• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- ScalarEvolutionsTest.cpp - ScalarEvolution unit tests --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/ADT/SmallVector.h"
10 #include "llvm/Analysis/AssumptionCache.h"
11 #include "llvm/Analysis/LoopInfo.h"
12 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
13 #include "llvm/Analysis/ScalarEvolutionNormalization.h"
14 #include "llvm/Analysis/TargetLibraryInfo.h"
15 #include "llvm/AsmParser/Parser.h"
16 #include "llvm/IR/Constants.h"
17 #include "llvm/IR/Dominators.h"
18 #include "llvm/IR/GlobalVariable.h"
19 #include "llvm/IR/IRBuilder.h"
20 #include "llvm/IR/InstIterator.h"
21 #include "llvm/IR/LLVMContext.h"
22 #include "llvm/IR/LegacyPassManager.h"
23 #include "llvm/IR/Module.h"
24 #include "llvm/IR/Verifier.h"
25 #include "llvm/Support/SourceMgr.h"
26 #include "gtest/gtest.h"
27 
28 namespace llvm {
29 
30 // We use this fixture to ensure that we clean up ScalarEvolution before
31 // deleting the PassManager.
32 class ScalarEvolutionsTest : public testing::Test {
33 protected:
34   LLVMContext Context;
35   Module M;
36   TargetLibraryInfoImpl TLII;
37   TargetLibraryInfo TLI;
38 
39   std::unique_ptr<AssumptionCache> AC;
40   std::unique_ptr<DominatorTree> DT;
41   std::unique_ptr<LoopInfo> LI;
42 
ScalarEvolutionsTest()43   ScalarEvolutionsTest() : M("", Context), TLII(), TLI(TLII) {}
44 
buildSE(Function & F)45   ScalarEvolution buildSE(Function &F) {
46     AC.reset(new AssumptionCache(F));
47     DT.reset(new DominatorTree(F));
48     LI.reset(new LoopInfo(*DT));
49     return ScalarEvolution(F, TLI, *AC, *DT, *LI);
50   }
51 
runWithSE(Module & M,StringRef FuncName,function_ref<void (Function & F,LoopInfo & LI,ScalarEvolution & SE)> Test)52   void runWithSE(
53       Module &M, StringRef FuncName,
54       function_ref<void(Function &F, LoopInfo &LI, ScalarEvolution &SE)> Test) {
55     auto *F = M.getFunction(FuncName);
56     ASSERT_NE(F, nullptr) << "Could not find " << FuncName;
57     ScalarEvolution SE = buildSE(*F);
58     Test(*F, *LI, SE);
59   }
60 
computeConstantDifference(ScalarEvolution & SE,const SCEV * LHS,const SCEV * RHS)61   static Optional<APInt> computeConstantDifference(ScalarEvolution &SE,
62                                                    const SCEV *LHS,
63                                                    const SCEV *RHS) {
64     return SE.computeConstantDifference(LHS, RHS);
65   }
66 
matchURem(ScalarEvolution & SE,const SCEV * Expr,const SCEV * & LHS,const SCEV * & RHS)67   static bool matchURem(ScalarEvolution &SE, const SCEV *Expr, const SCEV *&LHS,
68                         const SCEV *&RHS) {
69     return SE.matchURem(Expr, LHS, RHS);
70   }
71 };
72 
TEST_F(ScalarEvolutionsTest,SCEVUnknownRAUW)73 TEST_F(ScalarEvolutionsTest, SCEVUnknownRAUW) {
74   FunctionType *FTy = FunctionType::get(Type::getVoidTy(Context),
75                                               std::vector<Type *>(), false);
76   Function *F = Function::Create(FTy, Function::ExternalLinkage, "f", M);
77   BasicBlock *BB = BasicBlock::Create(Context, "entry", F);
78   ReturnInst::Create(Context, nullptr, BB);
79 
80   Type *Ty = Type::getInt1Ty(Context);
81   Constant *Init = Constant::getNullValue(Ty);
82   Value *V0 = new GlobalVariable(M, Ty, false, GlobalValue::ExternalLinkage, Init, "V0");
83   Value *V1 = new GlobalVariable(M, Ty, false, GlobalValue::ExternalLinkage, Init, "V1");
84   Value *V2 = new GlobalVariable(M, Ty, false, GlobalValue::ExternalLinkage, Init, "V2");
85 
86   ScalarEvolution SE = buildSE(*F);
87 
88   const SCEV *S0 = SE.getSCEV(V0);
89   const SCEV *S1 = SE.getSCEV(V1);
90   const SCEV *S2 = SE.getSCEV(V2);
91 
92   const SCEV *P0 = SE.getAddExpr(S0, S0);
93   const SCEV *P1 = SE.getAddExpr(S1, S1);
94   const SCEV *P2 = SE.getAddExpr(S2, S2);
95 
96   const SCEVMulExpr *M0 = cast<SCEVMulExpr>(P0);
97   const SCEVMulExpr *M1 = cast<SCEVMulExpr>(P1);
98   const SCEVMulExpr *M2 = cast<SCEVMulExpr>(P2);
99 
100   EXPECT_EQ(cast<SCEVConstant>(M0->getOperand(0))->getValue()->getZExtValue(),
101             2u);
102   EXPECT_EQ(cast<SCEVConstant>(M1->getOperand(0))->getValue()->getZExtValue(),
103             2u);
104   EXPECT_EQ(cast<SCEVConstant>(M2->getOperand(0))->getValue()->getZExtValue(),
105             2u);
106 
107   // Before the RAUWs, these are all pointing to separate values.
108   EXPECT_EQ(cast<SCEVUnknown>(M0->getOperand(1))->getValue(), V0);
109   EXPECT_EQ(cast<SCEVUnknown>(M1->getOperand(1))->getValue(), V1);
110   EXPECT_EQ(cast<SCEVUnknown>(M2->getOperand(1))->getValue(), V2);
111 
112   // Do some RAUWs.
113   V2->replaceAllUsesWith(V1);
114   V1->replaceAllUsesWith(V0);
115 
116   // After the RAUWs, these should all be pointing to V0.
117   EXPECT_EQ(cast<SCEVUnknown>(M0->getOperand(1))->getValue(), V0);
118   EXPECT_EQ(cast<SCEVUnknown>(M1->getOperand(1))->getValue(), V0);
119   EXPECT_EQ(cast<SCEVUnknown>(M2->getOperand(1))->getValue(), V0);
120 }
121 
TEST_F(ScalarEvolutionsTest,SimplifiedPHI)122 TEST_F(ScalarEvolutionsTest, SimplifiedPHI) {
123   FunctionType *FTy = FunctionType::get(Type::getVoidTy(Context),
124                                               std::vector<Type *>(), false);
125   Function *F = Function::Create(FTy, Function::ExternalLinkage, "f", M);
126   BasicBlock *EntryBB = BasicBlock::Create(Context, "entry", F);
127   BasicBlock *LoopBB = BasicBlock::Create(Context, "loop", F);
128   BasicBlock *ExitBB = BasicBlock::Create(Context, "exit", F);
129   BranchInst::Create(LoopBB, EntryBB);
130   BranchInst::Create(LoopBB, ExitBB, UndefValue::get(Type::getInt1Ty(Context)),
131                      LoopBB);
132   ReturnInst::Create(Context, nullptr, ExitBB);
133   auto *Ty = Type::getInt32Ty(Context);
134   auto *PN = PHINode::Create(Ty, 2, "", &*LoopBB->begin());
135   PN->addIncoming(Constant::getNullValue(Ty), EntryBB);
136   PN->addIncoming(UndefValue::get(Ty), LoopBB);
137   ScalarEvolution SE = buildSE(*F);
138   auto *S1 = SE.getSCEV(PN);
139   auto *S2 = SE.getSCEV(PN);
140   auto *ZeroConst = SE.getConstant(Ty, 0);
141 
142   // At some point, only the first call to getSCEV returned the simplified
143   // SCEVConstant and later calls just returned a SCEVUnknown referencing the
144   // PHI node.
145   EXPECT_EQ(S1, ZeroConst);
146   EXPECT_EQ(S1, S2);
147 }
148 
149 
getInstructionByName(Function & F,StringRef Name)150 static Instruction *getInstructionByName(Function &F, StringRef Name) {
151   for (auto &I : instructions(F))
152     if (I.getName() == Name)
153       return &I;
154   llvm_unreachable("Expected to find instruction!");
155 }
156 
getArgByName(Function & F,StringRef Name)157 static Value *getArgByName(Function &F, StringRef Name) {
158   for (auto &Arg : F.args())
159     if (Arg.getName() == Name)
160       return &Arg;
161   llvm_unreachable("Expected to find instruction!");
162 }
TEST_F(ScalarEvolutionsTest,CommutativeExprOperandOrder)163 TEST_F(ScalarEvolutionsTest, CommutativeExprOperandOrder) {
164   LLVMContext C;
165   SMDiagnostic Err;
166   std::unique_ptr<Module> M = parseAssemblyString(
167       "target datalayout = \"e-m:e-p:32:32-f64:32:64-f80:32-n8:16:32-S128\" "
168       " "
169       "@var_0 = external global i32, align 4"
170       "@var_1 = external global i32, align 4"
171       "@var_2 = external global i32, align 4"
172       " "
173       "declare i32 @unknown(i32, i32, i32)"
174       " "
175       "define void @f_1(i8* nocapture %arr, i32 %n, i32* %A, i32* %B) "
176       "    local_unnamed_addr { "
177       "entry: "
178       "  %entrycond = icmp sgt i32 %n, 0 "
179       "  br i1 %entrycond, label %loop.ph, label %for.end "
180       " "
181       "loop.ph: "
182       "  %a = load i32, i32* %A, align 4 "
183       "  %b = load i32, i32* %B, align 4 "
184       "  %mul = mul nsw i32 %b, %a "
185       "  %iv0.init = getelementptr inbounds i8, i8* %arr, i32 %mul "
186       "  br label %loop "
187       " "
188       "loop: "
189       "  %iv0 = phi i8* [ %iv0.inc, %loop ], [ %iv0.init, %loop.ph ] "
190       "  %iv1 = phi i32 [ %iv1.inc, %loop ], [ 0, %loop.ph ] "
191       "  %conv = trunc i32 %iv1 to i8 "
192       "  store i8 %conv, i8* %iv0, align 1 "
193       "  %iv0.inc = getelementptr inbounds i8, i8* %iv0, i32 %b "
194       "  %iv1.inc = add nuw nsw i32 %iv1, 1 "
195       "  %exitcond = icmp eq i32 %iv1.inc, %n "
196       "  br i1 %exitcond, label %for.end.loopexit, label %loop "
197       " "
198       "for.end.loopexit: "
199       "  br label %for.end "
200       " "
201       "for.end: "
202       "  ret void "
203       "} "
204       " "
205       "define void @f_2(i32* %X, i32* %Y, i32* %Z) { "
206       "  %x = load i32, i32* %X "
207       "  %y = load i32, i32* %Y "
208       "  %z = load i32, i32* %Z "
209       "  ret void "
210       "} "
211       " "
212       "define void @f_3() { "
213       "  %x = load i32, i32* @var_0"
214       "  %y = load i32, i32* @var_1"
215       "  %z = load i32, i32* @var_2"
216       "  ret void"
217       "} "
218       " "
219       "define void @f_4(i32 %a, i32 %b, i32 %c) { "
220       "  %x = call i32 @unknown(i32 %a, i32 %b, i32 %c)"
221       "  %y = call i32 @unknown(i32 %b, i32 %c, i32 %a)"
222       "  %z = call i32 @unknown(i32 %c, i32 %a, i32 %b)"
223       "  ret void"
224       "} "
225       ,
226       Err, C);
227 
228   assert(M && "Could not parse module?");
229   assert(!verifyModule(*M) && "Must have been well formed!");
230 
231   runWithSE(*M, "f_1", [&](Function &F, LoopInfo &LI, ScalarEvolution &SE) {
232     auto *IV0 = getInstructionByName(F, "iv0");
233     auto *IV0Inc = getInstructionByName(F, "iv0.inc");
234 
235     auto *FirstExprForIV0 = SE.getSCEV(IV0);
236     auto *FirstExprForIV0Inc = SE.getSCEV(IV0Inc);
237     auto *SecondExprForIV0 = SE.getSCEV(IV0);
238 
239     EXPECT_TRUE(isa<SCEVAddRecExpr>(FirstExprForIV0));
240     EXPECT_TRUE(isa<SCEVAddRecExpr>(FirstExprForIV0Inc));
241     EXPECT_TRUE(isa<SCEVAddRecExpr>(SecondExprForIV0));
242   });
243 
244   auto CheckCommutativeMulExprs = [&](ScalarEvolution &SE, const SCEV *A,
245                                       const SCEV *B, const SCEV *C) {
246     EXPECT_EQ(SE.getMulExpr(A, B), SE.getMulExpr(B, A));
247     EXPECT_EQ(SE.getMulExpr(B, C), SE.getMulExpr(C, B));
248     EXPECT_EQ(SE.getMulExpr(A, C), SE.getMulExpr(C, A));
249 
250     SmallVector<const SCEV *, 3> Ops0 = {A, B, C};
251     SmallVector<const SCEV *, 3> Ops1 = {A, C, B};
252     SmallVector<const SCEV *, 3> Ops2 = {B, A, C};
253     SmallVector<const SCEV *, 3> Ops3 = {B, C, A};
254     SmallVector<const SCEV *, 3> Ops4 = {C, B, A};
255     SmallVector<const SCEV *, 3> Ops5 = {C, A, B};
256 
257     auto *Mul0 = SE.getMulExpr(Ops0);
258     auto *Mul1 = SE.getMulExpr(Ops1);
259     auto *Mul2 = SE.getMulExpr(Ops2);
260     auto *Mul3 = SE.getMulExpr(Ops3);
261     auto *Mul4 = SE.getMulExpr(Ops4);
262     auto *Mul5 = SE.getMulExpr(Ops5);
263 
264     EXPECT_EQ(Mul0, Mul1) << "Expected " << *Mul0 << " == " << *Mul1;
265     EXPECT_EQ(Mul1, Mul2) << "Expected " << *Mul1 << " == " << *Mul2;
266     EXPECT_EQ(Mul2, Mul3) << "Expected " << *Mul2 << " == " << *Mul3;
267     EXPECT_EQ(Mul3, Mul4) << "Expected " << *Mul3 << " == " << *Mul4;
268     EXPECT_EQ(Mul4, Mul5) << "Expected " << *Mul4 << " == " << *Mul5;
269   };
270 
271   for (StringRef FuncName : {"f_2", "f_3", "f_4"})
272     runWithSE(
273         *M, FuncName, [&](Function &F, LoopInfo &LI, ScalarEvolution &SE) {
274           CheckCommutativeMulExprs(SE, SE.getSCEV(getInstructionByName(F, "x")),
275                                    SE.getSCEV(getInstructionByName(F, "y")),
276                                    SE.getSCEV(getInstructionByName(F, "z")));
277         });
278 }
279 
TEST_F(ScalarEvolutionsTest,CompareSCEVComplexity)280 TEST_F(ScalarEvolutionsTest, CompareSCEVComplexity) {
281   FunctionType *FTy =
282       FunctionType::get(Type::getVoidTy(Context), std::vector<Type *>(), false);
283   Function *F = Function::Create(FTy, Function::ExternalLinkage, "f", M);
284   BasicBlock *EntryBB = BasicBlock::Create(Context, "entry", F);
285   BasicBlock *LoopBB = BasicBlock::Create(Context, "bb1", F);
286   BranchInst::Create(LoopBB, EntryBB);
287 
288   auto *Ty = Type::getInt32Ty(Context);
289   SmallVector<Instruction*, 8> Muls(8), Acc(8), NextAcc(8);
290 
291   Acc[0] = PHINode::Create(Ty, 2, "", LoopBB);
292   Acc[1] = PHINode::Create(Ty, 2, "", LoopBB);
293   Acc[2] = PHINode::Create(Ty, 2, "", LoopBB);
294   Acc[3] = PHINode::Create(Ty, 2, "", LoopBB);
295   Acc[4] = PHINode::Create(Ty, 2, "", LoopBB);
296   Acc[5] = PHINode::Create(Ty, 2, "", LoopBB);
297   Acc[6] = PHINode::Create(Ty, 2, "", LoopBB);
298   Acc[7] = PHINode::Create(Ty, 2, "", LoopBB);
299 
300   for (int i = 0; i < 20; i++) {
301     Muls[0] = BinaryOperator::CreateMul(Acc[0], Acc[0], "", LoopBB);
302     NextAcc[0] = BinaryOperator::CreateAdd(Muls[0], Acc[4], "", LoopBB);
303     Muls[1] = BinaryOperator::CreateMul(Acc[1], Acc[1], "", LoopBB);
304     NextAcc[1] = BinaryOperator::CreateAdd(Muls[1], Acc[5], "", LoopBB);
305     Muls[2] = BinaryOperator::CreateMul(Acc[2], Acc[2], "", LoopBB);
306     NextAcc[2] = BinaryOperator::CreateAdd(Muls[2], Acc[6], "", LoopBB);
307     Muls[3] = BinaryOperator::CreateMul(Acc[3], Acc[3], "", LoopBB);
308     NextAcc[3] = BinaryOperator::CreateAdd(Muls[3], Acc[7], "", LoopBB);
309 
310     Muls[4] = BinaryOperator::CreateMul(Acc[4], Acc[4], "", LoopBB);
311     NextAcc[4] = BinaryOperator::CreateAdd(Muls[4], Acc[0], "", LoopBB);
312     Muls[5] = BinaryOperator::CreateMul(Acc[5], Acc[5], "", LoopBB);
313     NextAcc[5] = BinaryOperator::CreateAdd(Muls[5], Acc[1], "", LoopBB);
314     Muls[6] = BinaryOperator::CreateMul(Acc[6], Acc[6], "", LoopBB);
315     NextAcc[6] = BinaryOperator::CreateAdd(Muls[6], Acc[2], "", LoopBB);
316     Muls[7] = BinaryOperator::CreateMul(Acc[7], Acc[7], "", LoopBB);
317     NextAcc[7] = BinaryOperator::CreateAdd(Muls[7], Acc[3], "", LoopBB);
318     Acc = NextAcc;
319   }
320 
321   auto II = LoopBB->begin();
322   for (int i = 0; i < 8; i++) {
323     PHINode *Phi = cast<PHINode>(&*II++);
324     Phi->addIncoming(Acc[i], LoopBB);
325     Phi->addIncoming(UndefValue::get(Ty), EntryBB);
326   }
327 
328   BasicBlock *ExitBB = BasicBlock::Create(Context, "bb2", F);
329   BranchInst::Create(LoopBB, ExitBB, UndefValue::get(Type::getInt1Ty(Context)),
330                      LoopBB);
331 
332   Acc[0] = BinaryOperator::CreateAdd(Acc[0], Acc[1], "", ExitBB);
333   Acc[1] = BinaryOperator::CreateAdd(Acc[2], Acc[3], "", ExitBB);
334   Acc[2] = BinaryOperator::CreateAdd(Acc[4], Acc[5], "", ExitBB);
335   Acc[3] = BinaryOperator::CreateAdd(Acc[6], Acc[7], "", ExitBB);
336   Acc[0] = BinaryOperator::CreateAdd(Acc[0], Acc[1], "", ExitBB);
337   Acc[1] = BinaryOperator::CreateAdd(Acc[2], Acc[3], "", ExitBB);
338   Acc[0] = BinaryOperator::CreateAdd(Acc[0], Acc[1], "", ExitBB);
339 
340   ReturnInst::Create(Context, nullptr, ExitBB);
341 
342   ScalarEvolution SE = buildSE(*F);
343 
344   EXPECT_NE(nullptr, SE.getSCEV(Acc[0]));
345 }
346 
TEST_F(ScalarEvolutionsTest,CompareValueComplexity)347 TEST_F(ScalarEvolutionsTest, CompareValueComplexity) {
348   IntegerType *IntPtrTy = M.getDataLayout().getIntPtrType(Context);
349   PointerType *IntPtrPtrTy = IntPtrTy->getPointerTo();
350 
351   FunctionType *FTy =
352       FunctionType::get(Type::getVoidTy(Context), {IntPtrTy, IntPtrTy}, false);
353   Function *F = Function::Create(FTy, Function::ExternalLinkage, "f", M);
354   BasicBlock *EntryBB = BasicBlock::Create(Context, "entry", F);
355 
356   Value *X = &*F->arg_begin();
357   Value *Y = &*std::next(F->arg_begin());
358 
359   const int ValueDepth = 10;
360   for (int i = 0; i < ValueDepth; i++) {
361     X = new LoadInst(IntPtrTy, new IntToPtrInst(X, IntPtrPtrTy, "", EntryBB),
362                      "",
363                      /*isVolatile*/ false, EntryBB);
364     Y = new LoadInst(IntPtrTy, new IntToPtrInst(Y, IntPtrPtrTy, "", EntryBB),
365                      "",
366                      /*isVolatile*/ false, EntryBB);
367   }
368 
369   auto *MulA = BinaryOperator::CreateMul(X, Y, "", EntryBB);
370   auto *MulB = BinaryOperator::CreateMul(Y, X, "", EntryBB);
371   ReturnInst::Create(Context, nullptr, EntryBB);
372 
373   // This test isn't checking for correctness.  Today making A and B resolve to
374   // the same SCEV would require deeper searching in CompareValueComplexity,
375   // which will slow down compilation.  However, this test can fail (with LLVM's
376   // behavior still being correct) if we ever have a smarter
377   // CompareValueComplexity that is both fast and more accurate.
378 
379   ScalarEvolution SE = buildSE(*F);
380   auto *A = SE.getSCEV(MulA);
381   auto *B = SE.getSCEV(MulB);
382   EXPECT_NE(A, B);
383 }
384 
TEST_F(ScalarEvolutionsTest,SCEVAddExpr)385 TEST_F(ScalarEvolutionsTest, SCEVAddExpr) {
386   Type *Ty32 = Type::getInt32Ty(Context);
387   Type *ArgTys[] = {Type::getInt64Ty(Context), Ty32};
388 
389   FunctionType *FTy =
390       FunctionType::get(Type::getVoidTy(Context), ArgTys, false);
391   Function *F = Function::Create(FTy, Function::ExternalLinkage, "f", M);
392 
393   Argument *A1 = &*F->arg_begin();
394   Argument *A2 = &*(std::next(F->arg_begin()));
395   BasicBlock *EntryBB = BasicBlock::Create(Context, "entry", F);
396 
397   Instruction *Trunc = CastInst::CreateTruncOrBitCast(A1, Ty32, "", EntryBB);
398   Instruction *Mul1 = BinaryOperator::CreateMul(Trunc, A2, "", EntryBB);
399   Instruction *Add1 = BinaryOperator::CreateAdd(Mul1, Trunc, "", EntryBB);
400   Mul1 = BinaryOperator::CreateMul(Add1, Trunc, "", EntryBB);
401   Instruction *Add2 = BinaryOperator::CreateAdd(Mul1, Add1, "", EntryBB);
402   // FIXME: The size of this is arbitrary and doesn't seem to change the
403   // result, but SCEV will do quadratic work for these so a large number here
404   // will be extremely slow. We should revisit what and how this is testing
405   // SCEV.
406   for (int i = 0; i < 10; i++) {
407     Mul1 = BinaryOperator::CreateMul(Add2, Add1, "", EntryBB);
408     Add1 = Add2;
409     Add2 = BinaryOperator::CreateAdd(Mul1, Add1, "", EntryBB);
410   }
411 
412   ReturnInst::Create(Context, nullptr, EntryBB);
413   ScalarEvolution SE = buildSE(*F);
414   EXPECT_NE(nullptr, SE.getSCEV(Mul1));
415 }
416 
GetInstByName(Function & F,StringRef Name)417 static Instruction &GetInstByName(Function &F, StringRef Name) {
418   for (auto &I : instructions(F))
419     if (I.getName() == Name)
420       return I;
421   llvm_unreachable("Could not find instructions!");
422 }
423 
TEST_F(ScalarEvolutionsTest,SCEVNormalization)424 TEST_F(ScalarEvolutionsTest, SCEVNormalization) {
425   LLVMContext C;
426   SMDiagnostic Err;
427   std::unique_ptr<Module> M = parseAssemblyString(
428       "target datalayout = \"e-m:e-p:32:32-f64:32:64-f80:32-n8:16:32-S128\" "
429       " "
430       "@var_0 = external global i32, align 4"
431       "@var_1 = external global i32, align 4"
432       "@var_2 = external global i32, align 4"
433       " "
434       "declare i32 @unknown(i32, i32, i32)"
435       " "
436       "define void @f_1(i8* nocapture %arr, i32 %n, i32* %A, i32* %B) "
437       "    local_unnamed_addr { "
438       "entry: "
439       "  br label %loop.ph "
440       " "
441       "loop.ph: "
442       "  br label %loop "
443       " "
444       "loop: "
445       "  %iv0 = phi i32 [ %iv0.inc, %loop ], [ 0, %loop.ph ] "
446       "  %iv1 = phi i32 [ %iv1.inc, %loop ], [ -2147483648, %loop.ph ] "
447       "  %iv0.inc = add i32 %iv0, 1 "
448       "  %iv1.inc = add i32 %iv1, 3 "
449       "  br i1 undef, label %for.end.loopexit, label %loop "
450       " "
451       "for.end.loopexit: "
452       "  ret void "
453       "} "
454       " "
455       "define void @f_2(i32 %a, i32 %b, i32 %c, i32 %d) "
456       "    local_unnamed_addr { "
457       "entry: "
458       "  br label %loop_0 "
459       " "
460       "loop_0: "
461       "  br i1 undef, label %loop_0, label %loop_1 "
462       " "
463       "loop_1: "
464       "  br i1 undef, label %loop_2, label %loop_1 "
465       " "
466       " "
467       "loop_2: "
468       "  br i1 undef, label %end, label %loop_2 "
469       " "
470       "end: "
471       "  ret void "
472       "} "
473       ,
474       Err, C);
475 
476   assert(M && "Could not parse module?");
477   assert(!verifyModule(*M) && "Must have been well formed!");
478 
479   runWithSE(*M, "f_1", [&](Function &F, LoopInfo &LI, ScalarEvolution &SE) {
480     auto &I0 = GetInstByName(F, "iv0");
481     auto &I1 = *I0.getNextNode();
482 
483     auto *S0 = cast<SCEVAddRecExpr>(SE.getSCEV(&I0));
484     PostIncLoopSet Loops;
485     Loops.insert(S0->getLoop());
486     auto *N0 = normalizeForPostIncUse(S0, Loops, SE);
487     auto *D0 = denormalizeForPostIncUse(N0, Loops, SE);
488     EXPECT_EQ(S0, D0) << *S0 << " " << *D0;
489 
490     auto *S1 = cast<SCEVAddRecExpr>(SE.getSCEV(&I1));
491     Loops.clear();
492     Loops.insert(S1->getLoop());
493     auto *N1 = normalizeForPostIncUse(S1, Loops, SE);
494     auto *D1 = denormalizeForPostIncUse(N1, Loops, SE);
495     EXPECT_EQ(S1, D1) << *S1 << " " << *D1;
496   });
497 
498   runWithSE(*M, "f_2", [&](Function &F, LoopInfo &LI, ScalarEvolution &SE) {
499     auto *L2 = *LI.begin();
500     auto *L1 = *std::next(LI.begin());
501     auto *L0 = *std::next(LI.begin(), 2);
502 
503     auto GetAddRec = [&SE](const Loop *L, std::initializer_list<const SCEV *> Ops) {
504       SmallVector<const SCEV *, 4> OpsCopy(Ops);
505       return SE.getAddRecExpr(OpsCopy, L, SCEV::FlagAnyWrap);
506     };
507 
508     auto GetAdd = [&SE](std::initializer_list<const SCEV *> Ops) {
509       SmallVector<const SCEV *, 4> OpsCopy(Ops);
510       return SE.getAddExpr(OpsCopy, SCEV::FlagAnyWrap);
511     };
512 
513     // We first populate the AddRecs vector with a few "interesting" SCEV
514     // expressions, and then we go through the list and assert that each
515     // expression in it has an invertible normalization.
516 
517     std::vector<const SCEV *> Exprs;
518     {
519       const SCEV *V0 = SE.getSCEV(&*F.arg_begin());
520       const SCEV *V1 = SE.getSCEV(&*std::next(F.arg_begin(), 1));
521       const SCEV *V2 = SE.getSCEV(&*std::next(F.arg_begin(), 2));
522       const SCEV *V3 = SE.getSCEV(&*std::next(F.arg_begin(), 3));
523 
524       Exprs.push_back(GetAddRec(L0, {V0}));             // 0
525       Exprs.push_back(GetAddRec(L0, {V0, V1}));         // 1
526       Exprs.push_back(GetAddRec(L0, {V0, V1, V2}));     // 2
527       Exprs.push_back(GetAddRec(L0, {V0, V1, V2, V3})); // 3
528 
529       Exprs.push_back(
530           GetAddRec(L1, {Exprs[1], Exprs[2], Exprs[3], Exprs[0]})); // 4
531       Exprs.push_back(
532           GetAddRec(L1, {Exprs[1], Exprs[2], Exprs[0], Exprs[3]})); // 5
533       Exprs.push_back(
534           GetAddRec(L1, {Exprs[1], Exprs[3], Exprs[3], Exprs[1]})); // 6
535 
536       Exprs.push_back(GetAdd({Exprs[6], Exprs[3], V2})); // 7
537 
538       Exprs.push_back(
539           GetAddRec(L2, {Exprs[4], Exprs[3], Exprs[3], Exprs[5]})); // 8
540 
541       Exprs.push_back(
542           GetAddRec(L2, {Exprs[4], Exprs[6], Exprs[7], Exprs[3], V0})); // 9
543     }
544 
545     std::vector<PostIncLoopSet> LoopSets;
546     for (int i = 0; i < 8; i++) {
547       LoopSets.emplace_back();
548       if (i & 1)
549         LoopSets.back().insert(L0);
550       if (i & 2)
551         LoopSets.back().insert(L1);
552       if (i & 4)
553         LoopSets.back().insert(L2);
554     }
555 
556     for (const auto &LoopSet : LoopSets)
557       for (auto *S : Exprs) {
558         {
559           auto *N = llvm::normalizeForPostIncUse(S, LoopSet, SE);
560           auto *D = llvm::denormalizeForPostIncUse(N, LoopSet, SE);
561 
562           // Normalization and then denormalizing better give us back the same
563           // value.
564           EXPECT_EQ(S, D) << "S = " << *S << "  D = " << *D << " N = " << *N;
565         }
566         {
567           auto *D = llvm::denormalizeForPostIncUse(S, LoopSet, SE);
568           auto *N = llvm::normalizeForPostIncUse(D, LoopSet, SE);
569 
570           // Denormalization and then normalizing better give us back the same
571           // value.
572           EXPECT_EQ(S, N) << "S = " << *S << "  N = " << *N;
573         }
574       }
575   });
576 }
577 
578 // Expect the call of getZeroExtendExpr will not cost exponential time.
TEST_F(ScalarEvolutionsTest,SCEVZeroExtendExpr)579 TEST_F(ScalarEvolutionsTest, SCEVZeroExtendExpr) {
580   LLVMContext C;
581   SMDiagnostic Err;
582 
583   // Generate a function like below:
584   // define void @foo() {
585   // entry:
586   //   br label %for.cond
587   //
588   // for.cond:
589   //   %0 = phi i64 [ 100, %entry ], [ %dec, %for.inc ]
590   //   %cmp = icmp sgt i64 %0, 90
591   //   br i1 %cmp, label %for.inc, label %for.cond1
592   //
593   // for.inc:
594   //   %dec = add nsw i64 %0, -1
595   //   br label %for.cond
596   //
597   // for.cond1:
598   //   %1 = phi i64 [ 100, %for.cond ], [ %dec5, %for.inc2 ]
599   //   %cmp3 = icmp sgt i64 %1, 90
600   //   br i1 %cmp3, label %for.inc2, label %for.cond4
601   //
602   // for.inc2:
603   //   %dec5 = add nsw i64 %1, -1
604   //   br label %for.cond1
605   //
606   // ......
607   //
608   // for.cond89:
609   //   %19 = phi i64 [ 100, %for.cond84 ], [ %dec94, %for.inc92 ]
610   //   %cmp93 = icmp sgt i64 %19, 90
611   //   br i1 %cmp93, label %for.inc92, label %for.end
612   //
613   // for.inc92:
614   //   %dec94 = add nsw i64 %19, -1
615   //   br label %for.cond89
616   //
617   // for.end:
618   //   %gep = getelementptr i8, i8* null, i64 %dec
619   //   %gep6 = getelementptr i8, i8* %gep, i64 %dec5
620   //   ......
621   //   %gep95 = getelementptr i8, i8* %gep91, i64 %dec94
622   //   ret void
623   // }
624   FunctionType *FTy = FunctionType::get(Type::getVoidTy(Context), {}, false);
625   Function *F = Function::Create(FTy, Function::ExternalLinkage, "foo", M);
626 
627   BasicBlock *EntryBB = BasicBlock::Create(Context, "entry", F);
628   BasicBlock *CondBB = BasicBlock::Create(Context, "for.cond", F);
629   BasicBlock *EndBB = BasicBlock::Create(Context, "for.end", F);
630   BranchInst::Create(CondBB, EntryBB);
631   BasicBlock *PrevBB = EntryBB;
632 
633   Type *I64Ty = Type::getInt64Ty(Context);
634   Type *I8Ty = Type::getInt8Ty(Context);
635   Type *I8PtrTy = Type::getInt8PtrTy(Context);
636   Value *Accum = Constant::getNullValue(I8PtrTy);
637   int Iters = 20;
638   for (int i = 0; i < Iters; i++) {
639     BasicBlock *IncBB = BasicBlock::Create(Context, "for.inc", F, EndBB);
640     auto *PN = PHINode::Create(I64Ty, 2, "", CondBB);
641     PN->addIncoming(ConstantInt::get(Context, APInt(64, 100)), PrevBB);
642     auto *Cmp = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_SGT, PN,
643                                 ConstantInt::get(Context, APInt(64, 90)), "cmp",
644                                 CondBB);
645     BasicBlock *NextBB;
646     if (i != Iters - 1)
647       NextBB = BasicBlock::Create(Context, "for.cond", F, EndBB);
648     else
649       NextBB = EndBB;
650     BranchInst::Create(IncBB, NextBB, Cmp, CondBB);
651     auto *Dec = BinaryOperator::CreateNSWAdd(
652         PN, ConstantInt::get(Context, APInt(64, -1)), "dec", IncBB);
653     PN->addIncoming(Dec, IncBB);
654     BranchInst::Create(CondBB, IncBB);
655 
656     Accum = GetElementPtrInst::Create(I8Ty, Accum, PN, "gep", EndBB);
657 
658     PrevBB = CondBB;
659     CondBB = NextBB;
660   }
661   ReturnInst::Create(Context, nullptr, EndBB);
662   ScalarEvolution SE = buildSE(*F);
663   const SCEV *S = SE.getSCEV(Accum);
664   Type *I128Ty = Type::getInt128Ty(Context);
665   SE.getZeroExtendExpr(S, I128Ty);
666 }
667 
668 // Make sure that SCEV invalidates exit limits after invalidating the values it
669 // depends on when we forget a loop.
TEST_F(ScalarEvolutionsTest,SCEVExitLimitForgetLoop)670 TEST_F(ScalarEvolutionsTest, SCEVExitLimitForgetLoop) {
671   /*
672    * Create the following code:
673    * func(i64 addrspace(10)* %arg)
674    * top:
675    *  br label %L.ph
676    * L.ph:
677    *  br label %L
678    * L:
679    *  %phi = phi i64 [i64 0, %L.ph], [ %add, %L2 ]
680    *  %add = add i64 %phi2, 1
681    *  %cond = icmp slt i64 %add, 1000; then becomes 2000.
682    *  br i1 %cond, label %post, label %L2
683    * post:
684    *  ret void
685    *
686    */
687 
688   // Create a module with non-integral pointers in it's datalayout
689   Module NIM("nonintegral", Context);
690   std::string DataLayout = M.getDataLayoutStr();
691   if (!DataLayout.empty())
692     DataLayout += "-";
693   DataLayout += "ni:10";
694   NIM.setDataLayout(DataLayout);
695 
696   Type *T_int64 = Type::getInt64Ty(Context);
697   Type *T_pint64 = T_int64->getPointerTo(10);
698 
699   FunctionType *FTy =
700       FunctionType::get(Type::getVoidTy(Context), {T_pint64}, false);
701   Function *F = Function::Create(FTy, Function::ExternalLinkage, "foo", NIM);
702 
703   BasicBlock *Top = BasicBlock::Create(Context, "top", F);
704   BasicBlock *LPh = BasicBlock::Create(Context, "L.ph", F);
705   BasicBlock *L = BasicBlock::Create(Context, "L", F);
706   BasicBlock *Post = BasicBlock::Create(Context, "post", F);
707 
708   IRBuilder<> Builder(Top);
709   Builder.CreateBr(LPh);
710 
711   Builder.SetInsertPoint(LPh);
712   Builder.CreateBr(L);
713 
714   Builder.SetInsertPoint(L);
715   PHINode *Phi = Builder.CreatePHI(T_int64, 2);
716   auto *Add = cast<Instruction>(
717       Builder.CreateAdd(Phi, ConstantInt::get(T_int64, 1), "add"));
718   auto *Limit = ConstantInt::get(T_int64, 1000);
719   auto *Cond = cast<Instruction>(
720       Builder.CreateICmp(ICmpInst::ICMP_SLT, Add, Limit, "cond"));
721   auto *Br = cast<Instruction>(Builder.CreateCondBr(Cond, L, Post));
722   Phi->addIncoming(ConstantInt::get(T_int64, 0), LPh);
723   Phi->addIncoming(Add, L);
724 
725   Builder.SetInsertPoint(Post);
726   Builder.CreateRetVoid();
727 
728   ScalarEvolution SE = buildSE(*F);
729   auto *Loop = LI->getLoopFor(L);
730   const SCEV *EC = SE.getBackedgeTakenCount(Loop);
731   EXPECT_FALSE(isa<SCEVCouldNotCompute>(EC));
732   EXPECT_TRUE(isa<SCEVConstant>(EC));
733   EXPECT_EQ(cast<SCEVConstant>(EC)->getAPInt().getLimitedValue(), 999u);
734 
735   // The add recurrence {5,+,1} does not correspond to any PHI in the IR, and
736   // that is relevant to this test.
737   auto *Five = SE.getConstant(APInt(/*numBits=*/64, 5));
738   auto *AR =
739       SE.getAddRecExpr(Five, SE.getOne(T_int64), Loop, SCEV::FlagAnyWrap);
740   const SCEV *ARAtLoopExit = SE.getSCEVAtScope(AR, nullptr);
741   EXPECT_FALSE(isa<SCEVCouldNotCompute>(ARAtLoopExit));
742   EXPECT_TRUE(isa<SCEVConstant>(ARAtLoopExit));
743   EXPECT_EQ(cast<SCEVConstant>(ARAtLoopExit)->getAPInt().getLimitedValue(),
744             1004u);
745 
746   SE.forgetLoop(Loop);
747   Br->eraseFromParent();
748   Cond->eraseFromParent();
749 
750   Builder.SetInsertPoint(L);
751   auto *NewCond = Builder.CreateICmp(
752       ICmpInst::ICMP_SLT, Add, ConstantInt::get(T_int64, 2000), "new.cond");
753   Builder.CreateCondBr(NewCond, L, Post);
754   const SCEV *NewEC = SE.getBackedgeTakenCount(Loop);
755   EXPECT_FALSE(isa<SCEVCouldNotCompute>(NewEC));
756   EXPECT_TRUE(isa<SCEVConstant>(NewEC));
757   EXPECT_EQ(cast<SCEVConstant>(NewEC)->getAPInt().getLimitedValue(), 1999u);
758   const SCEV *NewARAtLoopExit = SE.getSCEVAtScope(AR, nullptr);
759   EXPECT_FALSE(isa<SCEVCouldNotCompute>(NewARAtLoopExit));
760   EXPECT_TRUE(isa<SCEVConstant>(NewARAtLoopExit));
761   EXPECT_EQ(cast<SCEVConstant>(NewARAtLoopExit)->getAPInt().getLimitedValue(),
762             2004u);
763 }
764 
765 // Make sure that SCEV invalidates exit limits after invalidating the values it
766 // depends on when we forget a value.
TEST_F(ScalarEvolutionsTest,SCEVExitLimitForgetValue)767 TEST_F(ScalarEvolutionsTest, SCEVExitLimitForgetValue) {
768   /*
769    * Create the following code:
770    * func(i64 addrspace(10)* %arg)
771    * top:
772    *  br label %L.ph
773    * L.ph:
774    *  %load = load i64 addrspace(10)* %arg
775    *  br label %L
776    * L:
777    *  %phi = phi i64 [i64 0, %L.ph], [ %add, %L2 ]
778    *  %add = add i64 %phi2, 1
779    *  %cond = icmp slt i64 %add, %load ; then becomes 2000.
780    *  br i1 %cond, label %post, label %L2
781    * post:
782    *  ret void
783    *
784    */
785 
786   // Create a module with non-integral pointers in it's datalayout
787   Module NIM("nonintegral", Context);
788   std::string DataLayout = M.getDataLayoutStr();
789   if (!DataLayout.empty())
790     DataLayout += "-";
791   DataLayout += "ni:10";
792   NIM.setDataLayout(DataLayout);
793 
794   Type *T_int64 = Type::getInt64Ty(Context);
795   Type *T_pint64 = T_int64->getPointerTo(10);
796 
797   FunctionType *FTy =
798       FunctionType::get(Type::getVoidTy(Context), {T_pint64}, false);
799   Function *F = Function::Create(FTy, Function::ExternalLinkage, "foo", NIM);
800 
801   Argument *Arg = &*F->arg_begin();
802 
803   BasicBlock *Top = BasicBlock::Create(Context, "top", F);
804   BasicBlock *LPh = BasicBlock::Create(Context, "L.ph", F);
805   BasicBlock *L = BasicBlock::Create(Context, "L", F);
806   BasicBlock *Post = BasicBlock::Create(Context, "post", F);
807 
808   IRBuilder<> Builder(Top);
809   Builder.CreateBr(LPh);
810 
811   Builder.SetInsertPoint(LPh);
812   auto *Load = cast<Instruction>(Builder.CreateLoad(T_int64, Arg, "load"));
813   Builder.CreateBr(L);
814 
815   Builder.SetInsertPoint(L);
816   PHINode *Phi = Builder.CreatePHI(T_int64, 2);
817   auto *Add = cast<Instruction>(
818       Builder.CreateAdd(Phi, ConstantInt::get(T_int64, 1), "add"));
819   auto *Cond = cast<Instruction>(
820       Builder.CreateICmp(ICmpInst::ICMP_SLT, Add, Load, "cond"));
821   auto *Br = cast<Instruction>(Builder.CreateCondBr(Cond, L, Post));
822   Phi->addIncoming(ConstantInt::get(T_int64, 0), LPh);
823   Phi->addIncoming(Add, L);
824 
825   Builder.SetInsertPoint(Post);
826   Builder.CreateRetVoid();
827 
828   ScalarEvolution SE = buildSE(*F);
829   auto *Loop = LI->getLoopFor(L);
830   const SCEV *EC = SE.getBackedgeTakenCount(Loop);
831   EXPECT_FALSE(isa<SCEVCouldNotCompute>(EC));
832   EXPECT_FALSE(isa<SCEVConstant>(EC));
833 
834   SE.forgetValue(Load);
835   Br->eraseFromParent();
836   Cond->eraseFromParent();
837   Load->eraseFromParent();
838 
839   Builder.SetInsertPoint(L);
840   auto *NewCond = Builder.CreateICmp(
841       ICmpInst::ICMP_SLT, Add, ConstantInt::get(T_int64, 2000), "new.cond");
842   Builder.CreateCondBr(NewCond, L, Post);
843   const SCEV *NewEC = SE.getBackedgeTakenCount(Loop);
844   EXPECT_FALSE(isa<SCEVCouldNotCompute>(NewEC));
845   EXPECT_TRUE(isa<SCEVConstant>(NewEC));
846   EXPECT_EQ(cast<SCEVConstant>(NewEC)->getAPInt().getLimitedValue(), 1999u);
847 }
848 
TEST_F(ScalarEvolutionsTest,SCEVAddRecFromPHIwithLargeConstants)849 TEST_F(ScalarEvolutionsTest, SCEVAddRecFromPHIwithLargeConstants) {
850   // Reference: https://reviews.llvm.org/D37265
851   // Make sure that SCEV does not blow up when constructing an AddRec
852   // with predicates for a phi with the update pattern:
853   //  (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum
854   // when either the initial value of the Phi or the InvariantAccum are
855   // constants that are too large to fit in an ix but are zero when truncated to
856   // ix.
857   FunctionType *FTy =
858       FunctionType::get(Type::getVoidTy(Context), std::vector<Type *>(), false);
859   Function *F =
860       Function::Create(FTy, Function::ExternalLinkage, "addrecphitest", M);
861 
862   /*
863     Create IR:
864     entry:
865      br label %loop
866     loop:
867      %0 = phi i64 [-9223372036854775808, %entry], [%3, %loop]
868      %1 = shl i64 %0, 32
869      %2 = ashr exact i64 %1, 32
870      %3 = add i64 %2, -9223372036854775808
871      br i1 undef, label %exit, label %loop
872     exit:
873      ret void
874    */
875   BasicBlock *EntryBB = BasicBlock::Create(Context, "entry", F);
876   BasicBlock *LoopBB = BasicBlock::Create(Context, "loop", F);
877   BasicBlock *ExitBB = BasicBlock::Create(Context, "exit", F);
878 
879   // entry:
880   BranchInst::Create(LoopBB, EntryBB);
881   // loop:
882   auto *MinInt64 =
883       ConstantInt::get(Context, APInt(64, 0x8000000000000000U, true));
884   auto *Int64_32 = ConstantInt::get(Context, APInt(64, 32));
885   auto *Br = BranchInst::Create(
886       LoopBB, ExitBB, UndefValue::get(Type::getInt1Ty(Context)), LoopBB);
887   auto *Phi = PHINode::Create(Type::getInt64Ty(Context), 2, "", Br);
888   auto *Shl = BinaryOperator::CreateShl(Phi, Int64_32, "", Br);
889   auto *AShr = BinaryOperator::CreateExactAShr(Shl, Int64_32, "", Br);
890   auto *Add = BinaryOperator::CreateAdd(AShr, MinInt64, "", Br);
891   Phi->addIncoming(MinInt64, EntryBB);
892   Phi->addIncoming(Add, LoopBB);
893   // exit:
894   ReturnInst::Create(Context, nullptr, ExitBB);
895 
896   // Make sure that SCEV doesn't blow up
897   ScalarEvolution SE = buildSE(*F);
898   SCEVUnionPredicate Preds;
899   const SCEV *Expr = SE.getSCEV(Phi);
900   EXPECT_NE(nullptr, Expr);
901   EXPECT_TRUE(isa<SCEVUnknown>(Expr));
902   auto Result = SE.createAddRecFromPHIWithCasts(cast<SCEVUnknown>(Expr));
903 }
904 
TEST_F(ScalarEvolutionsTest,SCEVAddRecFromPHIwithLargeConstantAccum)905 TEST_F(ScalarEvolutionsTest, SCEVAddRecFromPHIwithLargeConstantAccum) {
906   // Make sure that SCEV does not blow up when constructing an AddRec
907   // with predicates for a phi with the update pattern:
908   //  (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum
909   // when the InvariantAccum is a constant that is too large to fit in an
910   // ix but are zero when truncated to ix, and the initial value of the
911   // phi is not a constant.
912   Type *Int32Ty = Type::getInt32Ty(Context);
913   SmallVector<Type *, 1> Types;
914   Types.push_back(Int32Ty);
915   FunctionType *FTy = FunctionType::get(Type::getVoidTy(Context), Types, false);
916   Function *F =
917       Function::Create(FTy, Function::ExternalLinkage, "addrecphitest", M);
918 
919   /*
920     Create IR:
921     define @addrecphitest(i32)
922     entry:
923      br label %loop
924     loop:
925      %1 = phi i32 [%0, %entry], [%4, %loop]
926      %2 = shl i32 %1, 16
927      %3 = ashr exact i32 %2, 16
928      %4 = add i32 %3, -2147483648
929      br i1 undef, label %exit, label %loop
930     exit:
931      ret void
932    */
933   BasicBlock *EntryBB = BasicBlock::Create(Context, "entry", F);
934   BasicBlock *LoopBB = BasicBlock::Create(Context, "loop", F);
935   BasicBlock *ExitBB = BasicBlock::Create(Context, "exit", F);
936 
937   // entry:
938   BranchInst::Create(LoopBB, EntryBB);
939   // loop:
940   auto *MinInt32 = ConstantInt::get(Context, APInt(32, 0x80000000U, true));
941   auto *Int32_16 = ConstantInt::get(Context, APInt(32, 16));
942   auto *Br = BranchInst::Create(
943       LoopBB, ExitBB, UndefValue::get(Type::getInt1Ty(Context)), LoopBB);
944   auto *Phi = PHINode::Create(Int32Ty, 2, "", Br);
945   auto *Shl = BinaryOperator::CreateShl(Phi, Int32_16, "", Br);
946   auto *AShr = BinaryOperator::CreateExactAShr(Shl, Int32_16, "", Br);
947   auto *Add = BinaryOperator::CreateAdd(AShr, MinInt32, "", Br);
948   auto *Arg = &*(F->arg_begin());
949   Phi->addIncoming(Arg, EntryBB);
950   Phi->addIncoming(Add, LoopBB);
951   // exit:
952   ReturnInst::Create(Context, nullptr, ExitBB);
953 
954   // Make sure that SCEV doesn't blow up
955   ScalarEvolution SE = buildSE(*F);
956   SCEVUnionPredicate Preds;
957   const SCEV *Expr = SE.getSCEV(Phi);
958   EXPECT_NE(nullptr, Expr);
959   EXPECT_TRUE(isa<SCEVUnknown>(Expr));
960   auto Result = SE.createAddRecFromPHIWithCasts(cast<SCEVUnknown>(Expr));
961 }
962 
TEST_F(ScalarEvolutionsTest,SCEVFoldSumOfTruncs)963 TEST_F(ScalarEvolutionsTest, SCEVFoldSumOfTruncs) {
964   // Verify that the following SCEV gets folded to a zero:
965   //  (-1 * (trunc i64 (-1 * %0) to i32)) + (-1 * (trunc i64 %0 to i32)
966   Type *ArgTy = Type::getInt64Ty(Context);
967   Type *Int32Ty = Type::getInt32Ty(Context);
968   SmallVector<Type *, 1> Types;
969   Types.push_back(ArgTy);
970   FunctionType *FTy = FunctionType::get(Type::getVoidTy(Context), Types, false);
971   Function *F = Function::Create(FTy, Function::ExternalLinkage, "f", M);
972   BasicBlock *BB = BasicBlock::Create(Context, "entry", F);
973   ReturnInst::Create(Context, nullptr, BB);
974 
975   ScalarEvolution SE = buildSE(*F);
976 
977   auto *Arg = &*(F->arg_begin());
978   const auto *ArgSCEV = SE.getSCEV(Arg);
979 
980   // Build the SCEV
981   const auto *A0 = SE.getNegativeSCEV(ArgSCEV);
982   const auto *A1 = SE.getTruncateExpr(A0, Int32Ty);
983   const auto *A = SE.getNegativeSCEV(A1);
984 
985   const auto *B0 = SE.getTruncateExpr(ArgSCEV, Int32Ty);
986   const auto *B = SE.getNegativeSCEV(B0);
987 
988   const auto *Expr = SE.getAddExpr(A, B);
989   // Verify that the SCEV was folded to 0
990   const auto *ZeroConst = SE.getConstant(Int32Ty, 0);
991   EXPECT_EQ(Expr, ZeroConst);
992 }
993 
994 // Check logic of SCEV expression size computation.
TEST_F(ScalarEvolutionsTest,SCEVComputeExpressionSize)995 TEST_F(ScalarEvolutionsTest, SCEVComputeExpressionSize) {
996   /*
997    * Create the following code:
998    * void func(i64 %a, i64 %b)
999    * entry:
1000    *  %s1 = add i64 %a, 1
1001    *  %s2 = udiv i64 %s1, %b
1002    *  br label %exit
1003    * exit:
1004    *  ret
1005    */
1006 
1007   // Create a module.
1008   Module M("SCEVComputeExpressionSize", Context);
1009 
1010   Type *T_int64 = Type::getInt64Ty(Context);
1011 
1012   FunctionType *FTy =
1013       FunctionType::get(Type::getVoidTy(Context), { T_int64, T_int64 }, false);
1014   Function *F = Function::Create(FTy, Function::ExternalLinkage, "func", M);
1015   Argument *A = &*F->arg_begin();
1016   Argument *B = &*std::next(F->arg_begin());
1017   ConstantInt *C = ConstantInt::get(Context, APInt(64, 1));
1018 
1019   BasicBlock *Entry = BasicBlock::Create(Context, "entry", F);
1020   BasicBlock *Exit = BasicBlock::Create(Context, "exit", F);
1021 
1022   IRBuilder<> Builder(Entry);
1023   auto *S1 = cast<Instruction>(Builder.CreateAdd(A, C, "s1"));
1024   auto *S2 = cast<Instruction>(Builder.CreateUDiv(S1, B, "s2"));
1025   Builder.CreateBr(Exit);
1026 
1027   Builder.SetInsertPoint(Exit);
1028   Builder.CreateRetVoid();
1029 
1030   ScalarEvolution SE = buildSE(*F);
1031   // Get S2 first to move it to cache.
1032   const SCEV *AS = SE.getSCEV(A);
1033   const SCEV *BS = SE.getSCEV(B);
1034   const SCEV *CS = SE.getSCEV(C);
1035   const SCEV *S1S = SE.getSCEV(S1);
1036   const SCEV *S2S = SE.getSCEV(S2);
1037   EXPECT_EQ(AS->getExpressionSize(), 1u);
1038   EXPECT_EQ(BS->getExpressionSize(), 1u);
1039   EXPECT_EQ(CS->getExpressionSize(), 1u);
1040   EXPECT_EQ(S1S->getExpressionSize(), 3u);
1041   EXPECT_EQ(S2S->getExpressionSize(), 5u);
1042 }
1043 
TEST_F(ScalarEvolutionsTest,SCEVLoopDecIntrinsic)1044 TEST_F(ScalarEvolutionsTest, SCEVLoopDecIntrinsic) {
1045   LLVMContext C;
1046   SMDiagnostic Err;
1047   std::unique_ptr<Module> M = parseAssemblyString(
1048       "define void @foo(i32 %N) { "
1049       "entry: "
1050       "  %cmp3 = icmp sgt i32 %N, 0 "
1051       "  br i1 %cmp3, label %for.body, label %for.cond.cleanup "
1052       "for.cond.cleanup: "
1053       "  ret void "
1054       "for.body: "
1055       "  %i.04 = phi i32 [ %inc, %for.body ], [ 100, %entry ] "
1056       "  %inc = call i32 @llvm.loop.decrement.reg.i32.i32.i32(i32 %i.04, i32 1) "
1057       "  %exitcond = icmp ne i32 %inc, 0 "
1058       "  br i1 %exitcond, label %for.cond.cleanup, label %for.body "
1059       "} "
1060       "declare i32 @llvm.loop.decrement.reg.i32.i32.i32(i32, i32) ",
1061       Err, C);
1062 
1063   ASSERT_TRUE(M && "Could not parse module?");
1064   ASSERT_TRUE(!verifyModule(*M) && "Must have been well formed!");
1065 
1066   runWithSE(*M, "foo", [&](Function &F, LoopInfo &LI, ScalarEvolution &SE) {
1067     auto *ScevInc = SE.getSCEV(getInstructionByName(F, "inc"));
1068     EXPECT_TRUE(isa<SCEVAddRecExpr>(ScevInc));
1069   });
1070 }
1071 
TEST_F(ScalarEvolutionsTest,SCEVComputeConstantDifference)1072 TEST_F(ScalarEvolutionsTest, SCEVComputeConstantDifference) {
1073   LLVMContext C;
1074   SMDiagnostic Err;
1075   std::unique_ptr<Module> M = parseAssemblyString(
1076       "define void @foo(i32 %sz, i32 %pp) { "
1077       "entry: "
1078       "  %v0 = add i32 %pp, 0 "
1079       "  %v3 = add i32 %pp, 3 "
1080       "  br label %loop.body "
1081       "loop.body: "
1082       "  %iv = phi i32 [ %iv.next, %loop.body ], [ 0, %entry ] "
1083       "  %xa = add nsw i32 %iv, %v0 "
1084       "  %yy = add nsw i32 %iv, %v3 "
1085       "  %xb = sub nsw i32 %yy, 3 "
1086       "  %iv.next = add nsw i32 %iv, 1 "
1087       "  %cmp = icmp sle i32 %iv.next, %sz "
1088       "  br i1 %cmp, label %loop.body, label %exit "
1089       "exit: "
1090       "  ret void "
1091       "} ",
1092       Err, C);
1093 
1094   ASSERT_TRUE(M && "Could not parse module?");
1095   ASSERT_TRUE(!verifyModule(*M) && "Must have been well formed!");
1096 
1097   runWithSE(*M, "foo", [](Function &F, LoopInfo &LI, ScalarEvolution &SE) {
1098     auto *ScevV0 = SE.getSCEV(getInstructionByName(F, "v0")); // %pp
1099     auto *ScevV3 = SE.getSCEV(getInstructionByName(F, "v3")); // (3 + %pp)
1100     auto *ScevIV = SE.getSCEV(getInstructionByName(F, "iv")); // {0,+,1}
1101     auto *ScevXA = SE.getSCEV(getInstructionByName(F, "xa")); // {%pp,+,1}
1102     auto *ScevYY = SE.getSCEV(getInstructionByName(F, "yy")); // {(3 + %pp),+,1}
1103     auto *ScevXB = SE.getSCEV(getInstructionByName(F, "xb")); // {%pp,+,1}
1104     auto *ScevIVNext = SE.getSCEV(getInstructionByName(F, "iv.next")); // {1,+,1}
1105 
1106     auto diff = [&SE](const SCEV *LHS, const SCEV *RHS) -> Optional<int> {
1107       auto ConstantDiffOrNone = computeConstantDifference(SE, LHS, RHS);
1108       if (!ConstantDiffOrNone)
1109         return None;
1110 
1111       auto ExtDiff = ConstantDiffOrNone->getSExtValue();
1112       int Diff = ExtDiff;
1113       assert(Diff == ExtDiff && "Integer overflow");
1114       return Diff;
1115     };
1116 
1117     EXPECT_EQ(diff(ScevV3, ScevV0), 3);
1118     EXPECT_EQ(diff(ScevV0, ScevV3), -3);
1119     EXPECT_EQ(diff(ScevV0, ScevV0), 0);
1120     EXPECT_EQ(diff(ScevV3, ScevV3), 0);
1121     EXPECT_EQ(diff(ScevIV, ScevIV), 0);
1122     EXPECT_EQ(diff(ScevXA, ScevXB), 0);
1123     EXPECT_EQ(diff(ScevXA, ScevYY), -3);
1124     EXPECT_EQ(diff(ScevYY, ScevXB), 3);
1125     EXPECT_EQ(diff(ScevIV, ScevIVNext), -1);
1126     EXPECT_EQ(diff(ScevIVNext, ScevIV), 1);
1127     EXPECT_EQ(diff(ScevIVNext, ScevIVNext), 0);
1128     EXPECT_EQ(diff(ScevV0, ScevIV), None);
1129     EXPECT_EQ(diff(ScevIVNext, ScevV3), None);
1130     EXPECT_EQ(diff(ScevYY, ScevV3), None);
1131   });
1132 }
1133 
TEST_F(ScalarEvolutionsTest,SCEVrewriteUnknowns)1134 TEST_F(ScalarEvolutionsTest, SCEVrewriteUnknowns) {
1135   LLVMContext C;
1136   SMDiagnostic Err;
1137   std::unique_ptr<Module> M = parseAssemblyString(
1138       "define void @foo(i32 %i) { "
1139       "entry: "
1140       "  %cmp3 = icmp ult i32 %i, 16 "
1141       "  br i1 %cmp3, label %loop.body, label %exit "
1142       "loop.body: "
1143       "  %iv = phi i32 [ %iv.next, %loop.body ], [ %i, %entry ] "
1144       "  %iv.next = add nsw i32 %iv, 1 "
1145       "  %cmp = icmp eq i32 %iv.next, 16 "
1146       "  br i1 %cmp, label %exit, label %loop.body "
1147       "exit: "
1148       "  ret void "
1149       "} ",
1150       Err, C);
1151 
1152   ASSERT_TRUE(M && "Could not parse module?");
1153   ASSERT_TRUE(!verifyModule(*M) && "Must have been well formed!");
1154 
1155   runWithSE(*M, "foo", [](Function &F, LoopInfo &LI, ScalarEvolution &SE) {
1156     auto *ScevIV = SE.getSCEV(getInstructionByName(F, "iv")); // {0,+,1}
1157     auto *ScevI = SE.getSCEV(getArgByName(F, "i"));           // {0,+,1}
1158 
1159     ValueToSCEVMapTy RewriteMap;
1160     RewriteMap[cast<SCEVUnknown>(ScevI)->getValue()] =
1161         SE.getUMinExpr(ScevI, SE.getConstant(ScevI->getType(), 17));
1162     auto *WithUMin = SCEVParameterRewriter::rewrite(ScevIV, SE, RewriteMap);
1163 
1164     EXPECT_NE(WithUMin, ScevIV);
1165     auto *AR = dyn_cast<SCEVAddRecExpr>(WithUMin);
1166     EXPECT_TRUE(AR);
1167     EXPECT_EQ(AR->getStart(),
1168               SE.getUMinExpr(ScevI, SE.getConstant(ScevI->getType(), 17)));
1169     EXPECT_EQ(AR->getStepRecurrence(SE),
1170               cast<SCEVAddRecExpr>(ScevIV)->getStepRecurrence(SE));
1171   });
1172 }
1173 
TEST_F(ScalarEvolutionsTest,SCEVAddNUW)1174 TEST_F(ScalarEvolutionsTest, SCEVAddNUW) {
1175   LLVMContext C;
1176   SMDiagnostic Err;
1177   std::unique_ptr<Module> M = parseAssemblyString("define void @foo(i32 %x) { "
1178                                                   "  ret void "
1179                                                   "} ",
1180                                                   Err, C);
1181 
1182   ASSERT_TRUE(M && "Could not parse module?");
1183   ASSERT_TRUE(!verifyModule(*M) && "Must have been well formed!");
1184 
1185   runWithSE(*M, "foo", [](Function &F, LoopInfo &LI, ScalarEvolution &SE) {
1186     auto *X = SE.getSCEV(getArgByName(F, "x"));
1187     auto *One = SE.getOne(X->getType());
1188     auto *Sum = SE.getAddExpr(X, One, SCEV::FlagNUW);
1189     EXPECT_TRUE(SE.isKnownPredicate(ICmpInst::ICMP_UGE, Sum, X));
1190     EXPECT_TRUE(SE.isKnownPredicate(ICmpInst::ICMP_UGT, Sum, X));
1191   });
1192 }
1193 
TEST_F(ScalarEvolutionsTest,SCEVgetRanges)1194 TEST_F(ScalarEvolutionsTest, SCEVgetRanges) {
1195   LLVMContext C;
1196   SMDiagnostic Err;
1197   std::unique_ptr<Module> M = parseAssemblyString(
1198       "define void @foo(i32 %i) { "
1199       "entry: "
1200       "  br label %loop.body "
1201       "loop.body: "
1202       "  %iv = phi i32 [ %iv.next, %loop.body ], [ 0, %entry ] "
1203       "  %iv.next = add nsw i32 %iv, 1 "
1204       "  %cmp = icmp eq i32 %iv.next, 16 "
1205       "  br i1 %cmp, label %exit, label %loop.body "
1206       "exit: "
1207       "  ret void "
1208       "} ",
1209       Err, C);
1210 
1211   runWithSE(*M, "foo", [](Function &F, LoopInfo &LI, ScalarEvolution &SE) {
1212     auto *ScevIV = SE.getSCEV(getInstructionByName(F, "iv")); // {0,+,1}
1213     auto *ScevI = SE.getSCEV(getArgByName(F, "i"));
1214     EXPECT_EQ(SE.getUnsignedRange(ScevIV).getLower(), 0);
1215     EXPECT_EQ(SE.getUnsignedRange(ScevIV).getUpper(), 16);
1216 
1217     auto *Add = SE.getAddExpr(ScevI, ScevIV);
1218     ValueToSCEVMapTy RewriteMap;
1219     RewriteMap[cast<SCEVUnknown>(ScevI)->getValue()] =
1220         SE.getUMinExpr(ScevI, SE.getConstant(ScevI->getType(), 17));
1221     auto *AddWithUMin = SCEVParameterRewriter::rewrite(Add, SE, RewriteMap);
1222     EXPECT_EQ(SE.getUnsignedRange(AddWithUMin).getLower(), 0);
1223     EXPECT_EQ(SE.getUnsignedRange(AddWithUMin).getUpper(), 33);
1224   });
1225 }
1226 
TEST_F(ScalarEvolutionsTest,SCEVgetExitLimitForGuardedLoop)1227 TEST_F(ScalarEvolutionsTest, SCEVgetExitLimitForGuardedLoop) {
1228   LLVMContext C;
1229   SMDiagnostic Err;
1230   std::unique_ptr<Module> M = parseAssemblyString(
1231       "define void @foo(i32 %i) { "
1232       "entry: "
1233       "  %cmp3 = icmp ult i32 %i, 16 "
1234       "  br i1 %cmp3, label %loop.body, label %exit "
1235       "loop.body: "
1236       "  %iv = phi i32 [ %iv.next, %loop.body ], [ %i, %entry ] "
1237       "  %iv.next = add nsw i32 %iv, 1 "
1238       "  %cmp = icmp eq i32 %iv.next, 16 "
1239       "  br i1 %cmp, label %exit, label %loop.body "
1240       "exit: "
1241       "  ret void "
1242       "} ",
1243       Err, C);
1244 
1245   ASSERT_TRUE(M && "Could not parse module?");
1246   ASSERT_TRUE(!verifyModule(*M) && "Must have been well formed!");
1247 
1248   runWithSE(*M, "foo", [](Function &F, LoopInfo &LI, ScalarEvolution &SE) {
1249     auto *ScevIV = SE.getSCEV(getInstructionByName(F, "iv")); // {0,+,1}
1250     const Loop *L = cast<SCEVAddRecExpr>(ScevIV)->getLoop();
1251 
1252     const SCEV *BTC = SE.getBackedgeTakenCount(L);
1253     EXPECT_FALSE(isa<SCEVConstant>(BTC));
1254     const SCEV *MaxBTC = SE.getConstantMaxBackedgeTakenCount(L);
1255     EXPECT_EQ(cast<SCEVConstant>(MaxBTC)->getAPInt(), 15);
1256   });
1257 }
1258 
TEST_F(ScalarEvolutionsTest,ImpliedViaAddRecStart)1259 TEST_F(ScalarEvolutionsTest, ImpliedViaAddRecStart) {
1260   LLVMContext C;
1261   SMDiagnostic Err;
1262   std::unique_ptr<Module> M = parseAssemblyString(
1263       "define void @foo(i32* %p) { "
1264       "entry: "
1265       "  %x = load i32, i32* %p, !range !0 "
1266       "  br label %loop "
1267       "loop: "
1268       "  %iv = phi i32 [ %x, %entry], [%iv.next, %backedge] "
1269       "  %ne.check = icmp ne i32 %iv, 0 "
1270       "  br i1 %ne.check, label %backedge, label %exit "
1271       "backedge: "
1272       "  %iv.next = add i32 %iv, -1 "
1273       "  br label %loop "
1274       "exit:"
1275       "  ret void "
1276       "} "
1277       "!0 = !{i32 0, i32 2147483647}",
1278       Err, C);
1279 
1280   ASSERT_TRUE(M && "Could not parse module?");
1281   ASSERT_TRUE(!verifyModule(*M) && "Must have been well formed!");
1282 
1283   runWithSE(*M, "foo", [](Function &F, LoopInfo &LI, ScalarEvolution &SE) {
1284     auto *X = SE.getSCEV(getInstructionByName(F, "x"));
1285     auto *Context = getInstructionByName(F, "iv.next");
1286     EXPECT_TRUE(SE.isKnownPredicateAt(ICmpInst::ICMP_NE, X,
1287                                       SE.getZero(X->getType()), Context));
1288   });
1289 }
1290 
TEST_F(ScalarEvolutionsTest,UnsignedIsImpliedViaOperations)1291 TEST_F(ScalarEvolutionsTest, UnsignedIsImpliedViaOperations) {
1292   LLVMContext C;
1293   SMDiagnostic Err;
1294   std::unique_ptr<Module> M =
1295       parseAssemblyString("define void @foo(i32* %p1, i32* %p2) { "
1296                           "entry: "
1297                           "  %x = load i32, i32* %p1, !range !0 "
1298                           "  %cond = icmp ne i32 %x, 0 "
1299                           "  br i1 %cond, label %guarded, label %exit "
1300                           "guarded: "
1301                           "  %y = add i32 %x, -1 "
1302                           "  ret void "
1303                           "exit: "
1304                           "  ret void "
1305                           "} "
1306                           "!0 = !{i32 0, i32 2147483647}",
1307                           Err, C);
1308 
1309   ASSERT_TRUE(M && "Could not parse module?");
1310   ASSERT_TRUE(!verifyModule(*M) && "Must have been well formed!");
1311 
1312   runWithSE(*M, "foo", [](Function &F, LoopInfo &LI, ScalarEvolution &SE) {
1313     auto *X = SE.getSCEV(getInstructionByName(F, "x"));
1314     auto *Y = SE.getSCEV(getInstructionByName(F, "y"));
1315     auto *Guarded = getInstructionByName(F, "y")->getParent();
1316     ASSERT_TRUE(Guarded);
1317     EXPECT_TRUE(
1318         SE.isBasicBlockEntryGuardedByCond(Guarded, ICmpInst::ICMP_ULT, Y, X));
1319     EXPECT_TRUE(
1320         SE.isBasicBlockEntryGuardedByCond(Guarded, ICmpInst::ICMP_UGT, X, Y));
1321   });
1322 }
1323 
TEST_F(ScalarEvolutionsTest,ProveImplicationViaNarrowing)1324 TEST_F(ScalarEvolutionsTest, ProveImplicationViaNarrowing) {
1325   LLVMContext C;
1326   SMDiagnostic Err;
1327   std::unique_ptr<Module> M = parseAssemblyString(
1328       "define i32 @foo(i32 %start, i32* %q) { "
1329       "entry: "
1330       "  %wide.start = zext i32 %start to i64 "
1331       "  br label %loop "
1332       "loop: "
1333       "  %wide.iv = phi i64 [%wide.start, %entry], [%wide.iv.next, %backedge] "
1334       "  %iv = phi i32 [%start, %entry], [%iv.next, %backedge] "
1335       "  %cond = icmp eq i64 %wide.iv, 0 "
1336       "  br i1 %cond, label %exit, label %backedge "
1337       "backedge: "
1338       "  %iv.next = add i32 %iv, -1 "
1339       "  %index = zext i32 %iv.next to i64 "
1340       "  %load.addr = getelementptr i32, i32* %q, i64 %index "
1341       "  %stop = load i32, i32* %load.addr "
1342       "  %loop.cond = icmp eq i32 %stop, 0 "
1343       "  %wide.iv.next = add nsw i64 %wide.iv, -1 "
1344       "  br i1 %loop.cond, label %loop, label %failure "
1345       "exit: "
1346       "  ret i32 0 "
1347       "failure: "
1348       "  unreachable "
1349       "} ",
1350       Err, C);
1351 
1352   ASSERT_TRUE(M && "Could not parse module?");
1353   ASSERT_TRUE(!verifyModule(*M) && "Must have been well formed!");
1354 
1355   runWithSE(*M, "foo", [](Function &F, LoopInfo &LI, ScalarEvolution &SE) {
1356     auto *IV = SE.getSCEV(getInstructionByName(F, "iv"));
1357     auto *Zero = SE.getZero(IV->getType());
1358     auto *Backedge = getInstructionByName(F, "iv.next")->getParent();
1359     ASSERT_TRUE(Backedge);
1360     (void)IV;
1361     (void)Zero;
1362     // FIXME: This can only be proved with turned on option
1363     // scalar-evolution-use-expensive-range-sharpening which is currently off.
1364     // Enable the check once it's switched true by default.
1365     // EXPECT_TRUE(SE.isBasicBlockEntryGuardedByCond(Backedge,
1366     //                                               ICmpInst::ICMP_UGT,
1367     //                                               IV, Zero));
1368   });
1369 }
1370 
TEST_F(ScalarEvolutionsTest,MatchURem)1371 TEST_F(ScalarEvolutionsTest, MatchURem) {
1372   LLVMContext C;
1373   SMDiagnostic Err;
1374   std::unique_ptr<Module> M = parseAssemblyString(
1375       "target datalayout = \"e-m:e-p:32:32-f64:32:64-f80:32-n8:16:32-S128\" "
1376       " "
1377       "define void @test(i32 %a, i32 %b, i16 %c, i64 %d) {"
1378       "entry: "
1379       "  %rem1 = urem i32 %a, 2"
1380       "  %rem2 = urem i32 %a, 5"
1381       "  %rem3 = urem i32 %a, %b"
1382       "  %c.ext = zext i16 %c to i32"
1383       "  %rem4 = urem i32 %c.ext, 2"
1384       "  %ext = zext i32 %rem4 to i64"
1385       "  %rem5 = urem i64 %d, 17179869184"
1386       "  ret void "
1387       "} ",
1388       Err, C);
1389 
1390   assert(M && "Could not parse module?");
1391   assert(!verifyModule(*M) && "Must have been well formed!");
1392 
1393   runWithSE(*M, "test", [&](Function &F, LoopInfo &LI, ScalarEvolution &SE) {
1394     for (auto *N : {"rem1", "rem2", "rem3", "rem5"}) {
1395       auto *URemI = getInstructionByName(F, N);
1396       auto *S = SE.getSCEV(URemI);
1397       const SCEV *LHS, *RHS;
1398       EXPECT_TRUE(matchURem(SE, S, LHS, RHS));
1399       EXPECT_EQ(LHS, SE.getSCEV(URemI->getOperand(0)));
1400       EXPECT_EQ(RHS, SE.getSCEV(URemI->getOperand(1)));
1401       EXPECT_EQ(LHS->getType(), S->getType());
1402       EXPECT_EQ(RHS->getType(), S->getType());
1403     }
1404 
1405     // Check the case where the urem operand is zero-extended. Make sure the
1406     // match results are extended to the size of the input expression.
1407     auto *Ext = getInstructionByName(F, "ext");
1408     auto *URem1 = getInstructionByName(F, "rem4");
1409     auto *S = SE.getSCEV(Ext);
1410     const SCEV *LHS, *RHS;
1411     EXPECT_TRUE(matchURem(SE, S, LHS, RHS));
1412     EXPECT_NE(LHS, SE.getSCEV(URem1->getOperand(0)));
1413     // RHS and URem1->getOperand(1) have different widths, so compare the
1414     // integer values.
1415     EXPECT_EQ(cast<SCEVConstant>(RHS)->getValue()->getZExtValue(),
1416               cast<SCEVConstant>(SE.getSCEV(URem1->getOperand(1)))
1417                   ->getValue()
1418                   ->getZExtValue());
1419     EXPECT_EQ(LHS->getType(), S->getType());
1420     EXPECT_EQ(RHS->getType(), S->getType());
1421   });
1422 }
1423 
1424 }  // end namespace llvm
1425