monitor: try to reap %p\n",
1341 (void *)th->th.th_info.ds.ds_thread));
1342
1343 // If monitor has been created, its tid and gtid should be KMP_GTID_MONITOR.
1344 // If both tid and gtid are 0, it means the monitor did not ever start.
1345 // If both tid and gtid are KMP_GTID_DNE, the monitor has been shut down.
1346 KMP_DEBUG_ASSERT(th->th.th_info.ds.ds_tid == th->th.th_info.ds.ds_gtid);
1347 if (th->th.th_info.ds.ds_gtid != KMP_GTID_MONITOR) {
1348 KA_TRACE(10, ("__kmp_reap_monitor: monitor did not start, returning\n"));
1349 return;
1350 }
1351
1352 KMP_MB(); /* Flush all pending memory write invalidates. */
1353
1354 status = SetEvent(__kmp_monitor_ev);
1355 if (status == FALSE) {
1356 DWORD error = GetLastError();
1357 __kmp_fatal(KMP_MSG(CantSetEvent), KMP_ERR(error), __kmp_msg_null);
1358 }
1359 KA_TRACE(10, ("__kmp_reap_monitor: reaping thread (%d)\n",
1360 th->th.th_info.ds.ds_gtid));
1361 __kmp_reap_common(th);
1362
1363 __kmp_free_handle(__kmp_monitor_ev);
1364
1365 KMP_MB(); /* Flush all pending memory write invalidates. */
1366 }
1367 #endif
1368
__kmp_reap_worker(kmp_info_t * th)1369 void __kmp_reap_worker(kmp_info_t *th) {
1370 KA_TRACE(10, ("__kmp_reap_worker: reaping thread (%d)\n",
1371 th->th.th_info.ds.ds_gtid));
1372 __kmp_reap_common(th);
1373 }
1374
1375 #if KMP_HANDLE_SIGNALS
1376
__kmp_team_handler(int signo)1377 static void __kmp_team_handler(int signo) {
1378 if (__kmp_global.g.g_abort == 0) {
1379 // Stage 1 signal handler, let's shut down all of the threads.
1380 if (__kmp_debug_buf) {
1381 __kmp_dump_debug_buffer();
1382 }
1383 KMP_MB(); // Flush all pending memory write invalidates.
1384 TCW_4(__kmp_global.g.g_abort, signo);
1385 KMP_MB(); // Flush all pending memory write invalidates.
1386 TCW_4(__kmp_global.g.g_done, TRUE);
1387 KMP_MB(); // Flush all pending memory write invalidates.
1388 }
1389 } // __kmp_team_handler
1390
__kmp_signal(int signum,sig_func_t handler)1391 static sig_func_t __kmp_signal(int signum, sig_func_t handler) {
1392 sig_func_t old = signal(signum, handler);
1393 if (old == SIG_ERR) {
1394 int error = errno;
1395 __kmp_fatal(KMP_MSG(FunctionError, "signal"), KMP_ERR(error),
1396 __kmp_msg_null);
1397 }
1398 return old;
1399 }
1400
__kmp_install_one_handler(int sig,sig_func_t handler,int parallel_init)1401 static void __kmp_install_one_handler(int sig, sig_func_t handler,
1402 int parallel_init) {
1403 sig_func_t old;
1404 KMP_MB(); /* Flush all pending memory write invalidates. */
1405 KB_TRACE(60, ("__kmp_install_one_handler: called: sig=%d\n", sig));
1406 if (parallel_init) {
1407 old = __kmp_signal(sig, handler);
1408 // SIG_DFL on Windows* OS in NULL or 0.
1409 if (old == __kmp_sighldrs[sig]) {
1410 __kmp_siginstalled[sig] = 1;
1411 } else { // Restore/keep user's handler if one previously installed.
1412 old = __kmp_signal(sig, old);
1413 }
1414 } else {
1415 // Save initial/system signal handlers to see if user handlers installed.
1416 // 2009-09-23: It is a dead code. On Windows* OS __kmp_install_signals
1417 // called once with parallel_init == TRUE.
1418 old = __kmp_signal(sig, SIG_DFL);
1419 __kmp_sighldrs[sig] = old;
1420 __kmp_signal(sig, old);
1421 }
1422 KMP_MB(); /* Flush all pending memory write invalidates. */
1423 } // __kmp_install_one_handler
1424
__kmp_remove_one_handler(int sig)1425 static void __kmp_remove_one_handler(int sig) {
1426 if (__kmp_siginstalled[sig]) {
1427 sig_func_t old;
1428 KMP_MB(); // Flush all pending memory write invalidates.
1429 KB_TRACE(60, ("__kmp_remove_one_handler: called: sig=%d\n", sig));
1430 old = __kmp_signal(sig, __kmp_sighldrs[sig]);
1431 if (old != __kmp_team_handler) {
1432 KB_TRACE(10, ("__kmp_remove_one_handler: oops, not our handler, "
1433 "restoring: sig=%d\n",
1434 sig));
1435 old = __kmp_signal(sig, old);
1436 }
1437 __kmp_sighldrs[sig] = NULL;
1438 __kmp_siginstalled[sig] = 0;
1439 KMP_MB(); // Flush all pending memory write invalidates.
1440 }
1441 } // __kmp_remove_one_handler
1442
__kmp_install_signals(int parallel_init)1443 void __kmp_install_signals(int parallel_init) {
1444 KB_TRACE(10, ("__kmp_install_signals: called\n"));
1445 if (!__kmp_handle_signals) {
1446 KB_TRACE(10, ("__kmp_install_signals: KMP_HANDLE_SIGNALS is false - "
1447 "handlers not installed\n"));
1448 return;
1449 }
1450 __kmp_install_one_handler(SIGINT, __kmp_team_handler, parallel_init);
1451 __kmp_install_one_handler(SIGILL, __kmp_team_handler, parallel_init);
1452 __kmp_install_one_handler(SIGABRT, __kmp_team_handler, parallel_init);
1453 __kmp_install_one_handler(SIGFPE, __kmp_team_handler, parallel_init);
1454 __kmp_install_one_handler(SIGSEGV, __kmp_team_handler, parallel_init);
1455 __kmp_install_one_handler(SIGTERM, __kmp_team_handler, parallel_init);
1456 } // __kmp_install_signals
1457
__kmp_remove_signals(void)1458 void __kmp_remove_signals(void) {
1459 int sig;
1460 KB_TRACE(10, ("__kmp_remove_signals: called\n"));
1461 for (sig = 1; sig < NSIG; ++sig) {
1462 __kmp_remove_one_handler(sig);
1463 }
1464 } // __kmp_remove_signals
1465
1466 #endif // KMP_HANDLE_SIGNALS
1467
1468 /* Put the thread to sleep for a time period */
__kmp_thread_sleep(int millis)1469 void __kmp_thread_sleep(int millis) {
1470 DWORD status;
1471
1472 status = SleepEx((DWORD)millis, FALSE);
1473 if (status) {
1474 DWORD error = GetLastError();
1475 __kmp_fatal(KMP_MSG(FunctionError, "SleepEx()"), KMP_ERR(error),
1476 __kmp_msg_null);
1477 }
1478 }
1479
1480 // Determine whether the given address is mapped into the current address space.
__kmp_is_address_mapped(void * addr)1481 int __kmp_is_address_mapped(void *addr) {
1482 DWORD status;
1483 MEMORY_BASIC_INFORMATION lpBuffer;
1484 SIZE_T dwLength;
1485
1486 dwLength = sizeof(MEMORY_BASIC_INFORMATION);
1487
1488 status = VirtualQuery(addr, &lpBuffer, dwLength);
1489
1490 return !(((lpBuffer.State == MEM_RESERVE) || (lpBuffer.State == MEM_FREE)) ||
1491 ((lpBuffer.Protect == PAGE_NOACCESS) ||
1492 (lpBuffer.Protect == PAGE_EXECUTE)));
1493 }
1494
__kmp_hardware_timestamp(void)1495 kmp_uint64 __kmp_hardware_timestamp(void) {
1496 kmp_uint64 r = 0;
1497
1498 QueryPerformanceCounter((LARGE_INTEGER *)&r);
1499 return r;
1500 }
1501
1502 /* Free handle and check the error code */
__kmp_free_handle(kmp_thread_t tHandle)1503 void __kmp_free_handle(kmp_thread_t tHandle) {
1504 /* called with parameter type HANDLE also, thus suppose kmp_thread_t defined
1505 * as HANDLE */
1506 BOOL rc;
1507 rc = CloseHandle(tHandle);
1508 if (!rc) {
1509 DWORD error = GetLastError();
1510 __kmp_fatal(KMP_MSG(CantCloseHandle), KMP_ERR(error), __kmp_msg_null);
1511 }
1512 }
1513
__kmp_get_load_balance(int max)1514 int __kmp_get_load_balance(int max) {
1515 static ULONG glb_buff_size = 100 * 1024;
1516
1517 // Saved count of the running threads for the thread balance algorithm
1518 static int glb_running_threads = 0;
1519 static double glb_call_time = 0; /* Thread balance algorithm call time */
1520
1521 int running_threads = 0; // Number of running threads in the system.
1522 NTSTATUS status = 0;
1523 ULONG buff_size = 0;
1524 ULONG info_size = 0;
1525 void *buffer = NULL;
1526 PSYSTEM_PROCESS_INFORMATION spi = NULL;
1527 int first_time = 1;
1528
1529 double call_time = 0.0; // start, finish;
1530
1531 __kmp_elapsed(&call_time);
1532
1533 if (glb_call_time &&
1534 (call_time - glb_call_time < __kmp_load_balance_interval)) {
1535 running_threads = glb_running_threads;
1536 goto finish;
1537 }
1538 glb_call_time = call_time;
1539
1540 // Do not spend time on running algorithm if we have a permanent error.
1541 if (NtQuerySystemInformation == NULL) {
1542 running_threads = -1;
1543 goto finish;
1544 }
1545
1546 if (max <= 0) {
1547 max = INT_MAX;
1548 }
1549
1550 do {
1551
1552 if (first_time) {
1553 buff_size = glb_buff_size;
1554 } else {
1555 buff_size = 2 * buff_size;
1556 }
1557
1558 buffer = KMP_INTERNAL_REALLOC(buffer, buff_size);
1559 if (buffer == NULL) {
1560 running_threads = -1;
1561 goto finish;
1562 }
1563 status = NtQuerySystemInformation(SystemProcessInformation, buffer,
1564 buff_size, &info_size);
1565 first_time = 0;
1566
1567 } while (status == STATUS_INFO_LENGTH_MISMATCH);
1568 glb_buff_size = buff_size;
1569
1570 #define CHECK(cond) \
1571 { \
1572 KMP_DEBUG_ASSERT(cond); \
1573 if (!(cond)) { \
1574 running_threads = -1; \
1575 goto finish; \
1576 } \
1577 }
1578
1579 CHECK(buff_size >= info_size);
1580 spi = PSYSTEM_PROCESS_INFORMATION(buffer);
1581 for (;;) {
1582 ptrdiff_t offset = uintptr_t(spi) - uintptr_t(buffer);
1583 CHECK(0 <= offset &&
1584 offset + sizeof(SYSTEM_PROCESS_INFORMATION) < info_size);
1585 HANDLE pid = spi->ProcessId;
1586 ULONG num = spi->NumberOfThreads;
1587 CHECK(num >= 1);
1588 size_t spi_size =
1589 sizeof(SYSTEM_PROCESS_INFORMATION) + sizeof(SYSTEM_THREAD) * (num - 1);
1590 CHECK(offset + spi_size <
1591 info_size); // Make sure process info record fits the buffer.
1592 if (spi->NextEntryOffset != 0) {
1593 CHECK(spi_size <=
1594 spi->NextEntryOffset); // And do not overlap with the next record.
1595 }
1596 // pid == 0 corresponds to the System Idle Process. It always has running
1597 // threads on all cores. So, we don't consider the running threads of this
1598 // process.
1599 if (pid != 0) {
1600 for (int i = 0; i < num; ++i) {
1601 THREAD_STATE state = spi->Threads[i].State;
1602 // Count threads that have Ready or Running state.
1603 // !!! TODO: Why comment does not match the code???
1604 if (state == StateRunning) {
1605 ++running_threads;
1606 // Stop counting running threads if the number is already greater than
1607 // the number of available cores
1608 if (running_threads >= max) {
1609 goto finish;
1610 }
1611 }
1612 }
1613 }
1614 if (spi->NextEntryOffset == 0) {
1615 break;
1616 }
1617 spi = PSYSTEM_PROCESS_INFORMATION(uintptr_t(spi) + spi->NextEntryOffset);
1618 }
1619
1620 #undef CHECK
1621
1622 finish: // Clean up and exit.
1623
1624 if (buffer != NULL) {
1625 KMP_INTERNAL_FREE(buffer);
1626 }
1627
1628 glb_running_threads = running_threads;
1629
1630 return running_threads;
1631 } //__kmp_get_load_balance()
1632