• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *    Stack-less Just-In-Time compiler
3  *
4  *    Copyright Zoltan Herczeg (hzmester@freemail.hu). All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without modification, are
7  * permitted provided that the following conditions are met:
8  *
9  *   1. Redistributions of source code must retain the above copyright notice, this list of
10  *      conditions and the following disclaimer.
11  *
12  *   2. Redistributions in binary form must reproduce the above copyright notice, this list
13  *      of conditions and the following disclaimer in the documentation and/or other materials
14  *      provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) AND CONTRIBUTORS ``AS IS'' AND ANY
17  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
19  * SHALL THE COPYRIGHT HOLDER(S) OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
21  * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
22  * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
23  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
24  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #ifndef SLJIT_LIR_H_
28 #define SLJIT_LIR_H_
29 
30 /*
31    ------------------------------------------------------------------------
32     Stack-Less JIT compiler for multiple architectures (x86, ARM, PowerPC)
33    ------------------------------------------------------------------------
34 
35    Short description
36     Advantages:
37       - The execution can be continued from any LIR instruction. In other
38         words, it is possible to jump to any label from anywhere, even from
39         a code fragment, which is compiled later, if both compiled code
40         shares the same context. See sljit_emit_enter for more details
41       - Supports self modifying code: target of (conditional) jump and call
42         instructions and some constant values can be dynamically modified
43         during runtime
44         - although it is not suggested to do it frequently
45         - can be used for inline caching: save an important value once
46           in the instruction stream
47         - since this feature limits the optimization possibilities, a
48           special flag must be passed at compile time when these
49           instructions are emitted
50       - A fixed stack space can be allocated for local variables
51       - The compiler is thread-safe
52       - The compiler is highly configurable through preprocessor macros.
53         You can disable unneeded features (multithreading in single
54         threaded applications), and you can use your own system functions
55         (including memory allocators). See sljitConfig.h
56     Disadvantages:
57       - No automatic register allocation, and temporary results are
58         not stored on the stack. (hence the name comes)
59     In practice:
60       - This approach is very effective for interpreters
61         - One of the saved registers typically points to a stack interface
62         - It can jump to any exception handler anytime (even if it belongs
63           to another function)
64         - Hot paths can be modified during runtime reflecting the changes
65           of the fastest execution path of the dynamic language
66         - SLJIT supports complex memory addressing modes
67         - mainly position and context independent code (except some cases)
68 
69     For valgrind users:
70       - pass --smc-check=all argument to valgrind, since JIT is a "self-modifying code"
71 */
72 
73 #if (defined SLJIT_HAVE_CONFIG_PRE && SLJIT_HAVE_CONFIG_PRE)
74 #include "sljitConfigPre.h"
75 #endif /* SLJIT_HAVE_CONFIG_PRE */
76 
77 #include "sljitConfig.h"
78 
79 /* The following header file defines useful macros for fine tuning
80 sljit based code generators. They are listed in the beginning
81 of sljitConfigInternal.h */
82 
83 #include "sljitConfigInternal.h"
84 
85 #if (defined SLJIT_HAVE_CONFIG_POST && SLJIT_HAVE_CONFIG_POST)
86 #include "sljitConfigPost.h"
87 #endif /* SLJIT_HAVE_CONFIG_POST */
88 
89 #ifdef __cplusplus
90 extern "C" {
91 #endif
92 
93 /* --------------------------------------------------------------------- */
94 /*  Error codes                                                          */
95 /* --------------------------------------------------------------------- */
96 
97 /* Indicates no error. */
98 #define SLJIT_SUCCESS			0
99 /* After the call of sljit_generate_code(), the error code of the compiler
100    is set to this value to avoid future sljit calls (in debug mode at least).
101    The complier should be freed after sljit_generate_code(). */
102 #define SLJIT_ERR_COMPILED		1
103 /* Cannot allocate non executable memory. */
104 #define SLJIT_ERR_ALLOC_FAILED		2
105 /* Cannot allocate executable memory.
106    Only for sljit_generate_code() */
107 #define SLJIT_ERR_EX_ALLOC_FAILED	3
108 /* Return value for SLJIT_CONFIG_UNSUPPORTED placeholder architecture. */
109 #define SLJIT_ERR_UNSUPPORTED		4
110 /* An ivalid argument is passed to any SLJIT function. */
111 #define SLJIT_ERR_BAD_ARGUMENT		5
112 /* Dynamic code modification is not enabled. */
113 #define SLJIT_ERR_DYN_CODE_MOD		6
114 
115 /* --------------------------------------------------------------------- */
116 /*  Registers                                                            */
117 /* --------------------------------------------------------------------- */
118 
119 /*
120   Scratch (R) registers: registers whose may not preserve their values
121   across function calls.
122 
123   Saved (S) registers: registers whose preserve their values across
124   function calls.
125 
126   The scratch and saved register sets are overlap. The last scratch register
127   is the first saved register, the one before the last is the second saved
128   register, and so on.
129 
130   If an architecture provides two scratch and three saved registers,
131   its scratch and saved register sets are the following:
132 
133      R0   |        |   R0 is always a scratch register
134      R1   |        |   R1 is always a scratch register
135     [R2]  |   S2   |   R2 and S2 represent the same physical register
136     [R3]  |   S1   |   R3 and S1 represent the same physical register
137     [R4]  |   S0   |   R4 and S0 represent the same physical register
138 
139   Note: SLJIT_NUMBER_OF_SCRATCH_REGISTERS would be 2 and
140         SLJIT_NUMBER_OF_SAVED_REGISTERS would be 3 for this architecture.
141 
142   Note: On all supported architectures SLJIT_NUMBER_OF_REGISTERS >= 12
143         and SLJIT_NUMBER_OF_SAVED_REGISTERS >= 6. However, 6 registers
144         are virtual on x86-32. See below.
145 
146   The purpose of this definition is convenience: saved registers can
147   be used as extra scratch registers. For example four registers can
148   be specified as scratch registers and the fifth one as saved register
149   on the CPU above and any user code which requires four scratch
150   registers can run unmodified. The SLJIT compiler automatically saves
151   the content of the two extra scratch register on the stack. Scratch
152   registers can also be preserved by saving their value on the stack
153   but this needs to be done manually.
154 
155   Note: To emphasize that registers assigned to R2-R4 are saved
156         registers, they are enclosed by square brackets.
157 
158   Note: sljit_emit_enter and sljit_set_context defines whether a register
159         is S or R register. E.g: when 3 scratches and 1 saved is mapped
160         by sljit_emit_enter, the allowed register set will be: R0-R2 and
161         S0. Although S2 is mapped to the same position as R2, it does not
162         available in the current configuration. Furthermore the S1 register
163         is not available at all.
164 */
165 
166 /* When SLJIT_UNUSED is specified as the destination of sljit_emit_op1
167    or sljit_emit_op2 operations the result is discarded. Some status
168    flags must be set when the destination is SLJIT_UNUSED, because the
169    operation would have no effect otherwise. Other SLJIT operations do
170    not support SLJIT_UNUSED as a destination operand. */
171 #define SLJIT_UNUSED		0
172 
173 /* Scratch registers. */
174 #define SLJIT_R0	1
175 #define SLJIT_R1	2
176 #define SLJIT_R2	3
177 /* Note: on x86-32, R3 - R6 (same as S3 - S6) are emulated (they
178    are allocated on the stack). These registers are called virtual
179    and cannot be used for memory addressing (cannot be part of
180    any SLJIT_MEM1, SLJIT_MEM2 construct). There is no such
181    limitation on other CPUs. See sljit_get_register_index(). */
182 #define SLJIT_R3	4
183 #define SLJIT_R4	5
184 #define SLJIT_R5	6
185 #define SLJIT_R6	7
186 #define SLJIT_R7	8
187 #define SLJIT_R8	9
188 #define SLJIT_R9	10
189 /* All R registers provided by the architecture can be accessed by SLJIT_R(i)
190    The i parameter must be >= 0 and < SLJIT_NUMBER_OF_REGISTERS. */
191 #define SLJIT_R(i)	(1 + (i))
192 
193 /* Saved registers. */
194 #define SLJIT_S0	(SLJIT_NUMBER_OF_REGISTERS)
195 #define SLJIT_S1	(SLJIT_NUMBER_OF_REGISTERS - 1)
196 #define SLJIT_S2	(SLJIT_NUMBER_OF_REGISTERS - 2)
197 /* Note: on x86-32, S3 - S6 (same as R3 - R6) are emulated (they
198    are allocated on the stack). These registers are called virtual
199    and cannot be used for memory addressing (cannot be part of
200    any SLJIT_MEM1, SLJIT_MEM2 construct). There is no such
201    limitation on other CPUs. See sljit_get_register_index(). */
202 #define SLJIT_S3	(SLJIT_NUMBER_OF_REGISTERS - 3)
203 #define SLJIT_S4	(SLJIT_NUMBER_OF_REGISTERS - 4)
204 #define SLJIT_S5	(SLJIT_NUMBER_OF_REGISTERS - 5)
205 #define SLJIT_S6	(SLJIT_NUMBER_OF_REGISTERS - 6)
206 #define SLJIT_S7	(SLJIT_NUMBER_OF_REGISTERS - 7)
207 #define SLJIT_S8	(SLJIT_NUMBER_OF_REGISTERS - 8)
208 #define SLJIT_S9	(SLJIT_NUMBER_OF_REGISTERS - 9)
209 /* All S registers provided by the architecture can be accessed by SLJIT_S(i)
210    The i parameter must be >= 0 and < SLJIT_NUMBER_OF_SAVED_REGISTERS. */
211 #define SLJIT_S(i)	(SLJIT_NUMBER_OF_REGISTERS - (i))
212 
213 /* Registers >= SLJIT_FIRST_SAVED_REG are saved registers. */
214 #define SLJIT_FIRST_SAVED_REG (SLJIT_S0 - SLJIT_NUMBER_OF_SAVED_REGISTERS + 1)
215 
216 /* The SLJIT_SP provides direct access to the linear stack space allocated by
217    sljit_emit_enter. It can only be used in the following form: SLJIT_MEM1(SLJIT_SP).
218    The immediate offset is extended by the relative stack offset automatically.
219    The sljit_get_local_base can be used to obtain the absolute offset. */
220 #define SLJIT_SP	(SLJIT_NUMBER_OF_REGISTERS + 1)
221 
222 /* Return with machine word. */
223 
224 #define SLJIT_RETURN_REG	SLJIT_R0
225 
226 /* --------------------------------------------------------------------- */
227 /*  Floating point registers                                             */
228 /* --------------------------------------------------------------------- */
229 
230 /* Each floating point register can store a 32 or a 64 bit precision
231    value. The FR and FS register sets are overlap in the same way as R
232    and S register sets. See above. */
233 
234 /* Note: SLJIT_UNUSED as destination is not valid for floating point
235    operations, since they cannot be used for setting flags. */
236 
237 /* Floating point scratch registers. */
238 #define SLJIT_FR0	1
239 #define SLJIT_FR1	2
240 #define SLJIT_FR2	3
241 #define SLJIT_FR3	4
242 #define SLJIT_FR4	5
243 #define SLJIT_FR5	6
244 /* All FR registers provided by the architecture can be accessed by SLJIT_FR(i)
245    The i parameter must be >= 0 and < SLJIT_NUMBER_OF_FLOAT_REGISTERS. */
246 #define SLJIT_FR(i)	(1 + (i))
247 
248 /* Floating point saved registers. */
249 #define SLJIT_FS0	(SLJIT_NUMBER_OF_FLOAT_REGISTERS)
250 #define SLJIT_FS1	(SLJIT_NUMBER_OF_FLOAT_REGISTERS - 1)
251 #define SLJIT_FS2	(SLJIT_NUMBER_OF_FLOAT_REGISTERS - 2)
252 #define SLJIT_FS3	(SLJIT_NUMBER_OF_FLOAT_REGISTERS - 3)
253 #define SLJIT_FS4	(SLJIT_NUMBER_OF_FLOAT_REGISTERS - 4)
254 #define SLJIT_FS5	(SLJIT_NUMBER_OF_FLOAT_REGISTERS - 5)
255 /* All S registers provided by the architecture can be accessed by SLJIT_FS(i)
256    The i parameter must be >= 0 and < SLJIT_NUMBER_OF_SAVED_FLOAT_REGISTERS. */
257 #define SLJIT_FS(i)	(SLJIT_NUMBER_OF_FLOAT_REGISTERS - (i))
258 
259 /* Float registers >= SLJIT_FIRST_SAVED_FLOAT_REG are saved registers. */
260 #define SLJIT_FIRST_SAVED_FLOAT_REG (SLJIT_FS0 - SLJIT_NUMBER_OF_SAVED_FLOAT_REGISTERS + 1)
261 
262 /* --------------------------------------------------------------------- */
263 /*  Argument type definitions                                            */
264 /* --------------------------------------------------------------------- */
265 
266 /* Argument type definitions.
267    Used by SLJIT_[DEF_]ARGx and SLJIT_[DEF]_RET macros. */
268 
269 #define SLJIT_ARG_TYPE_VOID 0
270 #define SLJIT_ARG_TYPE_SW 1
271 #define SLJIT_ARG_TYPE_UW 2
272 #define SLJIT_ARG_TYPE_S32 3
273 #define SLJIT_ARG_TYPE_U32 4
274 #define SLJIT_ARG_TYPE_F32 5
275 #define SLJIT_ARG_TYPE_F64 6
276 
277 /* The following argument type definitions are used by sljit_emit_enter,
278    sljit_set_context, sljit_emit_call, and sljit_emit_icall functions.
279    The following return type definitions are used by sljit_emit_call
280    and sljit_emit_icall functions.
281 
282    When a function is called, the first integer argument must be placed
283    in SLJIT_R0, the second in SLJIT_R1, and so on. Similarly the first
284    floating point argument must be placed in SLJIT_FR0, the second in
285    SLJIT_FR1, and so on.
286 
287    Example function definition:
288      sljit_f32 SLJIT_FUNC example_c_callback(sljit_sw arg_a,
289          sljit_f64 arg_b, sljit_u32 arg_c, sljit_f32 arg_d);
290 
291    Argument type definition:
292      SLJIT_DEF_RET(SLJIT_ARG_TYPE_F32)
293         | SLJIT_DEF_ARG1(SLJIT_ARG_TYPE_SW) | SLJIT_DEF_ARG2(SLJIT_ARG_TYPE_F64)
294         | SLJIT_DEF_ARG3(SLJIT_ARG_TYPE_U32) | SLJIT_DEF_ARG2(SLJIT_ARG_TYPE_F32)
295 
296    Short form of argument type definition:
297      SLJIT_RET(F32) | SLJIT_ARG1(SW) | SLJIT_ARG2(F64)
298         | SLJIT_ARG3(S32) | SLJIT_ARG4(F32)
299 
300    Argument passing:
301      arg_a must be placed in SLJIT_R0
302      arg_c must be placed in SLJIT_R1
303      arg_b must be placed in SLJIT_FR0
304      arg_d must be placed in SLJIT_FR1
305 
306 Note:
307    The SLJIT_ARG_TYPE_VOID type is only supported by
308    SLJIT_DEF_RET, and SLJIT_ARG_TYPE_VOID is also the
309    default value when SLJIT_DEF_RET is not specified. */
310 #define SLJIT_DEF_SHIFT 4
311 #define SLJIT_DEF_RET(type) (type)
312 #define SLJIT_DEF_ARG1(type) ((type) << SLJIT_DEF_SHIFT)
313 #define SLJIT_DEF_ARG2(type) ((type) << (2 * SLJIT_DEF_SHIFT))
314 #define SLJIT_DEF_ARG3(type) ((type) << (3 * SLJIT_DEF_SHIFT))
315 #define SLJIT_DEF_ARG4(type) ((type) << (4 * SLJIT_DEF_SHIFT))
316 
317 /* Short form of the macros above.
318 
319    For example the following definition:
320    SLJIT_DEF_RET(SLJIT_ARG_TYPE_SW) | SLJIT_DEF_ARG1(SLJIT_ARG_TYPE_F32)
321 
322    can be shortened to:
323    SLJIT_RET(SW) | SLJIT_ARG1(F32)
324 
325 Note:
326    The VOID type is only supported by SLJIT_RET, and
327    VOID is also the default value when SLJIT_RET is
328    not specified. */
329 #define SLJIT_RET(type) SLJIT_DEF_RET(SLJIT_ARG_TYPE_ ## type)
330 #define SLJIT_ARG1(type) SLJIT_DEF_ARG1(SLJIT_ARG_TYPE_ ## type)
331 #define SLJIT_ARG2(type) SLJIT_DEF_ARG2(SLJIT_ARG_TYPE_ ## type)
332 #define SLJIT_ARG3(type) SLJIT_DEF_ARG3(SLJIT_ARG_TYPE_ ## type)
333 #define SLJIT_ARG4(type) SLJIT_DEF_ARG4(SLJIT_ARG_TYPE_ ## type)
334 
335 /* --------------------------------------------------------------------- */
336 /*  Main structures and functions                                        */
337 /* --------------------------------------------------------------------- */
338 
339 /*
340 	The following structures are private, and can be changed in the
341 	future. Keeping them here allows code inlining.
342 */
343 
344 struct sljit_memory_fragment {
345 	struct sljit_memory_fragment *next;
346 	sljit_uw used_size;
347 	/* Must be aligned to sljit_sw. */
348 	sljit_u8 memory[1];
349 };
350 
351 struct sljit_label {
352 	struct sljit_label *next;
353 	sljit_uw addr;
354 	/* The maximum size difference. */
355 	sljit_uw size;
356 };
357 
358 struct sljit_jump {
359 	struct sljit_jump *next;
360 	sljit_uw addr;
361 	sljit_uw flags;
362 	union {
363 		sljit_uw target;
364 		struct sljit_label *label;
365 	} u;
366 };
367 
368 struct sljit_put_label {
369 	struct sljit_put_label *next;
370 	struct sljit_label *label;
371 	sljit_uw addr;
372 	sljit_uw flags;
373 };
374 
375 struct sljit_const {
376 	struct sljit_const *next;
377 	sljit_uw addr;
378 };
379 
380 struct sljit_compiler {
381 	sljit_s32 error;
382 	sljit_s32 options;
383 
384 	struct sljit_label *labels;
385 	struct sljit_jump *jumps;
386 	struct sljit_put_label *put_labels;
387 	struct sljit_const *consts;
388 	struct sljit_label *last_label;
389 	struct sljit_jump *last_jump;
390 	struct sljit_const *last_const;
391 	struct sljit_put_label *last_put_label;
392 
393 	void *allocator_data;
394 	void *exec_allocator_data;
395 	struct sljit_memory_fragment *buf;
396 	struct sljit_memory_fragment *abuf;
397 
398 	/* Used scratch registers. */
399 	sljit_s32 scratches;
400 	/* Used saved registers. */
401 	sljit_s32 saveds;
402 	/* Used float scratch registers. */
403 	sljit_s32 fscratches;
404 	/* Used float saved registers. */
405 	sljit_s32 fsaveds;
406 	/* Local stack size. */
407 	sljit_s32 local_size;
408 	/* Code size. */
409 	sljit_uw size;
410 	/* Relative offset of the executable mapping from the writable mapping. */
411 	sljit_uw executable_offset;
412 	/* Executable size for statistical purposes. */
413 	sljit_uw executable_size;
414 
415 #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
416 	sljit_s32 args;
417 	sljit_s32 locals_offset;
418 	sljit_s32 saveds_offset;
419 	sljit_s32 stack_tmp_size;
420 #endif
421 
422 #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
423 	sljit_s32 mode32;
424 #ifdef _WIN64
425 	sljit_s32 locals_offset;
426 #endif
427 #endif
428 
429 #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
430 	/* Constant pool handling. */
431 	sljit_uw *cpool;
432 	sljit_u8 *cpool_unique;
433 	sljit_uw cpool_diff;
434 	sljit_uw cpool_fill;
435 	/* Other members. */
436 	/* Contains pointer, "ldr pc, [...]" pairs. */
437 	sljit_uw patches;
438 #endif
439 
440 #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5) || (defined SLJIT_CONFIG_ARM_V7 && SLJIT_CONFIG_ARM_V7)
441 	/* Temporary fields. */
442 	sljit_uw shift_imm;
443 #endif
444 
445 #if (defined SLJIT_CONFIG_PPC && SLJIT_CONFIG_PPC)
446 	sljit_sw imm;
447 #endif
448 
449 #if (defined SLJIT_CONFIG_MIPS && SLJIT_CONFIG_MIPS)
450 	sljit_s32 delay_slot;
451 	sljit_s32 cache_arg;
452 	sljit_sw cache_argw;
453 #endif
454 
455 #if (defined SLJIT_CONFIG_SPARC_32 && SLJIT_CONFIG_SPARC_32)
456 	sljit_s32 delay_slot;
457 	sljit_s32 cache_arg;
458 	sljit_sw cache_argw;
459 #endif
460 
461 #if (defined SLJIT_CONFIG_S390X && SLJIT_CONFIG_S390X)
462 	/* Need to allocate register save area to make calls. */
463 	sljit_s32 have_save_area;
464 #endif
465 
466 #if (defined SLJIT_VERBOSE && SLJIT_VERBOSE)
467 	FILE* verbose;
468 #endif
469 
470 #if (defined SLJIT_ARGUMENT_CHECKS && SLJIT_ARGUMENT_CHECKS) \
471 		|| (defined SLJIT_DEBUG && SLJIT_DEBUG)
472 	/* Flags specified by the last arithmetic instruction.
473 	   It contains the type of the variable flag. */
474 	sljit_s32 last_flags;
475 	/* Local size passed to the functions. */
476 	sljit_s32 logical_local_size;
477 #endif
478 
479 #if (defined SLJIT_ARGUMENT_CHECKS && SLJIT_ARGUMENT_CHECKS) \
480 		|| (defined SLJIT_DEBUG && SLJIT_DEBUG) \
481 		|| (defined SLJIT_VERBOSE && SLJIT_VERBOSE)
482 	/* Trust arguments when the API function is called. */
483 	sljit_s32 skip_checks;
484 #endif
485 };
486 
487 /* --------------------------------------------------------------------- */
488 /*  Main functions                                                       */
489 /* --------------------------------------------------------------------- */
490 
491 /* Creates an sljit compiler. The allocator_data is required by some
492    custom memory managers. This pointer is passed to SLJIT_MALLOC
493    and SLJIT_FREE macros. Most allocators (including the default
494    one) ignores this value, and it is recommended to pass NULL
495    as a dummy value for allocator_data. The exec_allocator_data
496    has the same purpose but this one is passed to SLJIT_MALLOC_EXEC /
497    SLJIT_MALLOC_FREE functions.
498 
499    Returns NULL if failed. */
500 SLJIT_API_FUNC_ATTRIBUTE struct sljit_compiler* sljit_create_compiler(void *allocator_data, void *exec_allocator_data);
501 
502 /* Frees everything except the compiled machine code. */
503 SLJIT_API_FUNC_ATTRIBUTE void sljit_free_compiler(struct sljit_compiler *compiler);
504 
505 /* Returns the current error code. If an error is occurred, future sljit
506    calls which uses the same compiler argument returns early with the same
507    error code. Thus there is no need for checking the error after every
508    call, it is enough to do it before the code is compiled. Removing
509    these checks increases the performance of the compiling process. */
sljit_get_compiler_error(struct sljit_compiler * compiler)510 static SLJIT_INLINE sljit_s32 sljit_get_compiler_error(struct sljit_compiler *compiler) { return compiler->error; }
511 
512 /* Sets the compiler error code to SLJIT_ERR_ALLOC_FAILED except
513    if an error was detected before. After the error code is set
514    the compiler behaves as if the allocation failure happened
515    during an sljit function call. This can greatly simplify error
516    checking, since only the compiler status needs to be checked
517    after the compilation. */
518 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_compiler_memory_error(struct sljit_compiler *compiler);
519 
520 /*
521    Allocate a small amount of memory. The size must be <= 64 bytes on 32 bit,
522    and <= 128 bytes on 64 bit architectures. The memory area is owned by the
523    compiler, and freed by sljit_free_compiler. The returned pointer is
524    sizeof(sljit_sw) aligned. Excellent for allocating small blocks during
525    the compiling, and no need to worry about freeing them. The size is
526    enough to contain at most 16 pointers. If the size is outside of the range,
527    the function will return with NULL. However, this return value does not
528    indicate that there is no more memory (does not set the current error code
529    of the compiler to out-of-memory status).
530 */
531 SLJIT_API_FUNC_ATTRIBUTE void* sljit_alloc_memory(struct sljit_compiler *compiler, sljit_s32 size);
532 
533 #if (defined SLJIT_VERBOSE && SLJIT_VERBOSE)
534 /* Passing NULL disables verbose. */
535 SLJIT_API_FUNC_ATTRIBUTE void sljit_compiler_verbose(struct sljit_compiler *compiler, FILE* verbose);
536 #endif
537 
538 /*
539    Create executable code from the sljit instruction stream. This is the final step
540    of the code generation so no more instructions can be added after this call.
541 */
542 
543 SLJIT_API_FUNC_ATTRIBUTE void* sljit_generate_code(struct sljit_compiler *compiler);
544 
545 /* Free executable code. */
546 
547 SLJIT_API_FUNC_ATTRIBUTE void sljit_free_code(void* code, void *exec_allocator_data);
548 
549 /*
550    When the protected executable allocator is used the JIT code is mapped
551    twice. The first mapping has read/write and the second mapping has read/exec
552    permissions. This function returns with the relative offset of the executable
553    mapping using the writable mapping as the base after the machine code is
554    successfully generated. The returned value is always 0 for the normal executable
555    allocator, since it uses only one mapping with read/write/exec permissions.
556    Dynamic code modifications requires this value.
557 
558    Before a successful code generation, this function returns with 0.
559 */
sljit_get_executable_offset(struct sljit_compiler * compiler)560 static SLJIT_INLINE sljit_sw sljit_get_executable_offset(struct sljit_compiler *compiler) { return compiler->executable_offset; }
561 
562 /*
563    The executable memory consumption of the generated code can be retrieved by
564    this function. The returned value can be used for statistical purposes.
565 
566    Before a successful code generation, this function returns with 0.
567 */
sljit_get_generated_code_size(struct sljit_compiler * compiler)568 static SLJIT_INLINE sljit_uw sljit_get_generated_code_size(struct sljit_compiler *compiler) { return compiler->executable_size; }
569 
570 /* Returns with non-zero if the feature or limitation type passed as its
571    argument is present on the current CPU.
572 
573    Some features (e.g. floating point operations) require hardware (CPU)
574    support while others (e.g. move with update) are emulated if not available.
575    However even if a feature is emulated, specialized code paths can be faster
576    than the emulation. Some limitations are emulated as well so their general
577    case is supported but it has extra performance costs. */
578 
579 /* [Not emulated] Floating-point support is available. */
580 #define SLJIT_HAS_FPU			0
581 /* [Limitation] Some registers are virtual registers. */
582 #define SLJIT_HAS_VIRTUAL_REGISTERS	1
583 /* [Emulated] Has zero register (setting a memory location to zero is efficient). */
584 #define SLJIT_HAS_ZERO_REGISTER		2
585 /* [Emulated] Count leading zero is supported. */
586 #define SLJIT_HAS_CLZ			3
587 /* [Emulated] Conditional move is supported. */
588 #define SLJIT_HAS_CMOV			4
589 /* [Emulated] Conditional move is supported. */
590 #define SLJIT_HAS_PREFETCH		5
591 
592 #if (defined SLJIT_CONFIG_X86 && SLJIT_CONFIG_X86)
593 /* [Not emulated] SSE2 support is available on x86. */
594 #define SLJIT_HAS_SSE2			100
595 #endif
596 
597 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_has_cpu_feature(sljit_s32 feature_type);
598 
599 /* Instruction generation. Returns with any error code. If there is no
600    error, they return with SLJIT_SUCCESS. */
601 
602 /*
603    The executable code is a function from the viewpoint of the C
604    language. The function calls must obey to the ABI (Application
605    Binary Interface) of the platform, which specify the purpose of
606    machine registers and stack handling among other things. The
607    sljit_emit_enter function emits the necessary instructions for
608    setting up a new context for the executable code and moves function
609    arguments to the saved registers. Furthermore the options argument
610    can be used to pass configuration options to the compiler. The
611    available options are listed before sljit_emit_enter.
612 
613    The function argument list is the combination of SLJIT_ARGx
614    (SLJIT_DEF_ARG1) macros. Currently maximum 3 SW / UW
615    (SLJIT_ARG_TYPE_SW / LJIT_ARG_TYPE_UW) arguments are supported.
616    The first argument goes to SLJIT_S0, the second goes to SLJIT_S1
617    and so on. The register set used by the function must be declared
618    as well. The number of scratch and saved registers used by the
619    function must be passed to sljit_emit_enter. Only R registers
620    between R0 and "scratches" argument can be used later. E.g. if
621    "scratches" is set to 2, the scratch register set will be limited
622    to SLJIT_R0 and SLJIT_R1. The S registers and the floating point
623    registers ("fscratches" and "fsaveds") are specified in a similar
624    manner. The sljit_emit_enter is also capable of allocating a stack
625    space for local variables. The "local_size" argument contains the
626    size in bytes of this local area and its staring address is stored
627    in SLJIT_SP. The memory area between SLJIT_SP (inclusive) and
628    SLJIT_SP + local_size (exclusive) can be modified freely until
629    the function returns. The stack space is not initialized.
630 
631    Note: the following conditions must met:
632          0 <= scratches <= SLJIT_NUMBER_OF_REGISTERS
633          0 <= saveds <= SLJIT_NUMBER_OF_REGISTERS
634          scratches + saveds <= SLJIT_NUMBER_OF_REGISTERS
635          0 <= fscratches <= SLJIT_NUMBER_OF_FLOAT_REGISTERS
636          0 <= fsaveds <= SLJIT_NUMBER_OF_FLOAT_REGISTERS
637          fscratches + fsaveds <= SLJIT_NUMBER_OF_FLOAT_REGISTERS
638 
639    Note: every call of sljit_emit_enter and sljit_set_context
640          overwrites the previous context.
641 */
642 
643 /* The absolute address returned by sljit_get_local_base with
644 offset 0 is aligned to sljit_f64. Otherwise it is aligned to sljit_sw. */
645 #define SLJIT_F64_ALIGNMENT 0x00000001
646 
647 /* The local_size must be >= 0 and <= SLJIT_MAX_LOCAL_SIZE. */
648 #define SLJIT_MAX_LOCAL_SIZE	65536
649 
650 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_enter(struct sljit_compiler *compiler,
651 	sljit_s32 options, sljit_s32 arg_types, sljit_s32 scratches, sljit_s32 saveds,
652 	sljit_s32 fscratches, sljit_s32 fsaveds, sljit_s32 local_size);
653 
654 /* The machine code has a context (which contains the local stack space size,
655    number of used registers, etc.) which initialized by sljit_emit_enter. Several
656    functions (like sljit_emit_return) requres this context to be able to generate
657    the appropriate code. However, some code fragments (like inline cache) may have
658    no normal entry point so their context is unknown for the compiler. Their context
659    can be provided to the compiler by the sljit_set_context function.
660 
661    Note: every call of sljit_emit_enter and sljit_set_context overwrites
662          the previous context. */
663 
664 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_set_context(struct sljit_compiler *compiler,
665 	sljit_s32 options, sljit_s32 arg_types, sljit_s32 scratches, sljit_s32 saveds,
666 	sljit_s32 fscratches, sljit_s32 fsaveds, sljit_s32 local_size);
667 
668 /* Return from machine code.  The op argument can be SLJIT_UNUSED which means the
669    function does not return with anything or any opcode between SLJIT_MOV and
670    SLJIT_MOV_P (see sljit_emit_op1). As for src and srcw they must be 0 if op
671    is SLJIT_UNUSED, otherwise see below the description about source and
672    destination arguments. */
673 
674 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_return(struct sljit_compiler *compiler, sljit_s32 op,
675 	sljit_s32 src, sljit_sw srcw);
676 
677 /* Generating entry and exit points for fast call functions (see SLJIT_FAST_CALL).
678    Both sljit_emit_fast_enter and SLJIT_FAST_RETURN operations preserve the
679    values of all registers and stack frame. The return address is stored in the
680    dst argument of sljit_emit_fast_enter, and this return address can be passed
681    to SLJIT_FAST_RETURN to continue the execution after the fast call.
682 
683    Fast calls are cheap operations (usually only a single call instruction is
684    emitted) but they do not preserve any registers. However the callee function
685    can freely use / update any registers and stack values which can be
686    efficiently exploited by various optimizations. Registers can be saved
687    manually by the callee function if needed.
688 
689    Although returning to different address by SLJIT_FAST_RETURN is possible,
690    this address usually cannot be predicted by the return address predictor of
691    modern CPUs which may reduce performance. Furthermore certain security
692    enhancement technologies such as Intel Control-flow Enforcement Technology
693    (CET) may disallow returning to a different address.
694 
695    Flags: - (does not modify flags). */
696 
697 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fast_enter(struct sljit_compiler *compiler, sljit_s32 dst, sljit_sw dstw);
698 
699 /*
700    Source and destination operands for arithmetical instructions
701     imm              - a simple immediate value (cannot be used as a destination)
702     reg              - any of the registers (immediate argument must be 0)
703     [imm]            - absolute immediate memory address
704     [reg+imm]        - indirect memory address
705     [reg+(reg<<imm)] - indirect indexed memory address (shift must be between 0 and 3)
706                        useful for (byte, half, int, sljit_sw) array access
707                        (fully supported by both x86 and ARM architectures, and cheap operation on others)
708 */
709 
710 /*
711    IMPORTANT NOTE: memory access MUST be naturally aligned unless
712                    SLJIT_UNALIGNED macro is defined and its value is 1.
713 
714      length | alignment
715    ---------+-----------
716      byte   | 1 byte (any physical_address is accepted)
717      half   | 2 byte (physical_address & 0x1 == 0)
718      int    | 4 byte (physical_address & 0x3 == 0)
719      word   | 4 byte if SLJIT_32BIT_ARCHITECTURE is defined and its value is 1
720             | 8 byte if SLJIT_64BIT_ARCHITECTURE is defined and its value is 1
721     pointer | size of sljit_p type (4 byte on 32 bit machines, 4 or 8 byte
722             | on 64 bit machines)
723 
724    Note:   Different architectures have different addressing limitations.
725            A single instruction is enough for the following addressing
726            modes. Other adrressing modes are emulated by instruction
727            sequences. This information could help to improve those code
728            generators which focuses only a few architectures.
729 
730    x86:    [reg+imm], -2^32+1 <= imm <= 2^32-1 (full address space on x86-32)
731            [reg+(reg<<imm)] is supported
732            [imm], -2^32+1 <= imm <= 2^32-1 is supported
733            Write-back is not supported
734    arm:    [reg+imm], -4095 <= imm <= 4095 or -255 <= imm <= 255 for signed
735                 bytes, any halfs or floating point values)
736            [reg+(reg<<imm)] is supported
737            Write-back is supported
738    arm-t2: [reg+imm], -255 <= imm <= 4095
739            [reg+(reg<<imm)] is supported
740            Write back is supported only for [reg+imm], where -255 <= imm <= 255
741    arm64:  [reg+imm], -256 <= imm <= 255, 0 <= aligned imm <= 4095 * alignment
742            [reg+(reg<<imm)] is supported
743            Write back is supported only for [reg+imm], where -256 <= imm <= 255
744    ppc:    [reg+imm], -65536 <= imm <= 65535. 64 bit loads/stores and 32 bit
745                 signed load on 64 bit requires immediates divisible by 4.
746                 [reg+imm] is not supported for signed 8 bit values.
747            [reg+reg] is supported
748            Write-back is supported except for one instruction: 32 bit signed
749                 load with [reg+imm] addressing mode on 64 bit.
750    mips:   [reg+imm], -65536 <= imm <= 65535
751    sparc:  [reg+imm], -4096 <= imm <= 4095
752            [reg+reg] is supported
753    s390x:  [reg+imm], -2^19 <= imm < 2^19
754            [reg+reg] is supported
755            Write-back is not supported
756 */
757 
758 /* Macros for specifying operand types. */
759 #define SLJIT_MEM		0x80
760 #define SLJIT_MEM0()		(SLJIT_MEM)
761 #define SLJIT_MEM1(r1)		(SLJIT_MEM | (r1))
762 #define SLJIT_MEM2(r1, r2)	(SLJIT_MEM | (r1) | ((r2) << 8))
763 #define SLJIT_IMM		0x40
764 
765 /* Set 32 bit operation mode (I) on 64 bit CPUs. This option is ignored on
766    32 bit CPUs. When this option is set for an arithmetic operation, only
767    the lower 32 bit of the input registers are used, and the CPU status
768    flags are set according to the 32 bit result. Although the higher 32 bit
769    of the input and the result registers are not defined by SLJIT, it might
770    be defined by the CPU architecture (e.g. MIPS). To satisfy these CPU
771    requirements all source registers must be the result of those operations
772    where this option was also set. Memory loads read 32 bit values rather
773    than 64 bit ones. In other words 32 bit and 64 bit operations cannot
774    be mixed. The only exception is SLJIT_MOV32 and SLJIT_MOVU32 whose source
775    register can hold any 32 or 64 bit value, and it is converted to a 32 bit
776    compatible format first. This conversion is free (no instructions are
777    emitted) on most CPUs. A 32 bit value can also be converted to a 64 bit
778    value by SLJIT_MOV_S32 (sign extension) or SLJIT_MOV_U32 (zero extension).
779 
780    Note: memory addressing always uses 64 bit values on 64 bit systems so
781          the result of a 32 bit operation must not be used with SLJIT_MEMx
782          macros.
783 
784    This option is part of the instruction name, so there is no need to
785    manually set it. E.g:
786 
787      SLJIT_ADD32 == (SLJIT_ADD | SLJIT_I32_OP) */
788 #define SLJIT_I32_OP		0x100
789 
790 /* Set F32 (single) precision mode for floating-point computation. This
791    option is similar to SLJIT_I32_OP, it just applies to floating point
792    registers. When this option is passed, the CPU performs 32 bit floating
793    point operations, rather than 64 bit one. Similar to SLJIT_I32_OP, all
794    register arguments must be the result of those operations where this
795    option was also set.
796 
797    This option is part of the instruction name, so there is no need to
798    manually set it. E.g:
799 
800      SLJIT_MOV_F32 = (SLJIT_MOV_F64 | SLJIT_F32_OP)
801  */
802 #define SLJIT_F32_OP		SLJIT_I32_OP
803 
804 /* Many CPUs (x86, ARM, PPC) have status flags which can be set according
805    to the result of an operation. Other CPUs (MIPS) do not have status
806    flags, and results must be stored in registers. To cover both architecture
807    types efficiently only two flags are defined by SLJIT:
808 
809     * Zero (equal) flag: it is set if the result is zero
810     * Variable flag: its value is defined by the last arithmetic operation
811 
812    SLJIT instructions can set any or both of these flags. The value of
813    these flags is undefined if the instruction does not specify their value.
814    The description of each instruction contains the list of allowed flag
815    types.
816 
817    Example: SLJIT_ADD can set the Z, OVERFLOW, CARRY flags hence
818 
819      sljit_op2(..., SLJIT_ADD, ...)
820        Both the zero and variable flags are undefined so they can
821        have any value after the operation is completed.
822 
823      sljit_op2(..., SLJIT_ADD | SLJIT_SET_Z, ...)
824        Sets the zero flag if the result is zero, clears it otherwise.
825        The variable flag is undefined.
826 
827      sljit_op2(..., SLJIT_ADD | SLJIT_SET_OVERFLOW, ...)
828        Sets the variable flag if an integer overflow occurs, clears
829        it otherwise. The zero flag is undefined.
830 
831      sljit_op2(..., SLJIT_ADD | SLJIT_SET_Z | SLJIT_SET_CARRY, ...)
832        Sets the zero flag if the result is zero, clears it otherwise.
833        Sets the variable flag if unsigned overflow (carry) occurs,
834        clears it otherwise.
835 
836    If an instruction (e.g. SLJIT_MOV) does not modify flags the flags are
837    unchanged.
838 
839    Using these flags can reduce the number of emitted instructions. E.g. a
840    fast loop can be implemented by decreasing a counter register and set the
841    zero flag to jump back if the counter register has not reached zero.
842 
843    Motivation: although CPUs can set a large number of flags, usually their
844    values are ignored or only one of them is used. Emulating a large number
845    of flags on systems without flag register is complicated so SLJIT
846    instructions must specify the flag they want to use and only that flag
847    will be emulated. The last arithmetic instruction can be repeated if
848    multiple flags need to be checked.
849 */
850 
851 /* Set Zero status flag. */
852 #define SLJIT_SET_Z			0x0200
853 /* Set the variable status flag if condition is true.
854    See comparison types. */
855 #define SLJIT_SET(condition)			((condition) << 10)
856 
857 /* Notes:
858      - you cannot postpone conditional jump instructions except if noted that
859        the instruction does not set flags (See: SLJIT_KEEP_FLAGS).
860      - flag combinations: '|' means 'logical or'. */
861 
862 /* Starting index of opcodes for sljit_emit_op0. */
863 #define SLJIT_OP0_BASE			0
864 
865 /* Flags: - (does not modify flags)
866    Note: breakpoint instruction is not supported by all architectures (e.g. ppc)
867          It falls back to SLJIT_NOP in those cases. */
868 #define SLJIT_BREAKPOINT		(SLJIT_OP0_BASE + 0)
869 /* Flags: - (does not modify flags)
870    Note: may or may not cause an extra cycle wait
871          it can even decrease the runtime in a few cases. */
872 #define SLJIT_NOP			(SLJIT_OP0_BASE + 1)
873 /* Flags: - (may destroy flags)
874    Unsigned multiplication of SLJIT_R0 and SLJIT_R1.
875    Result is placed into SLJIT_R1:SLJIT_R0 (high:low) word */
876 #define SLJIT_LMUL_UW			(SLJIT_OP0_BASE + 2)
877 /* Flags: - (may destroy flags)
878    Signed multiplication of SLJIT_R0 and SLJIT_R1.
879    Result is placed into SLJIT_R1:SLJIT_R0 (high:low) word */
880 #define SLJIT_LMUL_SW			(SLJIT_OP0_BASE + 3)
881 /* Flags: - (may destroy flags)
882    Unsigned divide of the value in SLJIT_R0 by the value in SLJIT_R1.
883    The result is placed into SLJIT_R0 and the remainder into SLJIT_R1.
884    Note: if SLJIT_R1 is 0, the behaviour is undefined. */
885 #define SLJIT_DIVMOD_UW			(SLJIT_OP0_BASE + 4)
886 #define SLJIT_DIVMOD_U32		(SLJIT_DIVMOD_UW | SLJIT_I32_OP)
887 /* Flags: - (may destroy flags)
888    Signed divide of the value in SLJIT_R0 by the value in SLJIT_R1.
889    The result is placed into SLJIT_R0 and the remainder into SLJIT_R1.
890    Note: if SLJIT_R1 is 0, the behaviour is undefined.
891    Note: if SLJIT_R1 is -1 and SLJIT_R0 is integer min (0x800..00),
892          the behaviour is undefined. */
893 #define SLJIT_DIVMOD_SW			(SLJIT_OP0_BASE + 5)
894 #define SLJIT_DIVMOD_S32		(SLJIT_DIVMOD_SW | SLJIT_I32_OP)
895 /* Flags: - (may destroy flags)
896    Unsigned divide of the value in SLJIT_R0 by the value in SLJIT_R1.
897    The result is placed into SLJIT_R0. SLJIT_R1 preserves its value.
898    Note: if SLJIT_R1 is 0, the behaviour is undefined. */
899 #define SLJIT_DIV_UW			(SLJIT_OP0_BASE + 6)
900 #define SLJIT_DIV_U32			(SLJIT_DIV_UW | SLJIT_I32_OP)
901 /* Flags: - (may destroy flags)
902    Signed divide of the value in SLJIT_R0 by the value in SLJIT_R1.
903    The result is placed into SLJIT_R0. SLJIT_R1 preserves its value.
904    Note: if SLJIT_R1 is 0, the behaviour is undefined.
905    Note: if SLJIT_R1 is -1 and SLJIT_R0 is integer min (0x800..00),
906          the behaviour is undefined. */
907 #define SLJIT_DIV_SW			(SLJIT_OP0_BASE + 7)
908 #define SLJIT_DIV_S32			(SLJIT_DIV_SW | SLJIT_I32_OP)
909 /* Flags: - (does not modify flags)
910    ENDBR32 instruction for x86-32 and ENDBR64 instruction for x86-64
911    when Intel Control-flow Enforcement Technology (CET) is enabled.
912    No instruction for other architectures.  */
913 #define SLJIT_ENDBR			(SLJIT_OP0_BASE + 8)
914 /* Flags: - (may destroy flags)
915    Skip stack frames before return.  */
916 #define SLJIT_SKIP_FRAMES_BEFORE_RETURN	(SLJIT_OP0_BASE + 9)
917 
918 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op0(struct sljit_compiler *compiler, sljit_s32 op);
919 
920 /* Starting index of opcodes for sljit_emit_op1. */
921 #define SLJIT_OP1_BASE			32
922 
923 /* The MOV instruction transfers data from source to destination.
924 
925    MOV instruction suffixes:
926 
927    U8  - unsigned 8 bit data transfer
928    S8  - signed 8 bit data transfer
929    U16 - unsigned 16 bit data transfer
930    S16 - signed 16 bit data transfer
931    U32 - unsigned int (32 bit) data transfer
932    S32 - signed int (32 bit) data transfer
933    P   - pointer (sljit_p) data transfer
934 */
935 
936 /* Flags: - (does not modify flags) */
937 #define SLJIT_MOV			(SLJIT_OP1_BASE + 0)
938 /* Flags: - (does not modify flags) */
939 #define SLJIT_MOV_U8			(SLJIT_OP1_BASE + 1)
940 #define SLJIT_MOV32_U8			(SLJIT_MOV_U8 | SLJIT_I32_OP)
941 /* Flags: - (does not modify flags) */
942 #define SLJIT_MOV_S8			(SLJIT_OP1_BASE + 2)
943 #define SLJIT_MOV32_S8			(SLJIT_MOV_S8 | SLJIT_I32_OP)
944 /* Flags: - (does not modify flags) */
945 #define SLJIT_MOV_U16			(SLJIT_OP1_BASE + 3)
946 #define SLJIT_MOV32_U16			(SLJIT_MOV_U16 | SLJIT_I32_OP)
947 /* Flags: - (does not modify flags) */
948 #define SLJIT_MOV_S16			(SLJIT_OP1_BASE + 4)
949 #define SLJIT_MOV32_S16			(SLJIT_MOV_S16 | SLJIT_I32_OP)
950 /* Flags: - (does not modify flags)
951    Note: no SLJIT_MOV32_U32 form, since it is the same as SLJIT_MOV32 */
952 #define SLJIT_MOV_U32			(SLJIT_OP1_BASE + 5)
953 /* Flags: - (does not modify flags)
954    Note: no SLJIT_MOV32_S32 form, since it is the same as SLJIT_MOV32 */
955 #define SLJIT_MOV_S32			(SLJIT_OP1_BASE + 6)
956 /* Flags: - (does not modify flags) */
957 #define SLJIT_MOV32			(SLJIT_MOV_S32 | SLJIT_I32_OP)
958 /* Flags: - (does not modify flags)
959    Note: load a pointer sized data, useful on x32 (a 32 bit mode on x86-64
960          where all x64 features are available, e.g. 16 register) or similar
961          compiling modes */
962 #define SLJIT_MOV_P			(SLJIT_OP1_BASE + 7)
963 /* Flags: Z
964    Note: immediate source argument is not supported */
965 #define SLJIT_NOT			(SLJIT_OP1_BASE + 8)
966 #define SLJIT_NOT32			(SLJIT_NOT | SLJIT_I32_OP)
967 /* Flags: Z | OVERFLOW
968    Note: immediate source argument is not supported */
969 #define SLJIT_NEG			(SLJIT_OP1_BASE + 9)
970 #define SLJIT_NEG32			(SLJIT_NEG | SLJIT_I32_OP)
971 /* Count leading zeroes
972    Flags: - (may destroy flags)
973    Note: immediate source argument is not supported */
974 #define SLJIT_CLZ			(SLJIT_OP1_BASE + 10)
975 #define SLJIT_CLZ32			(SLJIT_CLZ | SLJIT_I32_OP)
976 
977 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op1(struct sljit_compiler *compiler, sljit_s32 op,
978 	sljit_s32 dst, sljit_sw dstw,
979 	sljit_s32 src, sljit_sw srcw);
980 
981 /* Starting index of opcodes for sljit_emit_op2. */
982 #define SLJIT_OP2_BASE			96
983 
984 /* Flags: Z | OVERFLOW | CARRY */
985 #define SLJIT_ADD			(SLJIT_OP2_BASE + 0)
986 #define SLJIT_ADD32			(SLJIT_ADD | SLJIT_I32_OP)
987 /* Flags: CARRY */
988 #define SLJIT_ADDC			(SLJIT_OP2_BASE + 1)
989 #define SLJIT_ADDC32			(SLJIT_ADDC | SLJIT_I32_OP)
990 /* Flags: Z | LESS | GREATER_EQUAL | GREATER | LESS_EQUAL
991           SIG_LESS | SIG_GREATER_EQUAL | SIG_GREATER
992           SIG_LESS_EQUAL | CARRY */
993 #define SLJIT_SUB			(SLJIT_OP2_BASE + 2)
994 #define SLJIT_SUB32			(SLJIT_SUB | SLJIT_I32_OP)
995 /* Flags: CARRY */
996 #define SLJIT_SUBC			(SLJIT_OP2_BASE + 3)
997 #define SLJIT_SUBC32			(SLJIT_SUBC | SLJIT_I32_OP)
998 /* Note: integer mul
999    Flags: MUL_OVERFLOW */
1000 #define SLJIT_MUL			(SLJIT_OP2_BASE + 4)
1001 #define SLJIT_MUL32			(SLJIT_MUL | SLJIT_I32_OP)
1002 /* Flags: Z */
1003 #define SLJIT_AND			(SLJIT_OP2_BASE + 5)
1004 #define SLJIT_AND32			(SLJIT_AND | SLJIT_I32_OP)
1005 /* Flags: Z */
1006 #define SLJIT_OR			(SLJIT_OP2_BASE + 6)
1007 #define SLJIT_OR32			(SLJIT_OR | SLJIT_I32_OP)
1008 /* Flags: Z */
1009 #define SLJIT_XOR			(SLJIT_OP2_BASE + 7)
1010 #define SLJIT_XOR32			(SLJIT_XOR | SLJIT_I32_OP)
1011 /* Flags: Z
1012    Let bit_length be the length of the shift operation: 32 or 64.
1013    If src2 is immediate, src2w is masked by (bit_length - 1).
1014    Otherwise, if the content of src2 is outside the range from 0
1015    to bit_length - 1, the result is undefined. */
1016 #define SLJIT_SHL			(SLJIT_OP2_BASE + 8)
1017 #define SLJIT_SHL32			(SLJIT_SHL | SLJIT_I32_OP)
1018 /* Flags: Z
1019    Let bit_length be the length of the shift operation: 32 or 64.
1020    If src2 is immediate, src2w is masked by (bit_length - 1).
1021    Otherwise, if the content of src2 is outside the range from 0
1022    to bit_length - 1, the result is undefined. */
1023 #define SLJIT_LSHR			(SLJIT_OP2_BASE + 9)
1024 #define SLJIT_LSHR32			(SLJIT_LSHR | SLJIT_I32_OP)
1025 /* Flags: Z
1026    Let bit_length be the length of the shift operation: 32 or 64.
1027    If src2 is immediate, src2w is masked by (bit_length - 1).
1028    Otherwise, if the content of src2 is outside the range from 0
1029    to bit_length - 1, the result is undefined. */
1030 #define SLJIT_ASHR			(SLJIT_OP2_BASE + 10)
1031 #define SLJIT_ASHR32			(SLJIT_ASHR | SLJIT_I32_OP)
1032 
1033 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op2(struct sljit_compiler *compiler, sljit_s32 op,
1034 	sljit_s32 dst, sljit_sw dstw,
1035 	sljit_s32 src1, sljit_sw src1w,
1036 	sljit_s32 src2, sljit_sw src2w);
1037 
1038 /* Starting index of opcodes for sljit_emit_op2. */
1039 #define SLJIT_OP_SRC_BASE		128
1040 
1041 /* Note: src cannot be an immedate value
1042    Flags: - (does not modify flags) */
1043 #define SLJIT_FAST_RETURN		(SLJIT_OP_SRC_BASE + 0)
1044 /* Skip stack frames before fast return.
1045    Note: src cannot be an immedate value
1046    Flags: may destroy flags. */
1047 #define SLJIT_SKIP_FRAMES_BEFORE_FAST_RETURN	(SLJIT_OP_SRC_BASE + 1)
1048 /* Prefetch value into the level 1 data cache
1049    Note: if the target CPU does not support data prefetch,
1050          no instructions are emitted.
1051    Note: this instruction never fails, even if the memory address is invalid.
1052    Flags: - (does not modify flags) */
1053 #define SLJIT_PREFETCH_L1		(SLJIT_OP_SRC_BASE + 2)
1054 /* Prefetch value into the level 2 data cache
1055    Note: same as SLJIT_PREFETCH_L1 if the target CPU
1056          does not support this instruction form.
1057    Note: this instruction never fails, even if the memory address is invalid.
1058    Flags: - (does not modify flags) */
1059 #define SLJIT_PREFETCH_L2		(SLJIT_OP_SRC_BASE + 3)
1060 /* Prefetch value into the level 3 data cache
1061    Note: same as SLJIT_PREFETCH_L2 if the target CPU
1062          does not support this instruction form.
1063    Note: this instruction never fails, even if the memory address is invalid.
1064    Flags: - (does not modify flags) */
1065 #define SLJIT_PREFETCH_L3		(SLJIT_OP_SRC_BASE + 4)
1066 /* Prefetch a value which is only used once (and can be discarded afterwards)
1067    Note: same as SLJIT_PREFETCH_L1 if the target CPU
1068          does not support this instruction form.
1069    Note: this instruction never fails, even if the memory address is invalid.
1070    Flags: - (does not modify flags) */
1071 #define SLJIT_PREFETCH_ONCE		(SLJIT_OP_SRC_BASE + 5)
1072 
1073 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op_src(struct sljit_compiler *compiler, sljit_s32 op,
1074 	sljit_s32 src, sljit_sw srcw);
1075 
1076 /* Starting index of opcodes for sljit_emit_fop1. */
1077 #define SLJIT_FOP1_BASE			160
1078 
1079 /* Flags: - (does not modify flags) */
1080 #define SLJIT_MOV_F64			(SLJIT_FOP1_BASE + 0)
1081 #define SLJIT_MOV_F32			(SLJIT_MOV_F64 | SLJIT_F32_OP)
1082 /* Convert opcodes: CONV[DST_TYPE].FROM[SRC_TYPE]
1083    SRC/DST TYPE can be: D - double, S - single, W - signed word, I - signed int
1084    Rounding mode when the destination is W or I: round towards zero. */
1085 /* Flags: - (does not modify flags) */
1086 #define SLJIT_CONV_F64_FROM_F32		(SLJIT_FOP1_BASE + 1)
1087 #define SLJIT_CONV_F32_FROM_F64		(SLJIT_CONV_F64_FROM_F32 | SLJIT_F32_OP)
1088 /* Flags: - (does not modify flags) */
1089 #define SLJIT_CONV_SW_FROM_F64		(SLJIT_FOP1_BASE + 2)
1090 #define SLJIT_CONV_SW_FROM_F32		(SLJIT_CONV_SW_FROM_F64 | SLJIT_F32_OP)
1091 /* Flags: - (does not modify flags) */
1092 #define SLJIT_CONV_S32_FROM_F64		(SLJIT_FOP1_BASE + 3)
1093 #define SLJIT_CONV_S32_FROM_F32		(SLJIT_CONV_S32_FROM_F64 | SLJIT_F32_OP)
1094 /* Flags: - (does not modify flags) */
1095 #define SLJIT_CONV_F64_FROM_SW		(SLJIT_FOP1_BASE + 4)
1096 #define SLJIT_CONV_F32_FROM_SW		(SLJIT_CONV_F64_FROM_SW | SLJIT_F32_OP)
1097 /* Flags: - (does not modify flags) */
1098 #define SLJIT_CONV_F64_FROM_S32		(SLJIT_FOP1_BASE + 5)
1099 #define SLJIT_CONV_F32_FROM_S32		(SLJIT_CONV_F64_FROM_S32 | SLJIT_F32_OP)
1100 /* Note: dst is the left and src is the right operand for SLJIT_CMPD.
1101    Flags: EQUAL_F | LESS_F | GREATER_EQUAL_F | GREATER_F | LESS_EQUAL_F */
1102 #define SLJIT_CMP_F64			(SLJIT_FOP1_BASE + 6)
1103 #define SLJIT_CMP_F32			(SLJIT_CMP_F64 | SLJIT_F32_OP)
1104 /* Flags: - (does not modify flags) */
1105 #define SLJIT_NEG_F64			(SLJIT_FOP1_BASE + 7)
1106 #define SLJIT_NEG_F32			(SLJIT_NEG_F64 | SLJIT_F32_OP)
1107 /* Flags: - (does not modify flags) */
1108 #define SLJIT_ABS_F64			(SLJIT_FOP1_BASE + 8)
1109 #define SLJIT_ABS_F32			(SLJIT_ABS_F64 | SLJIT_F32_OP)
1110 
1111 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fop1(struct sljit_compiler *compiler, sljit_s32 op,
1112 	sljit_s32 dst, sljit_sw dstw,
1113 	sljit_s32 src, sljit_sw srcw);
1114 
1115 /* Starting index of opcodes for sljit_emit_fop2. */
1116 #define SLJIT_FOP2_BASE			192
1117 
1118 /* Flags: - (does not modify flags) */
1119 #define SLJIT_ADD_F64			(SLJIT_FOP2_BASE + 0)
1120 #define SLJIT_ADD_F32			(SLJIT_ADD_F64 | SLJIT_F32_OP)
1121 /* Flags: - (does not modify flags) */
1122 #define SLJIT_SUB_F64			(SLJIT_FOP2_BASE + 1)
1123 #define SLJIT_SUB_F32			(SLJIT_SUB_F64 | SLJIT_F32_OP)
1124 /* Flags: - (does not modify flags) */
1125 #define SLJIT_MUL_F64			(SLJIT_FOP2_BASE + 2)
1126 #define SLJIT_MUL_F32			(SLJIT_MUL_F64 | SLJIT_F32_OP)
1127 /* Flags: - (does not modify flags) */
1128 #define SLJIT_DIV_F64			(SLJIT_FOP2_BASE + 3)
1129 #define SLJIT_DIV_F32			(SLJIT_DIV_F64 | SLJIT_F32_OP)
1130 
1131 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fop2(struct sljit_compiler *compiler, sljit_s32 op,
1132 	sljit_s32 dst, sljit_sw dstw,
1133 	sljit_s32 src1, sljit_sw src1w,
1134 	sljit_s32 src2, sljit_sw src2w);
1135 
1136 /* Label and jump instructions. */
1137 
1138 SLJIT_API_FUNC_ATTRIBUTE struct sljit_label* sljit_emit_label(struct sljit_compiler *compiler);
1139 
1140 /* Invert (negate) conditional type: xor (^) with 0x1 */
1141 
1142 /* Integer comparison types. */
1143 #define SLJIT_EQUAL			0
1144 #define SLJIT_EQUAL32			(SLJIT_EQUAL | SLJIT_I32_OP)
1145 #define SLJIT_ZERO			0
1146 #define SLJIT_ZERO32			(SLJIT_ZERO | SLJIT_I32_OP)
1147 #define SLJIT_NOT_EQUAL			1
1148 #define SLJIT_NOT_EQUAL32		(SLJIT_NOT_EQUAL | SLJIT_I32_OP)
1149 #define SLJIT_NOT_ZERO			1
1150 #define SLJIT_NOT_ZERO32		(SLJIT_NOT_ZERO | SLJIT_I32_OP)
1151 
1152 #define SLJIT_LESS			2
1153 #define SLJIT_LESS32			(SLJIT_LESS | SLJIT_I32_OP)
1154 #define SLJIT_SET_LESS			SLJIT_SET(SLJIT_LESS)
1155 #define SLJIT_GREATER_EQUAL		3
1156 #define SLJIT_GREATER_EQUAL32		(SLJIT_GREATER_EQUAL | SLJIT_I32_OP)
1157 #define SLJIT_SET_GREATER_EQUAL		SLJIT_SET(SLJIT_GREATER_EQUAL)
1158 #define SLJIT_GREATER			4
1159 #define SLJIT_GREATER32			(SLJIT_GREATER | SLJIT_I32_OP)
1160 #define SLJIT_SET_GREATER		SLJIT_SET(SLJIT_GREATER)
1161 #define SLJIT_LESS_EQUAL		5
1162 #define SLJIT_LESS_EQUAL32		(SLJIT_LESS_EQUAL | SLJIT_I32_OP)
1163 #define SLJIT_SET_LESS_EQUAL		SLJIT_SET(SLJIT_LESS_EQUAL)
1164 #define SLJIT_SIG_LESS			6
1165 #define SLJIT_SIG_LESS32		(SLJIT_SIG_LESS | SLJIT_I32_OP)
1166 #define SLJIT_SET_SIG_LESS		SLJIT_SET(SLJIT_SIG_LESS)
1167 #define SLJIT_SIG_GREATER_EQUAL		7
1168 #define SLJIT_SIG_GREATER_EQUAL32	(SLJIT_SIG_GREATER_EQUAL | SLJIT_I32_OP)
1169 #define SLJIT_SET_SIG_GREATER_EQUAL	SLJIT_SET(SLJIT_SIG_GREATER_EQUAL)
1170 #define SLJIT_SIG_GREATER		8
1171 #define SLJIT_SIG_GREATER32		(SLJIT_SIG_GREATER | SLJIT_I32_OP)
1172 #define SLJIT_SET_SIG_GREATER		SLJIT_SET(SLJIT_SIG_GREATER)
1173 #define SLJIT_SIG_LESS_EQUAL		9
1174 #define SLJIT_SIG_LESS_EQUAL32		(SLJIT_SIG_LESS_EQUAL | SLJIT_I32_OP)
1175 #define SLJIT_SET_SIG_LESS_EQUAL	SLJIT_SET(SLJIT_SIG_LESS_EQUAL)
1176 
1177 #define SLJIT_OVERFLOW			10
1178 #define SLJIT_OVERFLOW32		(SLJIT_OVERFLOW | SLJIT_I32_OP)
1179 #define SLJIT_SET_OVERFLOW		SLJIT_SET(SLJIT_OVERFLOW)
1180 #define SLJIT_NOT_OVERFLOW		11
1181 #define SLJIT_NOT_OVERFLOW32		(SLJIT_NOT_OVERFLOW | SLJIT_I32_OP)
1182 
1183 #define SLJIT_MUL_OVERFLOW		12
1184 #define SLJIT_MUL_OVERFLOW32		(SLJIT_MUL_OVERFLOW | SLJIT_I32_OP)
1185 #define SLJIT_SET_MUL_OVERFLOW		SLJIT_SET(SLJIT_MUL_OVERFLOW)
1186 #define SLJIT_MUL_NOT_OVERFLOW		13
1187 #define SLJIT_MUL_NOT_OVERFLOW32	(SLJIT_MUL_NOT_OVERFLOW | SLJIT_I32_OP)
1188 
1189 /* There is no SLJIT_CARRY or SLJIT_NOT_CARRY. */
1190 #define SLJIT_SET_CARRY			SLJIT_SET(14)
1191 
1192 /* Floating point comparison types. */
1193 #define SLJIT_EQUAL_F64			16
1194 #define SLJIT_EQUAL_F32			(SLJIT_EQUAL_F64 | SLJIT_F32_OP)
1195 #define SLJIT_SET_EQUAL_F		SLJIT_SET(SLJIT_EQUAL_F64)
1196 #define SLJIT_NOT_EQUAL_F64		17
1197 #define SLJIT_NOT_EQUAL_F32		(SLJIT_NOT_EQUAL_F64 | SLJIT_F32_OP)
1198 #define SLJIT_SET_NOT_EQUAL_F		SLJIT_SET(SLJIT_NOT_EQUAL_F64)
1199 #define SLJIT_LESS_F64			18
1200 #define SLJIT_LESS_F32			(SLJIT_LESS_F64 | SLJIT_F32_OP)
1201 #define SLJIT_SET_LESS_F		SLJIT_SET(SLJIT_LESS_F64)
1202 #define SLJIT_GREATER_EQUAL_F64		19
1203 #define SLJIT_GREATER_EQUAL_F32		(SLJIT_GREATER_EQUAL_F64 | SLJIT_F32_OP)
1204 #define SLJIT_SET_GREATER_EQUAL_F	SLJIT_SET(SLJIT_GREATER_EQUAL_F64)
1205 #define SLJIT_GREATER_F64		20
1206 #define SLJIT_GREATER_F32		(SLJIT_GREATER_F64 | SLJIT_F32_OP)
1207 #define SLJIT_SET_GREATER_F		SLJIT_SET(SLJIT_GREATER_F64)
1208 #define SLJIT_LESS_EQUAL_F64		21
1209 #define SLJIT_LESS_EQUAL_F32		(SLJIT_LESS_EQUAL_F64 | SLJIT_F32_OP)
1210 #define SLJIT_SET_LESS_EQUAL_F		SLJIT_SET(SLJIT_LESS_EQUAL_F64)
1211 #define SLJIT_UNORDERED_F64		22
1212 #define SLJIT_UNORDERED_F32		(SLJIT_UNORDERED_F64 | SLJIT_F32_OP)
1213 #define SLJIT_SET_UNORDERED_F		SLJIT_SET(SLJIT_UNORDERED_F64)
1214 #define SLJIT_ORDERED_F64		23
1215 #define SLJIT_ORDERED_F32		(SLJIT_ORDERED_F64 | SLJIT_F32_OP)
1216 #define SLJIT_SET_ORDERED_F		SLJIT_SET(SLJIT_ORDERED_F64)
1217 
1218 /* Unconditional jump types. */
1219 #define SLJIT_JUMP			24
1220 	/* Fast calling method. See sljit_emit_fast_enter / SLJIT_FAST_RETURN. */
1221 #define SLJIT_FAST_CALL			25
1222 	/* Called function must be declared with the SLJIT_FUNC attribute. */
1223 #define SLJIT_CALL			26
1224 	/* Called function must be declared with cdecl attribute.
1225 	   This is the default attribute for C functions. */
1226 #define SLJIT_CALL_CDECL		27
1227 
1228 /* The target can be changed during runtime (see: sljit_set_jump_addr). */
1229 #define SLJIT_REWRITABLE_JUMP		0x1000
1230 
1231 /* Emit a jump instruction. The destination is not set, only the type of the jump.
1232     type must be between SLJIT_EQUAL and SLJIT_FAST_CALL
1233     type can be combined (or'ed) with SLJIT_REWRITABLE_JUMP
1234 
1235    Flags: does not modify flags. */
1236 SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_jump(struct sljit_compiler *compiler, sljit_s32 type);
1237 
1238 /* Emit a C compiler (ABI) compatible function call.
1239     type must be SLJIT_CALL or SLJIT_CALL_CDECL
1240     type can be combined (or'ed) with SLJIT_REWRITABLE_JUMP
1241     arg_types is the combination of SLJIT_RET / SLJIT_ARGx (SLJIT_DEF_RET / SLJIT_DEF_ARGx) macros
1242 
1243    Flags: destroy all flags. */
1244 SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_call(struct sljit_compiler *compiler, sljit_s32 type, sljit_s32 arg_types);
1245 
1246 /* Basic arithmetic comparison. In most architectures it is implemented as
1247    an SLJIT_SUB operation (with SLJIT_UNUSED destination and setting
1248    appropriate flags) followed by a sljit_emit_jump. However some
1249    architectures (i.e: ARM64 or MIPS) may employ special optimizations here.
1250    It is suggested to use this comparison form when appropriate.
1251     type must be between SLJIT_EQUAL and SLJIT_I_SIG_LESS_EQUAL
1252     type can be combined (or'ed) with SLJIT_REWRITABLE_JUMP
1253 
1254    Flags: may destroy flags. */
1255 SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_cmp(struct sljit_compiler *compiler, sljit_s32 type,
1256 	sljit_s32 src1, sljit_sw src1w,
1257 	sljit_s32 src2, sljit_sw src2w);
1258 
1259 /* Basic floating point comparison. In most architectures it is implemented as
1260    an SLJIT_FCMP operation (setting appropriate flags) followed by a
1261    sljit_emit_jump. However some architectures (i.e: MIPS) may employ
1262    special optimizations here. It is suggested to use this comparison form
1263    when appropriate.
1264     type must be between SLJIT_EQUAL_F64 and SLJIT_ORDERED_F32
1265     type can be combined (or'ed) with SLJIT_REWRITABLE_JUMP
1266    Flags: destroy flags.
1267    Note: if either operand is NaN, the behaviour is undefined for
1268          types up to SLJIT_S_LESS_EQUAL. */
1269 SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_fcmp(struct sljit_compiler *compiler, sljit_s32 type,
1270 	sljit_s32 src1, sljit_sw src1w,
1271 	sljit_s32 src2, sljit_sw src2w);
1272 
1273 /* Set the destination of the jump to this label. */
1274 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_label(struct sljit_jump *jump, struct sljit_label* label);
1275 /* Set the destination address of the jump to this label. */
1276 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_target(struct sljit_jump *jump, sljit_uw target);
1277 
1278 /* Emit an indirect jump or fast call.
1279    Direct form: set src to SLJIT_IMM() and srcw to the address
1280    Indirect form: any other valid addressing mode
1281     type must be between SLJIT_JUMP and SLJIT_FAST_CALL
1282 
1283    Flags: does not modify flags. */
1284 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_ijump(struct sljit_compiler *compiler, sljit_s32 type, sljit_s32 src, sljit_sw srcw);
1285 
1286 /* Emit a C compiler (ABI) compatible function call.
1287    Direct form: set src to SLJIT_IMM() and srcw to the address
1288    Indirect form: any other valid addressing mode
1289     type must be SLJIT_CALL or SLJIT_CALL_CDECL
1290     arg_types is the combination of SLJIT_RET / SLJIT_ARGx (SLJIT_DEF_RET / SLJIT_DEF_ARGx) macros
1291 
1292    Flags: destroy all flags. */
1293 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_icall(struct sljit_compiler *compiler, sljit_s32 type, sljit_s32 arg_types, sljit_s32 src, sljit_sw srcw);
1294 
1295 /* Perform the operation using the conditional flags as the second argument.
1296    Type must always be between SLJIT_EQUAL and SLJIT_ORDERED_F64. The value
1297    represented by the type is 1, if the condition represented by the type
1298    is fulfilled, and 0 otherwise.
1299 
1300    If op == SLJIT_MOV, SLJIT_MOV32:
1301      Set dst to the value represented by the type (0 or 1).
1302      Flags: - (does not modify flags)
1303    If op == SLJIT_OR, op == SLJIT_AND, op == SLJIT_XOR
1304      Performs the binary operation using dst as the first, and the value
1305      represented by type as the second argument. Result is written into dst.
1306      Flags: Z (may destroy flags) */
1307 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op_flags(struct sljit_compiler *compiler, sljit_s32 op,
1308 	sljit_s32 dst, sljit_sw dstw,
1309 	sljit_s32 type);
1310 
1311 /* Emit a conditional mov instruction which moves source to destination,
1312    if the condition is satisfied. Unlike other arithmetic operations this
1313    instruction does not support memory access.
1314 
1315    type must be between SLJIT_EQUAL and SLJIT_ORDERED_F64
1316    dst_reg must be a valid register and it can be combined
1317       with SLJIT_I32_OP to perform a 32 bit arithmetic operation
1318    src must be register or immediate (SLJIT_IMM)
1319 
1320    Flags: - (does not modify flags) */
1321 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_cmov(struct sljit_compiler *compiler, sljit_s32 type,
1322 	sljit_s32 dst_reg,
1323 	sljit_s32 src, sljit_sw srcw);
1324 
1325 /* The following flags are used by sljit_emit_mem() and sljit_emit_fmem(). */
1326 
1327 /* When SLJIT_MEM_SUPP is passed, no instructions are emitted.
1328    Instead the function returns with SLJIT_SUCCESS if the instruction
1329    form is supported and SLJIT_ERR_UNSUPPORTED otherwise. This flag
1330    allows runtime checking of available instruction forms. */
1331 #define SLJIT_MEM_SUPP		0x0200
1332 /* Memory load operation. This is the default. */
1333 #define SLJIT_MEM_LOAD		0x0000
1334 /* Memory store operation. */
1335 #define SLJIT_MEM_STORE		0x0400
1336 /* Base register is updated before the memory access. */
1337 #define SLJIT_MEM_PRE		0x0800
1338 /* Base register is updated after the memory access. */
1339 #define SLJIT_MEM_POST		0x1000
1340 
1341 /* Emit a single memory load or store with update instruction. When the
1342    requested instruction form is not supported by the CPU, it returns
1343    with SLJIT_ERR_UNSUPPORTED instead of emulating the instruction. This
1344    allows specializing tight loops based on the supported instruction
1345    forms (see SLJIT_MEM_SUPP flag).
1346 
1347    type must be between SLJIT_MOV and SLJIT_MOV_P and can be
1348      combined with SLJIT_MEM_* flags. Either SLJIT_MEM_PRE
1349      or SLJIT_MEM_POST must be specified.
1350    reg is the source or destination register, and must be
1351      different from the base register of the mem operand
1352    mem must be a SLJIT_MEM1() or SLJIT_MEM2() operand
1353 
1354    Flags: - (does not modify flags) */
1355 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_mem(struct sljit_compiler *compiler, sljit_s32 type,
1356 	sljit_s32 reg,
1357 	sljit_s32 mem, sljit_sw memw);
1358 
1359 /* Same as sljit_emit_mem except the followings:
1360 
1361    type must be SLJIT_MOV_F64 or SLJIT_MOV_F32 and can be
1362      combined with SLJIT_MEM_* flags. Either SLJIT_MEM_PRE
1363      or SLJIT_MEM_POST must be specified.
1364    freg is the source or destination floating point register */
1365 
1366 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fmem(struct sljit_compiler *compiler, sljit_s32 type,
1367 	sljit_s32 freg,
1368 	sljit_s32 mem, sljit_sw memw);
1369 
1370 /* Copies the base address of SLJIT_SP + offset to dst. The offset can be
1371    anything to negate the effect of relative addressing. For example if an
1372    array of sljit_sw values is stored on the stack from offset 0x40, and R0
1373    contains the offset of an array item plus 0x120, this item can be
1374    overwritten by two SLJIT instructions:
1375 
1376    sljit_get_local_base(compiler, SLJIT_R1, 0, 0x40 - 0x120);
1377    sljit_emit_op1(compiler, SLJIT_MOV, SLJIT_MEM2(SLJIT_R1, SLJIT_R0), 0, SLJIT_IMM, 0x5);
1378 
1379    Flags: - (may destroy flags) */
1380 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_get_local_base(struct sljit_compiler *compiler, sljit_s32 dst, sljit_sw dstw, sljit_sw offset);
1381 
1382 /* Store a value that can be changed runtime (see: sljit_get_const_addr / sljit_set_const)
1383    Flags: - (does not modify flags) */
1384 SLJIT_API_FUNC_ATTRIBUTE struct sljit_const* sljit_emit_const(struct sljit_compiler *compiler, sljit_s32 dst, sljit_sw dstw, sljit_sw init_value);
1385 
1386 /* Store the value of a label (see: sljit_set_put_label)
1387    Flags: - (does not modify flags) */
1388 SLJIT_API_FUNC_ATTRIBUTE struct sljit_put_label* sljit_emit_put_label(struct sljit_compiler *compiler, sljit_s32 dst, sljit_sw dstw);
1389 
1390 /* Set the value stored by put_label to this label. */
1391 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_put_label(struct sljit_put_label *put_label, struct sljit_label *label);
1392 
1393 /* After the code generation the address for label, jump and const instructions
1394    are computed. Since these structures are freed by sljit_free_compiler, the
1395    addresses must be preserved by the user program elsewere. */
sljit_get_label_addr(struct sljit_label * label)1396 static SLJIT_INLINE sljit_uw sljit_get_label_addr(struct sljit_label *label) { return label->addr; }
sljit_get_jump_addr(struct sljit_jump * jump)1397 static SLJIT_INLINE sljit_uw sljit_get_jump_addr(struct sljit_jump *jump) { return jump->addr; }
sljit_get_const_addr(struct sljit_const * const_)1398 static SLJIT_INLINE sljit_uw sljit_get_const_addr(struct sljit_const *const_) { return const_->addr; }
1399 
1400 /* Only the address and executable offset are required to perform dynamic
1401    code modifications. See sljit_get_executable_offset function. */
1402 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_jump_addr(sljit_uw addr, sljit_uw new_target, sljit_sw executable_offset);
1403 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_const(sljit_uw addr, sljit_sw new_constant, sljit_sw executable_offset);
1404 
1405 /* --------------------------------------------------------------------- */
1406 /*  Miscellaneous utility functions                                      */
1407 /* --------------------------------------------------------------------- */
1408 
1409 #define SLJIT_MAJOR_VERSION	0
1410 #define SLJIT_MINOR_VERSION	94
1411 
1412 /* Get the human readable name of the platform. Can be useful on platforms
1413    like ARM, where ARM and Thumb2 functions can be mixed, and
1414    it is useful to know the type of the code generator. */
1415 SLJIT_API_FUNC_ATTRIBUTE const char* sljit_get_platform_name(void);
1416 
1417 /* Portable helper function to get an offset of a member. */
1418 #define SLJIT_OFFSETOF(base, member) ((sljit_sw)(&((base*)0x10)->member) - 0x10)
1419 
1420 #if (defined SLJIT_UTIL_STACK && SLJIT_UTIL_STACK)
1421 
1422 /* The sljit_stack structure and its manipulation functions provides
1423    an implementation for a top-down stack. The stack top is stored
1424    in the end field of the sljit_stack structure and the stack goes
1425    down to the min_start field, so the memory region reserved for
1426    this stack is between min_start (inclusive) and end (exclusive)
1427    fields. However the application can only use the region between
1428    start (inclusive) and end (exclusive) fields. The sljit_stack_resize
1429    function can be used to extend this region up to min_start.
1430 
1431    This feature uses the "address space reserve" feature of modern
1432    operating systems. Instead of allocating a large memory block
1433    applications can allocate a small memory region and extend it
1434    later without moving the content of the memory area. Therefore
1435    after a successful resize by sljit_stack_resize all pointers into
1436    this region are still valid.
1437 
1438    Note:
1439      this structure may not be supported by all operating systems.
1440      end and max_limit fields are aligned to PAGE_SIZE bytes (usually
1441          4 Kbyte or more).
1442      stack should grow in larger steps, e.g. 4Kbyte, 16Kbyte or more. */
1443 
1444 struct sljit_stack {
1445 	/* User data, anything can be stored here.
1446 	   Initialized to the same value as the end field. */
1447 	sljit_u8 *top;
1448 /* These members are read only. */
1449 	/* End address of the stack */
1450 	sljit_u8 *end;
1451 	/* Current start address of the stack. */
1452 	sljit_u8 *start;
1453 	/* Lowest start address of the stack. */
1454 	sljit_u8 *min_start;
1455 };
1456 
1457 /* Allocates a new stack. Returns NULL if unsuccessful.
1458    Note: see sljit_create_compiler for the explanation of allocator_data. */
1459 SLJIT_API_FUNC_ATTRIBUTE struct sljit_stack* SLJIT_FUNC sljit_allocate_stack(sljit_uw start_size, sljit_uw max_size, void *allocator_data);
1460 SLJIT_API_FUNC_ATTRIBUTE void SLJIT_FUNC sljit_free_stack(struct sljit_stack *stack, void *allocator_data);
1461 
1462 /* Can be used to increase (extend) or decrease (shrink) the stack
1463    memory area. Returns with new_start if successful and NULL otherwise.
1464    It always fails if new_start is less than min_start or greater or equal
1465    than end fields. The fields of the stack are not changed if the returned
1466    value is NULL (the current memory content is never lost). */
1467 SLJIT_API_FUNC_ATTRIBUTE sljit_u8 *SLJIT_FUNC sljit_stack_resize(struct sljit_stack *stack, sljit_u8 *new_start);
1468 
1469 #endif /* (defined SLJIT_UTIL_STACK && SLJIT_UTIL_STACK) */
1470 
1471 #if !(defined SLJIT_INDIRECT_CALL && SLJIT_INDIRECT_CALL)
1472 
1473 /* Get the entry address of a given function. */
1474 #define SLJIT_FUNC_OFFSET(func_name)	((sljit_sw)func_name)
1475 
1476 #else /* !(defined SLJIT_INDIRECT_CALL && SLJIT_INDIRECT_CALL) */
1477 
1478 /* All JIT related code should be placed in the same context (library, binary, etc.). */
1479 
1480 #define SLJIT_FUNC_OFFSET(func_name)	(*(sljit_sw*)(void*)func_name)
1481 
1482 /* For powerpc64, the function pointers point to a context descriptor. */
1483 struct sljit_function_context {
1484 	sljit_sw addr;
1485 	sljit_sw r2;
1486 	sljit_sw r11;
1487 };
1488 
1489 /* Fill the context arguments using the addr and the function.
1490    If func_ptr is NULL, it will not be set to the address of context
1491    If addr is NULL, the function address also comes from the func pointer. */
1492 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_function_context(void** func_ptr, struct sljit_function_context* context, sljit_sw addr, void* func);
1493 
1494 #endif /* !(defined SLJIT_INDIRECT_CALL && SLJIT_INDIRECT_CALL) */
1495 
1496 #if (defined SLJIT_EXECUTABLE_ALLOCATOR && SLJIT_EXECUTABLE_ALLOCATOR)
1497 /* Free unused executable memory. The allocator keeps some free memory
1498    around to reduce the number of OS executable memory allocations.
1499    This improves performance since these calls are costly. However
1500    it is sometimes desired to free all unused memory regions, e.g.
1501    before the application terminates. */
1502 SLJIT_API_FUNC_ATTRIBUTE void sljit_free_unused_memory_exec(void);
1503 #endif
1504 
1505 /* --------------------------------------------------------------------- */
1506 /*  CPU specific functions                                               */
1507 /* --------------------------------------------------------------------- */
1508 
1509 /* The following function is a helper function for sljit_emit_op_custom.
1510    It returns with the real machine register index ( >=0 ) of any SLJIT_R,
1511    SLJIT_S and SLJIT_SP registers.
1512 
1513    Note: it returns with -1 for virtual registers (only on x86-32). */
1514 
1515 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_get_register_index(sljit_s32 reg);
1516 
1517 /* The following function is a helper function for sljit_emit_op_custom.
1518    It returns with the real machine register index of any SLJIT_FLOAT register.
1519 
1520    Note: the index is always an even number on ARM (except ARM-64), MIPS, and SPARC. */
1521 
1522 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_get_float_register_index(sljit_s32 reg);
1523 
1524 /* Any instruction can be inserted into the instruction stream by
1525    sljit_emit_op_custom. It has a similar purpose as inline assembly.
1526    The size parameter must match to the instruction size of the target
1527    architecture:
1528 
1529          x86: 0 < size <= 15. The instruction argument can be byte aligned.
1530       Thumb2: if size == 2, the instruction argument must be 2 byte aligned.
1531               if size == 4, the instruction argument must be 4 byte aligned.
1532    Otherwise: size must be 4 and instruction argument must be 4 byte aligned. */
1533 
1534 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op_custom(struct sljit_compiler *compiler,
1535 	void *instruction, sljit_s32 size);
1536 
1537 /* Define the currently available CPU status flags. It is usually used after an
1538    sljit_emit_op_custom call to define which flags are set. */
1539 
1540 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_current_flags(struct sljit_compiler *compiler,
1541 	sljit_s32 current_flags);
1542 
1543 #ifdef __cplusplus
1544 } /* extern "C" */
1545 #endif
1546 
1547 #endif /* SLJIT_LIR_H_ */
1548