1 /*
2 * Stack-less Just-In-Time compiler
3 *
4 * Copyright Zoltan Herczeg (hzmester@freemail.hu). All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without modification, are
7 * permitted provided that the following conditions are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright notice, this list of
10 * conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright notice, this list
13 * of conditions and the following disclaimer in the documentation and/or other materials
14 * provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) AND CONTRIBUTORS ``AS IS'' AND ANY
17 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
19 * SHALL THE COPYRIGHT HOLDER(S) OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
21 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
22 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
23 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
24 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27 #ifndef SLJIT_LIR_H_
28 #define SLJIT_LIR_H_
29
30 /*
31 ------------------------------------------------------------------------
32 Stack-Less JIT compiler for multiple architectures (x86, ARM, PowerPC)
33 ------------------------------------------------------------------------
34
35 Short description
36 Advantages:
37 - The execution can be continued from any LIR instruction. In other
38 words, it is possible to jump to any label from anywhere, even from
39 a code fragment, which is compiled later, if both compiled code
40 shares the same context. See sljit_emit_enter for more details
41 - Supports self modifying code: target of (conditional) jump and call
42 instructions and some constant values can be dynamically modified
43 during runtime
44 - although it is not suggested to do it frequently
45 - can be used for inline caching: save an important value once
46 in the instruction stream
47 - since this feature limits the optimization possibilities, a
48 special flag must be passed at compile time when these
49 instructions are emitted
50 - A fixed stack space can be allocated for local variables
51 - The compiler is thread-safe
52 - The compiler is highly configurable through preprocessor macros.
53 You can disable unneeded features (multithreading in single
54 threaded applications), and you can use your own system functions
55 (including memory allocators). See sljitConfig.h
56 Disadvantages:
57 - No automatic register allocation, and temporary results are
58 not stored on the stack. (hence the name comes)
59 In practice:
60 - This approach is very effective for interpreters
61 - One of the saved registers typically points to a stack interface
62 - It can jump to any exception handler anytime (even if it belongs
63 to another function)
64 - Hot paths can be modified during runtime reflecting the changes
65 of the fastest execution path of the dynamic language
66 - SLJIT supports complex memory addressing modes
67 - mainly position and context independent code (except some cases)
68
69 For valgrind users:
70 - pass --smc-check=all argument to valgrind, since JIT is a "self-modifying code"
71 */
72
73 #if (defined SLJIT_HAVE_CONFIG_PRE && SLJIT_HAVE_CONFIG_PRE)
74 #include "sljitConfigPre.h"
75 #endif /* SLJIT_HAVE_CONFIG_PRE */
76
77 #include "sljitConfig.h"
78
79 /* The following header file defines useful macros for fine tuning
80 sljit based code generators. They are listed in the beginning
81 of sljitConfigInternal.h */
82
83 #include "sljitConfigInternal.h"
84
85 #if (defined SLJIT_HAVE_CONFIG_POST && SLJIT_HAVE_CONFIG_POST)
86 #include "sljitConfigPost.h"
87 #endif /* SLJIT_HAVE_CONFIG_POST */
88
89 #ifdef __cplusplus
90 extern "C" {
91 #endif
92
93 /* --------------------------------------------------------------------- */
94 /* Error codes */
95 /* --------------------------------------------------------------------- */
96
97 /* Indicates no error. */
98 #define SLJIT_SUCCESS 0
99 /* After the call of sljit_generate_code(), the error code of the compiler
100 is set to this value to avoid future sljit calls (in debug mode at least).
101 The complier should be freed after sljit_generate_code(). */
102 #define SLJIT_ERR_COMPILED 1
103 /* Cannot allocate non executable memory. */
104 #define SLJIT_ERR_ALLOC_FAILED 2
105 /* Cannot allocate executable memory.
106 Only for sljit_generate_code() */
107 #define SLJIT_ERR_EX_ALLOC_FAILED 3
108 /* Return value for SLJIT_CONFIG_UNSUPPORTED placeholder architecture. */
109 #define SLJIT_ERR_UNSUPPORTED 4
110 /* An ivalid argument is passed to any SLJIT function. */
111 #define SLJIT_ERR_BAD_ARGUMENT 5
112 /* Dynamic code modification is not enabled. */
113 #define SLJIT_ERR_DYN_CODE_MOD 6
114
115 /* --------------------------------------------------------------------- */
116 /* Registers */
117 /* --------------------------------------------------------------------- */
118
119 /*
120 Scratch (R) registers: registers whose may not preserve their values
121 across function calls.
122
123 Saved (S) registers: registers whose preserve their values across
124 function calls.
125
126 The scratch and saved register sets are overlap. The last scratch register
127 is the first saved register, the one before the last is the second saved
128 register, and so on.
129
130 If an architecture provides two scratch and three saved registers,
131 its scratch and saved register sets are the following:
132
133 R0 | | R0 is always a scratch register
134 R1 | | R1 is always a scratch register
135 [R2] | S2 | R2 and S2 represent the same physical register
136 [R3] | S1 | R3 and S1 represent the same physical register
137 [R4] | S0 | R4 and S0 represent the same physical register
138
139 Note: SLJIT_NUMBER_OF_SCRATCH_REGISTERS would be 2 and
140 SLJIT_NUMBER_OF_SAVED_REGISTERS would be 3 for this architecture.
141
142 Note: On all supported architectures SLJIT_NUMBER_OF_REGISTERS >= 12
143 and SLJIT_NUMBER_OF_SAVED_REGISTERS >= 6. However, 6 registers
144 are virtual on x86-32. See below.
145
146 The purpose of this definition is convenience: saved registers can
147 be used as extra scratch registers. For example four registers can
148 be specified as scratch registers and the fifth one as saved register
149 on the CPU above and any user code which requires four scratch
150 registers can run unmodified. The SLJIT compiler automatically saves
151 the content of the two extra scratch register on the stack. Scratch
152 registers can also be preserved by saving their value on the stack
153 but this needs to be done manually.
154
155 Note: To emphasize that registers assigned to R2-R4 are saved
156 registers, they are enclosed by square brackets.
157
158 Note: sljit_emit_enter and sljit_set_context defines whether a register
159 is S or R register. E.g: when 3 scratches and 1 saved is mapped
160 by sljit_emit_enter, the allowed register set will be: R0-R2 and
161 S0. Although S2 is mapped to the same position as R2, it does not
162 available in the current configuration. Furthermore the S1 register
163 is not available at all.
164 */
165
166 /* When SLJIT_UNUSED is specified as the destination of sljit_emit_op1
167 or sljit_emit_op2 operations the result is discarded. Some status
168 flags must be set when the destination is SLJIT_UNUSED, because the
169 operation would have no effect otherwise. Other SLJIT operations do
170 not support SLJIT_UNUSED as a destination operand. */
171 #define SLJIT_UNUSED 0
172
173 /* Scratch registers. */
174 #define SLJIT_R0 1
175 #define SLJIT_R1 2
176 #define SLJIT_R2 3
177 /* Note: on x86-32, R3 - R6 (same as S3 - S6) are emulated (they
178 are allocated on the stack). These registers are called virtual
179 and cannot be used for memory addressing (cannot be part of
180 any SLJIT_MEM1, SLJIT_MEM2 construct). There is no such
181 limitation on other CPUs. See sljit_get_register_index(). */
182 #define SLJIT_R3 4
183 #define SLJIT_R4 5
184 #define SLJIT_R5 6
185 #define SLJIT_R6 7
186 #define SLJIT_R7 8
187 #define SLJIT_R8 9
188 #define SLJIT_R9 10
189 /* All R registers provided by the architecture can be accessed by SLJIT_R(i)
190 The i parameter must be >= 0 and < SLJIT_NUMBER_OF_REGISTERS. */
191 #define SLJIT_R(i) (1 + (i))
192
193 /* Saved registers. */
194 #define SLJIT_S0 (SLJIT_NUMBER_OF_REGISTERS)
195 #define SLJIT_S1 (SLJIT_NUMBER_OF_REGISTERS - 1)
196 #define SLJIT_S2 (SLJIT_NUMBER_OF_REGISTERS - 2)
197 /* Note: on x86-32, S3 - S6 (same as R3 - R6) are emulated (they
198 are allocated on the stack). These registers are called virtual
199 and cannot be used for memory addressing (cannot be part of
200 any SLJIT_MEM1, SLJIT_MEM2 construct). There is no such
201 limitation on other CPUs. See sljit_get_register_index(). */
202 #define SLJIT_S3 (SLJIT_NUMBER_OF_REGISTERS - 3)
203 #define SLJIT_S4 (SLJIT_NUMBER_OF_REGISTERS - 4)
204 #define SLJIT_S5 (SLJIT_NUMBER_OF_REGISTERS - 5)
205 #define SLJIT_S6 (SLJIT_NUMBER_OF_REGISTERS - 6)
206 #define SLJIT_S7 (SLJIT_NUMBER_OF_REGISTERS - 7)
207 #define SLJIT_S8 (SLJIT_NUMBER_OF_REGISTERS - 8)
208 #define SLJIT_S9 (SLJIT_NUMBER_OF_REGISTERS - 9)
209 /* All S registers provided by the architecture can be accessed by SLJIT_S(i)
210 The i parameter must be >= 0 and < SLJIT_NUMBER_OF_SAVED_REGISTERS. */
211 #define SLJIT_S(i) (SLJIT_NUMBER_OF_REGISTERS - (i))
212
213 /* Registers >= SLJIT_FIRST_SAVED_REG are saved registers. */
214 #define SLJIT_FIRST_SAVED_REG (SLJIT_S0 - SLJIT_NUMBER_OF_SAVED_REGISTERS + 1)
215
216 /* The SLJIT_SP provides direct access to the linear stack space allocated by
217 sljit_emit_enter. It can only be used in the following form: SLJIT_MEM1(SLJIT_SP).
218 The immediate offset is extended by the relative stack offset automatically.
219 The sljit_get_local_base can be used to obtain the absolute offset. */
220 #define SLJIT_SP (SLJIT_NUMBER_OF_REGISTERS + 1)
221
222 /* Return with machine word. */
223
224 #define SLJIT_RETURN_REG SLJIT_R0
225
226 /* --------------------------------------------------------------------- */
227 /* Floating point registers */
228 /* --------------------------------------------------------------------- */
229
230 /* Each floating point register can store a 32 or a 64 bit precision
231 value. The FR and FS register sets are overlap in the same way as R
232 and S register sets. See above. */
233
234 /* Note: SLJIT_UNUSED as destination is not valid for floating point
235 operations, since they cannot be used for setting flags. */
236
237 /* Floating point scratch registers. */
238 #define SLJIT_FR0 1
239 #define SLJIT_FR1 2
240 #define SLJIT_FR2 3
241 #define SLJIT_FR3 4
242 #define SLJIT_FR4 5
243 #define SLJIT_FR5 6
244 /* All FR registers provided by the architecture can be accessed by SLJIT_FR(i)
245 The i parameter must be >= 0 and < SLJIT_NUMBER_OF_FLOAT_REGISTERS. */
246 #define SLJIT_FR(i) (1 + (i))
247
248 /* Floating point saved registers. */
249 #define SLJIT_FS0 (SLJIT_NUMBER_OF_FLOAT_REGISTERS)
250 #define SLJIT_FS1 (SLJIT_NUMBER_OF_FLOAT_REGISTERS - 1)
251 #define SLJIT_FS2 (SLJIT_NUMBER_OF_FLOAT_REGISTERS - 2)
252 #define SLJIT_FS3 (SLJIT_NUMBER_OF_FLOAT_REGISTERS - 3)
253 #define SLJIT_FS4 (SLJIT_NUMBER_OF_FLOAT_REGISTERS - 4)
254 #define SLJIT_FS5 (SLJIT_NUMBER_OF_FLOAT_REGISTERS - 5)
255 /* All S registers provided by the architecture can be accessed by SLJIT_FS(i)
256 The i parameter must be >= 0 and < SLJIT_NUMBER_OF_SAVED_FLOAT_REGISTERS. */
257 #define SLJIT_FS(i) (SLJIT_NUMBER_OF_FLOAT_REGISTERS - (i))
258
259 /* Float registers >= SLJIT_FIRST_SAVED_FLOAT_REG are saved registers. */
260 #define SLJIT_FIRST_SAVED_FLOAT_REG (SLJIT_FS0 - SLJIT_NUMBER_OF_SAVED_FLOAT_REGISTERS + 1)
261
262 /* --------------------------------------------------------------------- */
263 /* Argument type definitions */
264 /* --------------------------------------------------------------------- */
265
266 /* Argument type definitions.
267 Used by SLJIT_[DEF_]ARGx and SLJIT_[DEF]_RET macros. */
268
269 #define SLJIT_ARG_TYPE_VOID 0
270 #define SLJIT_ARG_TYPE_SW 1
271 #define SLJIT_ARG_TYPE_UW 2
272 #define SLJIT_ARG_TYPE_S32 3
273 #define SLJIT_ARG_TYPE_U32 4
274 #define SLJIT_ARG_TYPE_F32 5
275 #define SLJIT_ARG_TYPE_F64 6
276
277 /* The following argument type definitions are used by sljit_emit_enter,
278 sljit_set_context, sljit_emit_call, and sljit_emit_icall functions.
279 The following return type definitions are used by sljit_emit_call
280 and sljit_emit_icall functions.
281
282 When a function is called, the first integer argument must be placed
283 in SLJIT_R0, the second in SLJIT_R1, and so on. Similarly the first
284 floating point argument must be placed in SLJIT_FR0, the second in
285 SLJIT_FR1, and so on.
286
287 Example function definition:
288 sljit_f32 SLJIT_FUNC example_c_callback(sljit_sw arg_a,
289 sljit_f64 arg_b, sljit_u32 arg_c, sljit_f32 arg_d);
290
291 Argument type definition:
292 SLJIT_DEF_RET(SLJIT_ARG_TYPE_F32)
293 | SLJIT_DEF_ARG1(SLJIT_ARG_TYPE_SW) | SLJIT_DEF_ARG2(SLJIT_ARG_TYPE_F64)
294 | SLJIT_DEF_ARG3(SLJIT_ARG_TYPE_U32) | SLJIT_DEF_ARG2(SLJIT_ARG_TYPE_F32)
295
296 Short form of argument type definition:
297 SLJIT_RET(F32) | SLJIT_ARG1(SW) | SLJIT_ARG2(F64)
298 | SLJIT_ARG3(S32) | SLJIT_ARG4(F32)
299
300 Argument passing:
301 arg_a must be placed in SLJIT_R0
302 arg_c must be placed in SLJIT_R1
303 arg_b must be placed in SLJIT_FR0
304 arg_d must be placed in SLJIT_FR1
305
306 Note:
307 The SLJIT_ARG_TYPE_VOID type is only supported by
308 SLJIT_DEF_RET, and SLJIT_ARG_TYPE_VOID is also the
309 default value when SLJIT_DEF_RET is not specified. */
310 #define SLJIT_DEF_SHIFT 4
311 #define SLJIT_DEF_RET(type) (type)
312 #define SLJIT_DEF_ARG1(type) ((type) << SLJIT_DEF_SHIFT)
313 #define SLJIT_DEF_ARG2(type) ((type) << (2 * SLJIT_DEF_SHIFT))
314 #define SLJIT_DEF_ARG3(type) ((type) << (3 * SLJIT_DEF_SHIFT))
315 #define SLJIT_DEF_ARG4(type) ((type) << (4 * SLJIT_DEF_SHIFT))
316
317 /* Short form of the macros above.
318
319 For example the following definition:
320 SLJIT_DEF_RET(SLJIT_ARG_TYPE_SW) | SLJIT_DEF_ARG1(SLJIT_ARG_TYPE_F32)
321
322 can be shortened to:
323 SLJIT_RET(SW) | SLJIT_ARG1(F32)
324
325 Note:
326 The VOID type is only supported by SLJIT_RET, and
327 VOID is also the default value when SLJIT_RET is
328 not specified. */
329 #define SLJIT_RET(type) SLJIT_DEF_RET(SLJIT_ARG_TYPE_ ## type)
330 #define SLJIT_ARG1(type) SLJIT_DEF_ARG1(SLJIT_ARG_TYPE_ ## type)
331 #define SLJIT_ARG2(type) SLJIT_DEF_ARG2(SLJIT_ARG_TYPE_ ## type)
332 #define SLJIT_ARG3(type) SLJIT_DEF_ARG3(SLJIT_ARG_TYPE_ ## type)
333 #define SLJIT_ARG4(type) SLJIT_DEF_ARG4(SLJIT_ARG_TYPE_ ## type)
334
335 /* --------------------------------------------------------------------- */
336 /* Main structures and functions */
337 /* --------------------------------------------------------------------- */
338
339 /*
340 The following structures are private, and can be changed in the
341 future. Keeping them here allows code inlining.
342 */
343
344 struct sljit_memory_fragment {
345 struct sljit_memory_fragment *next;
346 sljit_uw used_size;
347 /* Must be aligned to sljit_sw. */
348 sljit_u8 memory[1];
349 };
350
351 struct sljit_label {
352 struct sljit_label *next;
353 sljit_uw addr;
354 /* The maximum size difference. */
355 sljit_uw size;
356 };
357
358 struct sljit_jump {
359 struct sljit_jump *next;
360 sljit_uw addr;
361 sljit_uw flags;
362 union {
363 sljit_uw target;
364 struct sljit_label *label;
365 } u;
366 };
367
368 struct sljit_put_label {
369 struct sljit_put_label *next;
370 struct sljit_label *label;
371 sljit_uw addr;
372 sljit_uw flags;
373 };
374
375 struct sljit_const {
376 struct sljit_const *next;
377 sljit_uw addr;
378 };
379
380 struct sljit_compiler {
381 sljit_s32 error;
382 sljit_s32 options;
383
384 struct sljit_label *labels;
385 struct sljit_jump *jumps;
386 struct sljit_put_label *put_labels;
387 struct sljit_const *consts;
388 struct sljit_label *last_label;
389 struct sljit_jump *last_jump;
390 struct sljit_const *last_const;
391 struct sljit_put_label *last_put_label;
392
393 void *allocator_data;
394 void *exec_allocator_data;
395 struct sljit_memory_fragment *buf;
396 struct sljit_memory_fragment *abuf;
397
398 /* Used scratch registers. */
399 sljit_s32 scratches;
400 /* Used saved registers. */
401 sljit_s32 saveds;
402 /* Used float scratch registers. */
403 sljit_s32 fscratches;
404 /* Used float saved registers. */
405 sljit_s32 fsaveds;
406 /* Local stack size. */
407 sljit_s32 local_size;
408 /* Code size. */
409 sljit_uw size;
410 /* Relative offset of the executable mapping from the writable mapping. */
411 sljit_uw executable_offset;
412 /* Executable size for statistical purposes. */
413 sljit_uw executable_size;
414
415 #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
416 sljit_s32 args;
417 sljit_s32 locals_offset;
418 sljit_s32 saveds_offset;
419 sljit_s32 stack_tmp_size;
420 #endif
421
422 #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
423 sljit_s32 mode32;
424 #ifdef _WIN64
425 sljit_s32 locals_offset;
426 #endif
427 #endif
428
429 #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
430 /* Constant pool handling. */
431 sljit_uw *cpool;
432 sljit_u8 *cpool_unique;
433 sljit_uw cpool_diff;
434 sljit_uw cpool_fill;
435 /* Other members. */
436 /* Contains pointer, "ldr pc, [...]" pairs. */
437 sljit_uw patches;
438 #endif
439
440 #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5) || (defined SLJIT_CONFIG_ARM_V7 && SLJIT_CONFIG_ARM_V7)
441 /* Temporary fields. */
442 sljit_uw shift_imm;
443 #endif
444
445 #if (defined SLJIT_CONFIG_PPC && SLJIT_CONFIG_PPC)
446 sljit_sw imm;
447 #endif
448
449 #if (defined SLJIT_CONFIG_MIPS && SLJIT_CONFIG_MIPS)
450 sljit_s32 delay_slot;
451 sljit_s32 cache_arg;
452 sljit_sw cache_argw;
453 #endif
454
455 #if (defined SLJIT_CONFIG_SPARC_32 && SLJIT_CONFIG_SPARC_32)
456 sljit_s32 delay_slot;
457 sljit_s32 cache_arg;
458 sljit_sw cache_argw;
459 #endif
460
461 #if (defined SLJIT_CONFIG_S390X && SLJIT_CONFIG_S390X)
462 /* Need to allocate register save area to make calls. */
463 sljit_s32 have_save_area;
464 #endif
465
466 #if (defined SLJIT_VERBOSE && SLJIT_VERBOSE)
467 FILE* verbose;
468 #endif
469
470 #if (defined SLJIT_ARGUMENT_CHECKS && SLJIT_ARGUMENT_CHECKS) \
471 || (defined SLJIT_DEBUG && SLJIT_DEBUG)
472 /* Flags specified by the last arithmetic instruction.
473 It contains the type of the variable flag. */
474 sljit_s32 last_flags;
475 /* Local size passed to the functions. */
476 sljit_s32 logical_local_size;
477 #endif
478
479 #if (defined SLJIT_ARGUMENT_CHECKS && SLJIT_ARGUMENT_CHECKS) \
480 || (defined SLJIT_DEBUG && SLJIT_DEBUG) \
481 || (defined SLJIT_VERBOSE && SLJIT_VERBOSE)
482 /* Trust arguments when the API function is called. */
483 sljit_s32 skip_checks;
484 #endif
485 };
486
487 /* --------------------------------------------------------------------- */
488 /* Main functions */
489 /* --------------------------------------------------------------------- */
490
491 /* Creates an sljit compiler. The allocator_data is required by some
492 custom memory managers. This pointer is passed to SLJIT_MALLOC
493 and SLJIT_FREE macros. Most allocators (including the default
494 one) ignores this value, and it is recommended to pass NULL
495 as a dummy value for allocator_data. The exec_allocator_data
496 has the same purpose but this one is passed to SLJIT_MALLOC_EXEC /
497 SLJIT_MALLOC_FREE functions.
498
499 Returns NULL if failed. */
500 SLJIT_API_FUNC_ATTRIBUTE struct sljit_compiler* sljit_create_compiler(void *allocator_data, void *exec_allocator_data);
501
502 /* Frees everything except the compiled machine code. */
503 SLJIT_API_FUNC_ATTRIBUTE void sljit_free_compiler(struct sljit_compiler *compiler);
504
505 /* Returns the current error code. If an error is occurred, future sljit
506 calls which uses the same compiler argument returns early with the same
507 error code. Thus there is no need for checking the error after every
508 call, it is enough to do it before the code is compiled. Removing
509 these checks increases the performance of the compiling process. */
sljit_get_compiler_error(struct sljit_compiler * compiler)510 static SLJIT_INLINE sljit_s32 sljit_get_compiler_error(struct sljit_compiler *compiler) { return compiler->error; }
511
512 /* Sets the compiler error code to SLJIT_ERR_ALLOC_FAILED except
513 if an error was detected before. After the error code is set
514 the compiler behaves as if the allocation failure happened
515 during an sljit function call. This can greatly simplify error
516 checking, since only the compiler status needs to be checked
517 after the compilation. */
518 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_compiler_memory_error(struct sljit_compiler *compiler);
519
520 /*
521 Allocate a small amount of memory. The size must be <= 64 bytes on 32 bit,
522 and <= 128 bytes on 64 bit architectures. The memory area is owned by the
523 compiler, and freed by sljit_free_compiler. The returned pointer is
524 sizeof(sljit_sw) aligned. Excellent for allocating small blocks during
525 the compiling, and no need to worry about freeing them. The size is
526 enough to contain at most 16 pointers. If the size is outside of the range,
527 the function will return with NULL. However, this return value does not
528 indicate that there is no more memory (does not set the current error code
529 of the compiler to out-of-memory status).
530 */
531 SLJIT_API_FUNC_ATTRIBUTE void* sljit_alloc_memory(struct sljit_compiler *compiler, sljit_s32 size);
532
533 #if (defined SLJIT_VERBOSE && SLJIT_VERBOSE)
534 /* Passing NULL disables verbose. */
535 SLJIT_API_FUNC_ATTRIBUTE void sljit_compiler_verbose(struct sljit_compiler *compiler, FILE* verbose);
536 #endif
537
538 /*
539 Create executable code from the sljit instruction stream. This is the final step
540 of the code generation so no more instructions can be added after this call.
541 */
542
543 SLJIT_API_FUNC_ATTRIBUTE void* sljit_generate_code(struct sljit_compiler *compiler);
544
545 /* Free executable code. */
546
547 SLJIT_API_FUNC_ATTRIBUTE void sljit_free_code(void* code, void *exec_allocator_data);
548
549 /*
550 When the protected executable allocator is used the JIT code is mapped
551 twice. The first mapping has read/write and the second mapping has read/exec
552 permissions. This function returns with the relative offset of the executable
553 mapping using the writable mapping as the base after the machine code is
554 successfully generated. The returned value is always 0 for the normal executable
555 allocator, since it uses only one mapping with read/write/exec permissions.
556 Dynamic code modifications requires this value.
557
558 Before a successful code generation, this function returns with 0.
559 */
sljit_get_executable_offset(struct sljit_compiler * compiler)560 static SLJIT_INLINE sljit_sw sljit_get_executable_offset(struct sljit_compiler *compiler) { return compiler->executable_offset; }
561
562 /*
563 The executable memory consumption of the generated code can be retrieved by
564 this function. The returned value can be used for statistical purposes.
565
566 Before a successful code generation, this function returns with 0.
567 */
sljit_get_generated_code_size(struct sljit_compiler * compiler)568 static SLJIT_INLINE sljit_uw sljit_get_generated_code_size(struct sljit_compiler *compiler) { return compiler->executable_size; }
569
570 /* Returns with non-zero if the feature or limitation type passed as its
571 argument is present on the current CPU.
572
573 Some features (e.g. floating point operations) require hardware (CPU)
574 support while others (e.g. move with update) are emulated if not available.
575 However even if a feature is emulated, specialized code paths can be faster
576 than the emulation. Some limitations are emulated as well so their general
577 case is supported but it has extra performance costs. */
578
579 /* [Not emulated] Floating-point support is available. */
580 #define SLJIT_HAS_FPU 0
581 /* [Limitation] Some registers are virtual registers. */
582 #define SLJIT_HAS_VIRTUAL_REGISTERS 1
583 /* [Emulated] Has zero register (setting a memory location to zero is efficient). */
584 #define SLJIT_HAS_ZERO_REGISTER 2
585 /* [Emulated] Count leading zero is supported. */
586 #define SLJIT_HAS_CLZ 3
587 /* [Emulated] Conditional move is supported. */
588 #define SLJIT_HAS_CMOV 4
589 /* [Emulated] Conditional move is supported. */
590 #define SLJIT_HAS_PREFETCH 5
591
592 #if (defined SLJIT_CONFIG_X86 && SLJIT_CONFIG_X86)
593 /* [Not emulated] SSE2 support is available on x86. */
594 #define SLJIT_HAS_SSE2 100
595 #endif
596
597 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_has_cpu_feature(sljit_s32 feature_type);
598
599 /* Instruction generation. Returns with any error code. If there is no
600 error, they return with SLJIT_SUCCESS. */
601
602 /*
603 The executable code is a function from the viewpoint of the C
604 language. The function calls must obey to the ABI (Application
605 Binary Interface) of the platform, which specify the purpose of
606 machine registers and stack handling among other things. The
607 sljit_emit_enter function emits the necessary instructions for
608 setting up a new context for the executable code and moves function
609 arguments to the saved registers. Furthermore the options argument
610 can be used to pass configuration options to the compiler. The
611 available options are listed before sljit_emit_enter.
612
613 The function argument list is the combination of SLJIT_ARGx
614 (SLJIT_DEF_ARG1) macros. Currently maximum 3 SW / UW
615 (SLJIT_ARG_TYPE_SW / LJIT_ARG_TYPE_UW) arguments are supported.
616 The first argument goes to SLJIT_S0, the second goes to SLJIT_S1
617 and so on. The register set used by the function must be declared
618 as well. The number of scratch and saved registers used by the
619 function must be passed to sljit_emit_enter. Only R registers
620 between R0 and "scratches" argument can be used later. E.g. if
621 "scratches" is set to 2, the scratch register set will be limited
622 to SLJIT_R0 and SLJIT_R1. The S registers and the floating point
623 registers ("fscratches" and "fsaveds") are specified in a similar
624 manner. The sljit_emit_enter is also capable of allocating a stack
625 space for local variables. The "local_size" argument contains the
626 size in bytes of this local area and its staring address is stored
627 in SLJIT_SP. The memory area between SLJIT_SP (inclusive) and
628 SLJIT_SP + local_size (exclusive) can be modified freely until
629 the function returns. The stack space is not initialized.
630
631 Note: the following conditions must met:
632 0 <= scratches <= SLJIT_NUMBER_OF_REGISTERS
633 0 <= saveds <= SLJIT_NUMBER_OF_REGISTERS
634 scratches + saveds <= SLJIT_NUMBER_OF_REGISTERS
635 0 <= fscratches <= SLJIT_NUMBER_OF_FLOAT_REGISTERS
636 0 <= fsaveds <= SLJIT_NUMBER_OF_FLOAT_REGISTERS
637 fscratches + fsaveds <= SLJIT_NUMBER_OF_FLOAT_REGISTERS
638
639 Note: every call of sljit_emit_enter and sljit_set_context
640 overwrites the previous context.
641 */
642
643 /* The absolute address returned by sljit_get_local_base with
644 offset 0 is aligned to sljit_f64. Otherwise it is aligned to sljit_sw. */
645 #define SLJIT_F64_ALIGNMENT 0x00000001
646
647 /* The local_size must be >= 0 and <= SLJIT_MAX_LOCAL_SIZE. */
648 #define SLJIT_MAX_LOCAL_SIZE 65536
649
650 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_enter(struct sljit_compiler *compiler,
651 sljit_s32 options, sljit_s32 arg_types, sljit_s32 scratches, sljit_s32 saveds,
652 sljit_s32 fscratches, sljit_s32 fsaveds, sljit_s32 local_size);
653
654 /* The machine code has a context (which contains the local stack space size,
655 number of used registers, etc.) which initialized by sljit_emit_enter. Several
656 functions (like sljit_emit_return) requres this context to be able to generate
657 the appropriate code. However, some code fragments (like inline cache) may have
658 no normal entry point so their context is unknown for the compiler. Their context
659 can be provided to the compiler by the sljit_set_context function.
660
661 Note: every call of sljit_emit_enter and sljit_set_context overwrites
662 the previous context. */
663
664 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_set_context(struct sljit_compiler *compiler,
665 sljit_s32 options, sljit_s32 arg_types, sljit_s32 scratches, sljit_s32 saveds,
666 sljit_s32 fscratches, sljit_s32 fsaveds, sljit_s32 local_size);
667
668 /* Return from machine code. The op argument can be SLJIT_UNUSED which means the
669 function does not return with anything or any opcode between SLJIT_MOV and
670 SLJIT_MOV_P (see sljit_emit_op1). As for src and srcw they must be 0 if op
671 is SLJIT_UNUSED, otherwise see below the description about source and
672 destination arguments. */
673
674 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_return(struct sljit_compiler *compiler, sljit_s32 op,
675 sljit_s32 src, sljit_sw srcw);
676
677 /* Generating entry and exit points for fast call functions (see SLJIT_FAST_CALL).
678 Both sljit_emit_fast_enter and SLJIT_FAST_RETURN operations preserve the
679 values of all registers and stack frame. The return address is stored in the
680 dst argument of sljit_emit_fast_enter, and this return address can be passed
681 to SLJIT_FAST_RETURN to continue the execution after the fast call.
682
683 Fast calls are cheap operations (usually only a single call instruction is
684 emitted) but they do not preserve any registers. However the callee function
685 can freely use / update any registers and stack values which can be
686 efficiently exploited by various optimizations. Registers can be saved
687 manually by the callee function if needed.
688
689 Although returning to different address by SLJIT_FAST_RETURN is possible,
690 this address usually cannot be predicted by the return address predictor of
691 modern CPUs which may reduce performance. Furthermore certain security
692 enhancement technologies such as Intel Control-flow Enforcement Technology
693 (CET) may disallow returning to a different address.
694
695 Flags: - (does not modify flags). */
696
697 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fast_enter(struct sljit_compiler *compiler, sljit_s32 dst, sljit_sw dstw);
698
699 /*
700 Source and destination operands for arithmetical instructions
701 imm - a simple immediate value (cannot be used as a destination)
702 reg - any of the registers (immediate argument must be 0)
703 [imm] - absolute immediate memory address
704 [reg+imm] - indirect memory address
705 [reg+(reg<<imm)] - indirect indexed memory address (shift must be between 0 and 3)
706 useful for (byte, half, int, sljit_sw) array access
707 (fully supported by both x86 and ARM architectures, and cheap operation on others)
708 */
709
710 /*
711 IMPORTANT NOTE: memory access MUST be naturally aligned unless
712 SLJIT_UNALIGNED macro is defined and its value is 1.
713
714 length | alignment
715 ---------+-----------
716 byte | 1 byte (any physical_address is accepted)
717 half | 2 byte (physical_address & 0x1 == 0)
718 int | 4 byte (physical_address & 0x3 == 0)
719 word | 4 byte if SLJIT_32BIT_ARCHITECTURE is defined and its value is 1
720 | 8 byte if SLJIT_64BIT_ARCHITECTURE is defined and its value is 1
721 pointer | size of sljit_p type (4 byte on 32 bit machines, 4 or 8 byte
722 | on 64 bit machines)
723
724 Note: Different architectures have different addressing limitations.
725 A single instruction is enough for the following addressing
726 modes. Other adrressing modes are emulated by instruction
727 sequences. This information could help to improve those code
728 generators which focuses only a few architectures.
729
730 x86: [reg+imm], -2^32+1 <= imm <= 2^32-1 (full address space on x86-32)
731 [reg+(reg<<imm)] is supported
732 [imm], -2^32+1 <= imm <= 2^32-1 is supported
733 Write-back is not supported
734 arm: [reg+imm], -4095 <= imm <= 4095 or -255 <= imm <= 255 for signed
735 bytes, any halfs or floating point values)
736 [reg+(reg<<imm)] is supported
737 Write-back is supported
738 arm-t2: [reg+imm], -255 <= imm <= 4095
739 [reg+(reg<<imm)] is supported
740 Write back is supported only for [reg+imm], where -255 <= imm <= 255
741 arm64: [reg+imm], -256 <= imm <= 255, 0 <= aligned imm <= 4095 * alignment
742 [reg+(reg<<imm)] is supported
743 Write back is supported only for [reg+imm], where -256 <= imm <= 255
744 ppc: [reg+imm], -65536 <= imm <= 65535. 64 bit loads/stores and 32 bit
745 signed load on 64 bit requires immediates divisible by 4.
746 [reg+imm] is not supported for signed 8 bit values.
747 [reg+reg] is supported
748 Write-back is supported except for one instruction: 32 bit signed
749 load with [reg+imm] addressing mode on 64 bit.
750 mips: [reg+imm], -65536 <= imm <= 65535
751 sparc: [reg+imm], -4096 <= imm <= 4095
752 [reg+reg] is supported
753 s390x: [reg+imm], -2^19 <= imm < 2^19
754 [reg+reg] is supported
755 Write-back is not supported
756 */
757
758 /* Macros for specifying operand types. */
759 #define SLJIT_MEM 0x80
760 #define SLJIT_MEM0() (SLJIT_MEM)
761 #define SLJIT_MEM1(r1) (SLJIT_MEM | (r1))
762 #define SLJIT_MEM2(r1, r2) (SLJIT_MEM | (r1) | ((r2) << 8))
763 #define SLJIT_IMM 0x40
764
765 /* Set 32 bit operation mode (I) on 64 bit CPUs. This option is ignored on
766 32 bit CPUs. When this option is set for an arithmetic operation, only
767 the lower 32 bit of the input registers are used, and the CPU status
768 flags are set according to the 32 bit result. Although the higher 32 bit
769 of the input and the result registers are not defined by SLJIT, it might
770 be defined by the CPU architecture (e.g. MIPS). To satisfy these CPU
771 requirements all source registers must be the result of those operations
772 where this option was also set. Memory loads read 32 bit values rather
773 than 64 bit ones. In other words 32 bit and 64 bit operations cannot
774 be mixed. The only exception is SLJIT_MOV32 and SLJIT_MOVU32 whose source
775 register can hold any 32 or 64 bit value, and it is converted to a 32 bit
776 compatible format first. This conversion is free (no instructions are
777 emitted) on most CPUs. A 32 bit value can also be converted to a 64 bit
778 value by SLJIT_MOV_S32 (sign extension) or SLJIT_MOV_U32 (zero extension).
779
780 Note: memory addressing always uses 64 bit values on 64 bit systems so
781 the result of a 32 bit operation must not be used with SLJIT_MEMx
782 macros.
783
784 This option is part of the instruction name, so there is no need to
785 manually set it. E.g:
786
787 SLJIT_ADD32 == (SLJIT_ADD | SLJIT_I32_OP) */
788 #define SLJIT_I32_OP 0x100
789
790 /* Set F32 (single) precision mode for floating-point computation. This
791 option is similar to SLJIT_I32_OP, it just applies to floating point
792 registers. When this option is passed, the CPU performs 32 bit floating
793 point operations, rather than 64 bit one. Similar to SLJIT_I32_OP, all
794 register arguments must be the result of those operations where this
795 option was also set.
796
797 This option is part of the instruction name, so there is no need to
798 manually set it. E.g:
799
800 SLJIT_MOV_F32 = (SLJIT_MOV_F64 | SLJIT_F32_OP)
801 */
802 #define SLJIT_F32_OP SLJIT_I32_OP
803
804 /* Many CPUs (x86, ARM, PPC) have status flags which can be set according
805 to the result of an operation. Other CPUs (MIPS) do not have status
806 flags, and results must be stored in registers. To cover both architecture
807 types efficiently only two flags are defined by SLJIT:
808
809 * Zero (equal) flag: it is set if the result is zero
810 * Variable flag: its value is defined by the last arithmetic operation
811
812 SLJIT instructions can set any or both of these flags. The value of
813 these flags is undefined if the instruction does not specify their value.
814 The description of each instruction contains the list of allowed flag
815 types.
816
817 Example: SLJIT_ADD can set the Z, OVERFLOW, CARRY flags hence
818
819 sljit_op2(..., SLJIT_ADD, ...)
820 Both the zero and variable flags are undefined so they can
821 have any value after the operation is completed.
822
823 sljit_op2(..., SLJIT_ADD | SLJIT_SET_Z, ...)
824 Sets the zero flag if the result is zero, clears it otherwise.
825 The variable flag is undefined.
826
827 sljit_op2(..., SLJIT_ADD | SLJIT_SET_OVERFLOW, ...)
828 Sets the variable flag if an integer overflow occurs, clears
829 it otherwise. The zero flag is undefined.
830
831 sljit_op2(..., SLJIT_ADD | SLJIT_SET_Z | SLJIT_SET_CARRY, ...)
832 Sets the zero flag if the result is zero, clears it otherwise.
833 Sets the variable flag if unsigned overflow (carry) occurs,
834 clears it otherwise.
835
836 If an instruction (e.g. SLJIT_MOV) does not modify flags the flags are
837 unchanged.
838
839 Using these flags can reduce the number of emitted instructions. E.g. a
840 fast loop can be implemented by decreasing a counter register and set the
841 zero flag to jump back if the counter register has not reached zero.
842
843 Motivation: although CPUs can set a large number of flags, usually their
844 values are ignored or only one of them is used. Emulating a large number
845 of flags on systems without flag register is complicated so SLJIT
846 instructions must specify the flag they want to use and only that flag
847 will be emulated. The last arithmetic instruction can be repeated if
848 multiple flags need to be checked.
849 */
850
851 /* Set Zero status flag. */
852 #define SLJIT_SET_Z 0x0200
853 /* Set the variable status flag if condition is true.
854 See comparison types. */
855 #define SLJIT_SET(condition) ((condition) << 10)
856
857 /* Notes:
858 - you cannot postpone conditional jump instructions except if noted that
859 the instruction does not set flags (See: SLJIT_KEEP_FLAGS).
860 - flag combinations: '|' means 'logical or'. */
861
862 /* Starting index of opcodes for sljit_emit_op0. */
863 #define SLJIT_OP0_BASE 0
864
865 /* Flags: - (does not modify flags)
866 Note: breakpoint instruction is not supported by all architectures (e.g. ppc)
867 It falls back to SLJIT_NOP in those cases. */
868 #define SLJIT_BREAKPOINT (SLJIT_OP0_BASE + 0)
869 /* Flags: - (does not modify flags)
870 Note: may or may not cause an extra cycle wait
871 it can even decrease the runtime in a few cases. */
872 #define SLJIT_NOP (SLJIT_OP0_BASE + 1)
873 /* Flags: - (may destroy flags)
874 Unsigned multiplication of SLJIT_R0 and SLJIT_R1.
875 Result is placed into SLJIT_R1:SLJIT_R0 (high:low) word */
876 #define SLJIT_LMUL_UW (SLJIT_OP0_BASE + 2)
877 /* Flags: - (may destroy flags)
878 Signed multiplication of SLJIT_R0 and SLJIT_R1.
879 Result is placed into SLJIT_R1:SLJIT_R0 (high:low) word */
880 #define SLJIT_LMUL_SW (SLJIT_OP0_BASE + 3)
881 /* Flags: - (may destroy flags)
882 Unsigned divide of the value in SLJIT_R0 by the value in SLJIT_R1.
883 The result is placed into SLJIT_R0 and the remainder into SLJIT_R1.
884 Note: if SLJIT_R1 is 0, the behaviour is undefined. */
885 #define SLJIT_DIVMOD_UW (SLJIT_OP0_BASE + 4)
886 #define SLJIT_DIVMOD_U32 (SLJIT_DIVMOD_UW | SLJIT_I32_OP)
887 /* Flags: - (may destroy flags)
888 Signed divide of the value in SLJIT_R0 by the value in SLJIT_R1.
889 The result is placed into SLJIT_R0 and the remainder into SLJIT_R1.
890 Note: if SLJIT_R1 is 0, the behaviour is undefined.
891 Note: if SLJIT_R1 is -1 and SLJIT_R0 is integer min (0x800..00),
892 the behaviour is undefined. */
893 #define SLJIT_DIVMOD_SW (SLJIT_OP0_BASE + 5)
894 #define SLJIT_DIVMOD_S32 (SLJIT_DIVMOD_SW | SLJIT_I32_OP)
895 /* Flags: - (may destroy flags)
896 Unsigned divide of the value in SLJIT_R0 by the value in SLJIT_R1.
897 The result is placed into SLJIT_R0. SLJIT_R1 preserves its value.
898 Note: if SLJIT_R1 is 0, the behaviour is undefined. */
899 #define SLJIT_DIV_UW (SLJIT_OP0_BASE + 6)
900 #define SLJIT_DIV_U32 (SLJIT_DIV_UW | SLJIT_I32_OP)
901 /* Flags: - (may destroy flags)
902 Signed divide of the value in SLJIT_R0 by the value in SLJIT_R1.
903 The result is placed into SLJIT_R0. SLJIT_R1 preserves its value.
904 Note: if SLJIT_R1 is 0, the behaviour is undefined.
905 Note: if SLJIT_R1 is -1 and SLJIT_R0 is integer min (0x800..00),
906 the behaviour is undefined. */
907 #define SLJIT_DIV_SW (SLJIT_OP0_BASE + 7)
908 #define SLJIT_DIV_S32 (SLJIT_DIV_SW | SLJIT_I32_OP)
909 /* Flags: - (does not modify flags)
910 ENDBR32 instruction for x86-32 and ENDBR64 instruction for x86-64
911 when Intel Control-flow Enforcement Technology (CET) is enabled.
912 No instruction for other architectures. */
913 #define SLJIT_ENDBR (SLJIT_OP0_BASE + 8)
914 /* Flags: - (may destroy flags)
915 Skip stack frames before return. */
916 #define SLJIT_SKIP_FRAMES_BEFORE_RETURN (SLJIT_OP0_BASE + 9)
917
918 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op0(struct sljit_compiler *compiler, sljit_s32 op);
919
920 /* Starting index of opcodes for sljit_emit_op1. */
921 #define SLJIT_OP1_BASE 32
922
923 /* The MOV instruction transfers data from source to destination.
924
925 MOV instruction suffixes:
926
927 U8 - unsigned 8 bit data transfer
928 S8 - signed 8 bit data transfer
929 U16 - unsigned 16 bit data transfer
930 S16 - signed 16 bit data transfer
931 U32 - unsigned int (32 bit) data transfer
932 S32 - signed int (32 bit) data transfer
933 P - pointer (sljit_p) data transfer
934 */
935
936 /* Flags: - (does not modify flags) */
937 #define SLJIT_MOV (SLJIT_OP1_BASE + 0)
938 /* Flags: - (does not modify flags) */
939 #define SLJIT_MOV_U8 (SLJIT_OP1_BASE + 1)
940 #define SLJIT_MOV32_U8 (SLJIT_MOV_U8 | SLJIT_I32_OP)
941 /* Flags: - (does not modify flags) */
942 #define SLJIT_MOV_S8 (SLJIT_OP1_BASE + 2)
943 #define SLJIT_MOV32_S8 (SLJIT_MOV_S8 | SLJIT_I32_OP)
944 /* Flags: - (does not modify flags) */
945 #define SLJIT_MOV_U16 (SLJIT_OP1_BASE + 3)
946 #define SLJIT_MOV32_U16 (SLJIT_MOV_U16 | SLJIT_I32_OP)
947 /* Flags: - (does not modify flags) */
948 #define SLJIT_MOV_S16 (SLJIT_OP1_BASE + 4)
949 #define SLJIT_MOV32_S16 (SLJIT_MOV_S16 | SLJIT_I32_OP)
950 /* Flags: - (does not modify flags)
951 Note: no SLJIT_MOV32_U32 form, since it is the same as SLJIT_MOV32 */
952 #define SLJIT_MOV_U32 (SLJIT_OP1_BASE + 5)
953 /* Flags: - (does not modify flags)
954 Note: no SLJIT_MOV32_S32 form, since it is the same as SLJIT_MOV32 */
955 #define SLJIT_MOV_S32 (SLJIT_OP1_BASE + 6)
956 /* Flags: - (does not modify flags) */
957 #define SLJIT_MOV32 (SLJIT_MOV_S32 | SLJIT_I32_OP)
958 /* Flags: - (does not modify flags)
959 Note: load a pointer sized data, useful on x32 (a 32 bit mode on x86-64
960 where all x64 features are available, e.g. 16 register) or similar
961 compiling modes */
962 #define SLJIT_MOV_P (SLJIT_OP1_BASE + 7)
963 /* Flags: Z
964 Note: immediate source argument is not supported */
965 #define SLJIT_NOT (SLJIT_OP1_BASE + 8)
966 #define SLJIT_NOT32 (SLJIT_NOT | SLJIT_I32_OP)
967 /* Flags: Z | OVERFLOW
968 Note: immediate source argument is not supported */
969 #define SLJIT_NEG (SLJIT_OP1_BASE + 9)
970 #define SLJIT_NEG32 (SLJIT_NEG | SLJIT_I32_OP)
971 /* Count leading zeroes
972 Flags: - (may destroy flags)
973 Note: immediate source argument is not supported */
974 #define SLJIT_CLZ (SLJIT_OP1_BASE + 10)
975 #define SLJIT_CLZ32 (SLJIT_CLZ | SLJIT_I32_OP)
976
977 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op1(struct sljit_compiler *compiler, sljit_s32 op,
978 sljit_s32 dst, sljit_sw dstw,
979 sljit_s32 src, sljit_sw srcw);
980
981 /* Starting index of opcodes for sljit_emit_op2. */
982 #define SLJIT_OP2_BASE 96
983
984 /* Flags: Z | OVERFLOW | CARRY */
985 #define SLJIT_ADD (SLJIT_OP2_BASE + 0)
986 #define SLJIT_ADD32 (SLJIT_ADD | SLJIT_I32_OP)
987 /* Flags: CARRY */
988 #define SLJIT_ADDC (SLJIT_OP2_BASE + 1)
989 #define SLJIT_ADDC32 (SLJIT_ADDC | SLJIT_I32_OP)
990 /* Flags: Z | LESS | GREATER_EQUAL | GREATER | LESS_EQUAL
991 SIG_LESS | SIG_GREATER_EQUAL | SIG_GREATER
992 SIG_LESS_EQUAL | CARRY */
993 #define SLJIT_SUB (SLJIT_OP2_BASE + 2)
994 #define SLJIT_SUB32 (SLJIT_SUB | SLJIT_I32_OP)
995 /* Flags: CARRY */
996 #define SLJIT_SUBC (SLJIT_OP2_BASE + 3)
997 #define SLJIT_SUBC32 (SLJIT_SUBC | SLJIT_I32_OP)
998 /* Note: integer mul
999 Flags: MUL_OVERFLOW */
1000 #define SLJIT_MUL (SLJIT_OP2_BASE + 4)
1001 #define SLJIT_MUL32 (SLJIT_MUL | SLJIT_I32_OP)
1002 /* Flags: Z */
1003 #define SLJIT_AND (SLJIT_OP2_BASE + 5)
1004 #define SLJIT_AND32 (SLJIT_AND | SLJIT_I32_OP)
1005 /* Flags: Z */
1006 #define SLJIT_OR (SLJIT_OP2_BASE + 6)
1007 #define SLJIT_OR32 (SLJIT_OR | SLJIT_I32_OP)
1008 /* Flags: Z */
1009 #define SLJIT_XOR (SLJIT_OP2_BASE + 7)
1010 #define SLJIT_XOR32 (SLJIT_XOR | SLJIT_I32_OP)
1011 /* Flags: Z
1012 Let bit_length be the length of the shift operation: 32 or 64.
1013 If src2 is immediate, src2w is masked by (bit_length - 1).
1014 Otherwise, if the content of src2 is outside the range from 0
1015 to bit_length - 1, the result is undefined. */
1016 #define SLJIT_SHL (SLJIT_OP2_BASE + 8)
1017 #define SLJIT_SHL32 (SLJIT_SHL | SLJIT_I32_OP)
1018 /* Flags: Z
1019 Let bit_length be the length of the shift operation: 32 or 64.
1020 If src2 is immediate, src2w is masked by (bit_length - 1).
1021 Otherwise, if the content of src2 is outside the range from 0
1022 to bit_length - 1, the result is undefined. */
1023 #define SLJIT_LSHR (SLJIT_OP2_BASE + 9)
1024 #define SLJIT_LSHR32 (SLJIT_LSHR | SLJIT_I32_OP)
1025 /* Flags: Z
1026 Let bit_length be the length of the shift operation: 32 or 64.
1027 If src2 is immediate, src2w is masked by (bit_length - 1).
1028 Otherwise, if the content of src2 is outside the range from 0
1029 to bit_length - 1, the result is undefined. */
1030 #define SLJIT_ASHR (SLJIT_OP2_BASE + 10)
1031 #define SLJIT_ASHR32 (SLJIT_ASHR | SLJIT_I32_OP)
1032
1033 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op2(struct sljit_compiler *compiler, sljit_s32 op,
1034 sljit_s32 dst, sljit_sw dstw,
1035 sljit_s32 src1, sljit_sw src1w,
1036 sljit_s32 src2, sljit_sw src2w);
1037
1038 /* Starting index of opcodes for sljit_emit_op2. */
1039 #define SLJIT_OP_SRC_BASE 128
1040
1041 /* Note: src cannot be an immedate value
1042 Flags: - (does not modify flags) */
1043 #define SLJIT_FAST_RETURN (SLJIT_OP_SRC_BASE + 0)
1044 /* Skip stack frames before fast return.
1045 Note: src cannot be an immedate value
1046 Flags: may destroy flags. */
1047 #define SLJIT_SKIP_FRAMES_BEFORE_FAST_RETURN (SLJIT_OP_SRC_BASE + 1)
1048 /* Prefetch value into the level 1 data cache
1049 Note: if the target CPU does not support data prefetch,
1050 no instructions are emitted.
1051 Note: this instruction never fails, even if the memory address is invalid.
1052 Flags: - (does not modify flags) */
1053 #define SLJIT_PREFETCH_L1 (SLJIT_OP_SRC_BASE + 2)
1054 /* Prefetch value into the level 2 data cache
1055 Note: same as SLJIT_PREFETCH_L1 if the target CPU
1056 does not support this instruction form.
1057 Note: this instruction never fails, even if the memory address is invalid.
1058 Flags: - (does not modify flags) */
1059 #define SLJIT_PREFETCH_L2 (SLJIT_OP_SRC_BASE + 3)
1060 /* Prefetch value into the level 3 data cache
1061 Note: same as SLJIT_PREFETCH_L2 if the target CPU
1062 does not support this instruction form.
1063 Note: this instruction never fails, even if the memory address is invalid.
1064 Flags: - (does not modify flags) */
1065 #define SLJIT_PREFETCH_L3 (SLJIT_OP_SRC_BASE + 4)
1066 /* Prefetch a value which is only used once (and can be discarded afterwards)
1067 Note: same as SLJIT_PREFETCH_L1 if the target CPU
1068 does not support this instruction form.
1069 Note: this instruction never fails, even if the memory address is invalid.
1070 Flags: - (does not modify flags) */
1071 #define SLJIT_PREFETCH_ONCE (SLJIT_OP_SRC_BASE + 5)
1072
1073 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op_src(struct sljit_compiler *compiler, sljit_s32 op,
1074 sljit_s32 src, sljit_sw srcw);
1075
1076 /* Starting index of opcodes for sljit_emit_fop1. */
1077 #define SLJIT_FOP1_BASE 160
1078
1079 /* Flags: - (does not modify flags) */
1080 #define SLJIT_MOV_F64 (SLJIT_FOP1_BASE + 0)
1081 #define SLJIT_MOV_F32 (SLJIT_MOV_F64 | SLJIT_F32_OP)
1082 /* Convert opcodes: CONV[DST_TYPE].FROM[SRC_TYPE]
1083 SRC/DST TYPE can be: D - double, S - single, W - signed word, I - signed int
1084 Rounding mode when the destination is W or I: round towards zero. */
1085 /* Flags: - (does not modify flags) */
1086 #define SLJIT_CONV_F64_FROM_F32 (SLJIT_FOP1_BASE + 1)
1087 #define SLJIT_CONV_F32_FROM_F64 (SLJIT_CONV_F64_FROM_F32 | SLJIT_F32_OP)
1088 /* Flags: - (does not modify flags) */
1089 #define SLJIT_CONV_SW_FROM_F64 (SLJIT_FOP1_BASE + 2)
1090 #define SLJIT_CONV_SW_FROM_F32 (SLJIT_CONV_SW_FROM_F64 | SLJIT_F32_OP)
1091 /* Flags: - (does not modify flags) */
1092 #define SLJIT_CONV_S32_FROM_F64 (SLJIT_FOP1_BASE + 3)
1093 #define SLJIT_CONV_S32_FROM_F32 (SLJIT_CONV_S32_FROM_F64 | SLJIT_F32_OP)
1094 /* Flags: - (does not modify flags) */
1095 #define SLJIT_CONV_F64_FROM_SW (SLJIT_FOP1_BASE + 4)
1096 #define SLJIT_CONV_F32_FROM_SW (SLJIT_CONV_F64_FROM_SW | SLJIT_F32_OP)
1097 /* Flags: - (does not modify flags) */
1098 #define SLJIT_CONV_F64_FROM_S32 (SLJIT_FOP1_BASE + 5)
1099 #define SLJIT_CONV_F32_FROM_S32 (SLJIT_CONV_F64_FROM_S32 | SLJIT_F32_OP)
1100 /* Note: dst is the left and src is the right operand for SLJIT_CMPD.
1101 Flags: EQUAL_F | LESS_F | GREATER_EQUAL_F | GREATER_F | LESS_EQUAL_F */
1102 #define SLJIT_CMP_F64 (SLJIT_FOP1_BASE + 6)
1103 #define SLJIT_CMP_F32 (SLJIT_CMP_F64 | SLJIT_F32_OP)
1104 /* Flags: - (does not modify flags) */
1105 #define SLJIT_NEG_F64 (SLJIT_FOP1_BASE + 7)
1106 #define SLJIT_NEG_F32 (SLJIT_NEG_F64 | SLJIT_F32_OP)
1107 /* Flags: - (does not modify flags) */
1108 #define SLJIT_ABS_F64 (SLJIT_FOP1_BASE + 8)
1109 #define SLJIT_ABS_F32 (SLJIT_ABS_F64 | SLJIT_F32_OP)
1110
1111 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fop1(struct sljit_compiler *compiler, sljit_s32 op,
1112 sljit_s32 dst, sljit_sw dstw,
1113 sljit_s32 src, sljit_sw srcw);
1114
1115 /* Starting index of opcodes for sljit_emit_fop2. */
1116 #define SLJIT_FOP2_BASE 192
1117
1118 /* Flags: - (does not modify flags) */
1119 #define SLJIT_ADD_F64 (SLJIT_FOP2_BASE + 0)
1120 #define SLJIT_ADD_F32 (SLJIT_ADD_F64 | SLJIT_F32_OP)
1121 /* Flags: - (does not modify flags) */
1122 #define SLJIT_SUB_F64 (SLJIT_FOP2_BASE + 1)
1123 #define SLJIT_SUB_F32 (SLJIT_SUB_F64 | SLJIT_F32_OP)
1124 /* Flags: - (does not modify flags) */
1125 #define SLJIT_MUL_F64 (SLJIT_FOP2_BASE + 2)
1126 #define SLJIT_MUL_F32 (SLJIT_MUL_F64 | SLJIT_F32_OP)
1127 /* Flags: - (does not modify flags) */
1128 #define SLJIT_DIV_F64 (SLJIT_FOP2_BASE + 3)
1129 #define SLJIT_DIV_F32 (SLJIT_DIV_F64 | SLJIT_F32_OP)
1130
1131 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fop2(struct sljit_compiler *compiler, sljit_s32 op,
1132 sljit_s32 dst, sljit_sw dstw,
1133 sljit_s32 src1, sljit_sw src1w,
1134 sljit_s32 src2, sljit_sw src2w);
1135
1136 /* Label and jump instructions. */
1137
1138 SLJIT_API_FUNC_ATTRIBUTE struct sljit_label* sljit_emit_label(struct sljit_compiler *compiler);
1139
1140 /* Invert (negate) conditional type: xor (^) with 0x1 */
1141
1142 /* Integer comparison types. */
1143 #define SLJIT_EQUAL 0
1144 #define SLJIT_EQUAL32 (SLJIT_EQUAL | SLJIT_I32_OP)
1145 #define SLJIT_ZERO 0
1146 #define SLJIT_ZERO32 (SLJIT_ZERO | SLJIT_I32_OP)
1147 #define SLJIT_NOT_EQUAL 1
1148 #define SLJIT_NOT_EQUAL32 (SLJIT_NOT_EQUAL | SLJIT_I32_OP)
1149 #define SLJIT_NOT_ZERO 1
1150 #define SLJIT_NOT_ZERO32 (SLJIT_NOT_ZERO | SLJIT_I32_OP)
1151
1152 #define SLJIT_LESS 2
1153 #define SLJIT_LESS32 (SLJIT_LESS | SLJIT_I32_OP)
1154 #define SLJIT_SET_LESS SLJIT_SET(SLJIT_LESS)
1155 #define SLJIT_GREATER_EQUAL 3
1156 #define SLJIT_GREATER_EQUAL32 (SLJIT_GREATER_EQUAL | SLJIT_I32_OP)
1157 #define SLJIT_SET_GREATER_EQUAL SLJIT_SET(SLJIT_GREATER_EQUAL)
1158 #define SLJIT_GREATER 4
1159 #define SLJIT_GREATER32 (SLJIT_GREATER | SLJIT_I32_OP)
1160 #define SLJIT_SET_GREATER SLJIT_SET(SLJIT_GREATER)
1161 #define SLJIT_LESS_EQUAL 5
1162 #define SLJIT_LESS_EQUAL32 (SLJIT_LESS_EQUAL | SLJIT_I32_OP)
1163 #define SLJIT_SET_LESS_EQUAL SLJIT_SET(SLJIT_LESS_EQUAL)
1164 #define SLJIT_SIG_LESS 6
1165 #define SLJIT_SIG_LESS32 (SLJIT_SIG_LESS | SLJIT_I32_OP)
1166 #define SLJIT_SET_SIG_LESS SLJIT_SET(SLJIT_SIG_LESS)
1167 #define SLJIT_SIG_GREATER_EQUAL 7
1168 #define SLJIT_SIG_GREATER_EQUAL32 (SLJIT_SIG_GREATER_EQUAL | SLJIT_I32_OP)
1169 #define SLJIT_SET_SIG_GREATER_EQUAL SLJIT_SET(SLJIT_SIG_GREATER_EQUAL)
1170 #define SLJIT_SIG_GREATER 8
1171 #define SLJIT_SIG_GREATER32 (SLJIT_SIG_GREATER | SLJIT_I32_OP)
1172 #define SLJIT_SET_SIG_GREATER SLJIT_SET(SLJIT_SIG_GREATER)
1173 #define SLJIT_SIG_LESS_EQUAL 9
1174 #define SLJIT_SIG_LESS_EQUAL32 (SLJIT_SIG_LESS_EQUAL | SLJIT_I32_OP)
1175 #define SLJIT_SET_SIG_LESS_EQUAL SLJIT_SET(SLJIT_SIG_LESS_EQUAL)
1176
1177 #define SLJIT_OVERFLOW 10
1178 #define SLJIT_OVERFLOW32 (SLJIT_OVERFLOW | SLJIT_I32_OP)
1179 #define SLJIT_SET_OVERFLOW SLJIT_SET(SLJIT_OVERFLOW)
1180 #define SLJIT_NOT_OVERFLOW 11
1181 #define SLJIT_NOT_OVERFLOW32 (SLJIT_NOT_OVERFLOW | SLJIT_I32_OP)
1182
1183 #define SLJIT_MUL_OVERFLOW 12
1184 #define SLJIT_MUL_OVERFLOW32 (SLJIT_MUL_OVERFLOW | SLJIT_I32_OP)
1185 #define SLJIT_SET_MUL_OVERFLOW SLJIT_SET(SLJIT_MUL_OVERFLOW)
1186 #define SLJIT_MUL_NOT_OVERFLOW 13
1187 #define SLJIT_MUL_NOT_OVERFLOW32 (SLJIT_MUL_NOT_OVERFLOW | SLJIT_I32_OP)
1188
1189 /* There is no SLJIT_CARRY or SLJIT_NOT_CARRY. */
1190 #define SLJIT_SET_CARRY SLJIT_SET(14)
1191
1192 /* Floating point comparison types. */
1193 #define SLJIT_EQUAL_F64 16
1194 #define SLJIT_EQUAL_F32 (SLJIT_EQUAL_F64 | SLJIT_F32_OP)
1195 #define SLJIT_SET_EQUAL_F SLJIT_SET(SLJIT_EQUAL_F64)
1196 #define SLJIT_NOT_EQUAL_F64 17
1197 #define SLJIT_NOT_EQUAL_F32 (SLJIT_NOT_EQUAL_F64 | SLJIT_F32_OP)
1198 #define SLJIT_SET_NOT_EQUAL_F SLJIT_SET(SLJIT_NOT_EQUAL_F64)
1199 #define SLJIT_LESS_F64 18
1200 #define SLJIT_LESS_F32 (SLJIT_LESS_F64 | SLJIT_F32_OP)
1201 #define SLJIT_SET_LESS_F SLJIT_SET(SLJIT_LESS_F64)
1202 #define SLJIT_GREATER_EQUAL_F64 19
1203 #define SLJIT_GREATER_EQUAL_F32 (SLJIT_GREATER_EQUAL_F64 | SLJIT_F32_OP)
1204 #define SLJIT_SET_GREATER_EQUAL_F SLJIT_SET(SLJIT_GREATER_EQUAL_F64)
1205 #define SLJIT_GREATER_F64 20
1206 #define SLJIT_GREATER_F32 (SLJIT_GREATER_F64 | SLJIT_F32_OP)
1207 #define SLJIT_SET_GREATER_F SLJIT_SET(SLJIT_GREATER_F64)
1208 #define SLJIT_LESS_EQUAL_F64 21
1209 #define SLJIT_LESS_EQUAL_F32 (SLJIT_LESS_EQUAL_F64 | SLJIT_F32_OP)
1210 #define SLJIT_SET_LESS_EQUAL_F SLJIT_SET(SLJIT_LESS_EQUAL_F64)
1211 #define SLJIT_UNORDERED_F64 22
1212 #define SLJIT_UNORDERED_F32 (SLJIT_UNORDERED_F64 | SLJIT_F32_OP)
1213 #define SLJIT_SET_UNORDERED_F SLJIT_SET(SLJIT_UNORDERED_F64)
1214 #define SLJIT_ORDERED_F64 23
1215 #define SLJIT_ORDERED_F32 (SLJIT_ORDERED_F64 | SLJIT_F32_OP)
1216 #define SLJIT_SET_ORDERED_F SLJIT_SET(SLJIT_ORDERED_F64)
1217
1218 /* Unconditional jump types. */
1219 #define SLJIT_JUMP 24
1220 /* Fast calling method. See sljit_emit_fast_enter / SLJIT_FAST_RETURN. */
1221 #define SLJIT_FAST_CALL 25
1222 /* Called function must be declared with the SLJIT_FUNC attribute. */
1223 #define SLJIT_CALL 26
1224 /* Called function must be declared with cdecl attribute.
1225 This is the default attribute for C functions. */
1226 #define SLJIT_CALL_CDECL 27
1227
1228 /* The target can be changed during runtime (see: sljit_set_jump_addr). */
1229 #define SLJIT_REWRITABLE_JUMP 0x1000
1230
1231 /* Emit a jump instruction. The destination is not set, only the type of the jump.
1232 type must be between SLJIT_EQUAL and SLJIT_FAST_CALL
1233 type can be combined (or'ed) with SLJIT_REWRITABLE_JUMP
1234
1235 Flags: does not modify flags. */
1236 SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_jump(struct sljit_compiler *compiler, sljit_s32 type);
1237
1238 /* Emit a C compiler (ABI) compatible function call.
1239 type must be SLJIT_CALL or SLJIT_CALL_CDECL
1240 type can be combined (or'ed) with SLJIT_REWRITABLE_JUMP
1241 arg_types is the combination of SLJIT_RET / SLJIT_ARGx (SLJIT_DEF_RET / SLJIT_DEF_ARGx) macros
1242
1243 Flags: destroy all flags. */
1244 SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_call(struct sljit_compiler *compiler, sljit_s32 type, sljit_s32 arg_types);
1245
1246 /* Basic arithmetic comparison. In most architectures it is implemented as
1247 an SLJIT_SUB operation (with SLJIT_UNUSED destination and setting
1248 appropriate flags) followed by a sljit_emit_jump. However some
1249 architectures (i.e: ARM64 or MIPS) may employ special optimizations here.
1250 It is suggested to use this comparison form when appropriate.
1251 type must be between SLJIT_EQUAL and SLJIT_I_SIG_LESS_EQUAL
1252 type can be combined (or'ed) with SLJIT_REWRITABLE_JUMP
1253
1254 Flags: may destroy flags. */
1255 SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_cmp(struct sljit_compiler *compiler, sljit_s32 type,
1256 sljit_s32 src1, sljit_sw src1w,
1257 sljit_s32 src2, sljit_sw src2w);
1258
1259 /* Basic floating point comparison. In most architectures it is implemented as
1260 an SLJIT_FCMP operation (setting appropriate flags) followed by a
1261 sljit_emit_jump. However some architectures (i.e: MIPS) may employ
1262 special optimizations here. It is suggested to use this comparison form
1263 when appropriate.
1264 type must be between SLJIT_EQUAL_F64 and SLJIT_ORDERED_F32
1265 type can be combined (or'ed) with SLJIT_REWRITABLE_JUMP
1266 Flags: destroy flags.
1267 Note: if either operand is NaN, the behaviour is undefined for
1268 types up to SLJIT_S_LESS_EQUAL. */
1269 SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_fcmp(struct sljit_compiler *compiler, sljit_s32 type,
1270 sljit_s32 src1, sljit_sw src1w,
1271 sljit_s32 src2, sljit_sw src2w);
1272
1273 /* Set the destination of the jump to this label. */
1274 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_label(struct sljit_jump *jump, struct sljit_label* label);
1275 /* Set the destination address of the jump to this label. */
1276 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_target(struct sljit_jump *jump, sljit_uw target);
1277
1278 /* Emit an indirect jump or fast call.
1279 Direct form: set src to SLJIT_IMM() and srcw to the address
1280 Indirect form: any other valid addressing mode
1281 type must be between SLJIT_JUMP and SLJIT_FAST_CALL
1282
1283 Flags: does not modify flags. */
1284 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_ijump(struct sljit_compiler *compiler, sljit_s32 type, sljit_s32 src, sljit_sw srcw);
1285
1286 /* Emit a C compiler (ABI) compatible function call.
1287 Direct form: set src to SLJIT_IMM() and srcw to the address
1288 Indirect form: any other valid addressing mode
1289 type must be SLJIT_CALL or SLJIT_CALL_CDECL
1290 arg_types is the combination of SLJIT_RET / SLJIT_ARGx (SLJIT_DEF_RET / SLJIT_DEF_ARGx) macros
1291
1292 Flags: destroy all flags. */
1293 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_icall(struct sljit_compiler *compiler, sljit_s32 type, sljit_s32 arg_types, sljit_s32 src, sljit_sw srcw);
1294
1295 /* Perform the operation using the conditional flags as the second argument.
1296 Type must always be between SLJIT_EQUAL and SLJIT_ORDERED_F64. The value
1297 represented by the type is 1, if the condition represented by the type
1298 is fulfilled, and 0 otherwise.
1299
1300 If op == SLJIT_MOV, SLJIT_MOV32:
1301 Set dst to the value represented by the type (0 or 1).
1302 Flags: - (does not modify flags)
1303 If op == SLJIT_OR, op == SLJIT_AND, op == SLJIT_XOR
1304 Performs the binary operation using dst as the first, and the value
1305 represented by type as the second argument. Result is written into dst.
1306 Flags: Z (may destroy flags) */
1307 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op_flags(struct sljit_compiler *compiler, sljit_s32 op,
1308 sljit_s32 dst, sljit_sw dstw,
1309 sljit_s32 type);
1310
1311 /* Emit a conditional mov instruction which moves source to destination,
1312 if the condition is satisfied. Unlike other arithmetic operations this
1313 instruction does not support memory access.
1314
1315 type must be between SLJIT_EQUAL and SLJIT_ORDERED_F64
1316 dst_reg must be a valid register and it can be combined
1317 with SLJIT_I32_OP to perform a 32 bit arithmetic operation
1318 src must be register or immediate (SLJIT_IMM)
1319
1320 Flags: - (does not modify flags) */
1321 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_cmov(struct sljit_compiler *compiler, sljit_s32 type,
1322 sljit_s32 dst_reg,
1323 sljit_s32 src, sljit_sw srcw);
1324
1325 /* The following flags are used by sljit_emit_mem() and sljit_emit_fmem(). */
1326
1327 /* When SLJIT_MEM_SUPP is passed, no instructions are emitted.
1328 Instead the function returns with SLJIT_SUCCESS if the instruction
1329 form is supported and SLJIT_ERR_UNSUPPORTED otherwise. This flag
1330 allows runtime checking of available instruction forms. */
1331 #define SLJIT_MEM_SUPP 0x0200
1332 /* Memory load operation. This is the default. */
1333 #define SLJIT_MEM_LOAD 0x0000
1334 /* Memory store operation. */
1335 #define SLJIT_MEM_STORE 0x0400
1336 /* Base register is updated before the memory access. */
1337 #define SLJIT_MEM_PRE 0x0800
1338 /* Base register is updated after the memory access. */
1339 #define SLJIT_MEM_POST 0x1000
1340
1341 /* Emit a single memory load or store with update instruction. When the
1342 requested instruction form is not supported by the CPU, it returns
1343 with SLJIT_ERR_UNSUPPORTED instead of emulating the instruction. This
1344 allows specializing tight loops based on the supported instruction
1345 forms (see SLJIT_MEM_SUPP flag).
1346
1347 type must be between SLJIT_MOV and SLJIT_MOV_P and can be
1348 combined with SLJIT_MEM_* flags. Either SLJIT_MEM_PRE
1349 or SLJIT_MEM_POST must be specified.
1350 reg is the source or destination register, and must be
1351 different from the base register of the mem operand
1352 mem must be a SLJIT_MEM1() or SLJIT_MEM2() operand
1353
1354 Flags: - (does not modify flags) */
1355 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_mem(struct sljit_compiler *compiler, sljit_s32 type,
1356 sljit_s32 reg,
1357 sljit_s32 mem, sljit_sw memw);
1358
1359 /* Same as sljit_emit_mem except the followings:
1360
1361 type must be SLJIT_MOV_F64 or SLJIT_MOV_F32 and can be
1362 combined with SLJIT_MEM_* flags. Either SLJIT_MEM_PRE
1363 or SLJIT_MEM_POST must be specified.
1364 freg is the source or destination floating point register */
1365
1366 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fmem(struct sljit_compiler *compiler, sljit_s32 type,
1367 sljit_s32 freg,
1368 sljit_s32 mem, sljit_sw memw);
1369
1370 /* Copies the base address of SLJIT_SP + offset to dst. The offset can be
1371 anything to negate the effect of relative addressing. For example if an
1372 array of sljit_sw values is stored on the stack from offset 0x40, and R0
1373 contains the offset of an array item plus 0x120, this item can be
1374 overwritten by two SLJIT instructions:
1375
1376 sljit_get_local_base(compiler, SLJIT_R1, 0, 0x40 - 0x120);
1377 sljit_emit_op1(compiler, SLJIT_MOV, SLJIT_MEM2(SLJIT_R1, SLJIT_R0), 0, SLJIT_IMM, 0x5);
1378
1379 Flags: - (may destroy flags) */
1380 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_get_local_base(struct sljit_compiler *compiler, sljit_s32 dst, sljit_sw dstw, sljit_sw offset);
1381
1382 /* Store a value that can be changed runtime (see: sljit_get_const_addr / sljit_set_const)
1383 Flags: - (does not modify flags) */
1384 SLJIT_API_FUNC_ATTRIBUTE struct sljit_const* sljit_emit_const(struct sljit_compiler *compiler, sljit_s32 dst, sljit_sw dstw, sljit_sw init_value);
1385
1386 /* Store the value of a label (see: sljit_set_put_label)
1387 Flags: - (does not modify flags) */
1388 SLJIT_API_FUNC_ATTRIBUTE struct sljit_put_label* sljit_emit_put_label(struct sljit_compiler *compiler, sljit_s32 dst, sljit_sw dstw);
1389
1390 /* Set the value stored by put_label to this label. */
1391 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_put_label(struct sljit_put_label *put_label, struct sljit_label *label);
1392
1393 /* After the code generation the address for label, jump and const instructions
1394 are computed. Since these structures are freed by sljit_free_compiler, the
1395 addresses must be preserved by the user program elsewere. */
sljit_get_label_addr(struct sljit_label * label)1396 static SLJIT_INLINE sljit_uw sljit_get_label_addr(struct sljit_label *label) { return label->addr; }
sljit_get_jump_addr(struct sljit_jump * jump)1397 static SLJIT_INLINE sljit_uw sljit_get_jump_addr(struct sljit_jump *jump) { return jump->addr; }
sljit_get_const_addr(struct sljit_const * const_)1398 static SLJIT_INLINE sljit_uw sljit_get_const_addr(struct sljit_const *const_) { return const_->addr; }
1399
1400 /* Only the address and executable offset are required to perform dynamic
1401 code modifications. See sljit_get_executable_offset function. */
1402 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_jump_addr(sljit_uw addr, sljit_uw new_target, sljit_sw executable_offset);
1403 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_const(sljit_uw addr, sljit_sw new_constant, sljit_sw executable_offset);
1404
1405 /* --------------------------------------------------------------------- */
1406 /* Miscellaneous utility functions */
1407 /* --------------------------------------------------------------------- */
1408
1409 #define SLJIT_MAJOR_VERSION 0
1410 #define SLJIT_MINOR_VERSION 94
1411
1412 /* Get the human readable name of the platform. Can be useful on platforms
1413 like ARM, where ARM and Thumb2 functions can be mixed, and
1414 it is useful to know the type of the code generator. */
1415 SLJIT_API_FUNC_ATTRIBUTE const char* sljit_get_platform_name(void);
1416
1417 /* Portable helper function to get an offset of a member. */
1418 #define SLJIT_OFFSETOF(base, member) ((sljit_sw)(&((base*)0x10)->member) - 0x10)
1419
1420 #if (defined SLJIT_UTIL_STACK && SLJIT_UTIL_STACK)
1421
1422 /* The sljit_stack structure and its manipulation functions provides
1423 an implementation for a top-down stack. The stack top is stored
1424 in the end field of the sljit_stack structure and the stack goes
1425 down to the min_start field, so the memory region reserved for
1426 this stack is between min_start (inclusive) and end (exclusive)
1427 fields. However the application can only use the region between
1428 start (inclusive) and end (exclusive) fields. The sljit_stack_resize
1429 function can be used to extend this region up to min_start.
1430
1431 This feature uses the "address space reserve" feature of modern
1432 operating systems. Instead of allocating a large memory block
1433 applications can allocate a small memory region and extend it
1434 later without moving the content of the memory area. Therefore
1435 after a successful resize by sljit_stack_resize all pointers into
1436 this region are still valid.
1437
1438 Note:
1439 this structure may not be supported by all operating systems.
1440 end and max_limit fields are aligned to PAGE_SIZE bytes (usually
1441 4 Kbyte or more).
1442 stack should grow in larger steps, e.g. 4Kbyte, 16Kbyte or more. */
1443
1444 struct sljit_stack {
1445 /* User data, anything can be stored here.
1446 Initialized to the same value as the end field. */
1447 sljit_u8 *top;
1448 /* These members are read only. */
1449 /* End address of the stack */
1450 sljit_u8 *end;
1451 /* Current start address of the stack. */
1452 sljit_u8 *start;
1453 /* Lowest start address of the stack. */
1454 sljit_u8 *min_start;
1455 };
1456
1457 /* Allocates a new stack. Returns NULL if unsuccessful.
1458 Note: see sljit_create_compiler for the explanation of allocator_data. */
1459 SLJIT_API_FUNC_ATTRIBUTE struct sljit_stack* SLJIT_FUNC sljit_allocate_stack(sljit_uw start_size, sljit_uw max_size, void *allocator_data);
1460 SLJIT_API_FUNC_ATTRIBUTE void SLJIT_FUNC sljit_free_stack(struct sljit_stack *stack, void *allocator_data);
1461
1462 /* Can be used to increase (extend) or decrease (shrink) the stack
1463 memory area. Returns with new_start if successful and NULL otherwise.
1464 It always fails if new_start is less than min_start or greater or equal
1465 than end fields. The fields of the stack are not changed if the returned
1466 value is NULL (the current memory content is never lost). */
1467 SLJIT_API_FUNC_ATTRIBUTE sljit_u8 *SLJIT_FUNC sljit_stack_resize(struct sljit_stack *stack, sljit_u8 *new_start);
1468
1469 #endif /* (defined SLJIT_UTIL_STACK && SLJIT_UTIL_STACK) */
1470
1471 #if !(defined SLJIT_INDIRECT_CALL && SLJIT_INDIRECT_CALL)
1472
1473 /* Get the entry address of a given function. */
1474 #define SLJIT_FUNC_OFFSET(func_name) ((sljit_sw)func_name)
1475
1476 #else /* !(defined SLJIT_INDIRECT_CALL && SLJIT_INDIRECT_CALL) */
1477
1478 /* All JIT related code should be placed in the same context (library, binary, etc.). */
1479
1480 #define SLJIT_FUNC_OFFSET(func_name) (*(sljit_sw*)(void*)func_name)
1481
1482 /* For powerpc64, the function pointers point to a context descriptor. */
1483 struct sljit_function_context {
1484 sljit_sw addr;
1485 sljit_sw r2;
1486 sljit_sw r11;
1487 };
1488
1489 /* Fill the context arguments using the addr and the function.
1490 If func_ptr is NULL, it will not be set to the address of context
1491 If addr is NULL, the function address also comes from the func pointer. */
1492 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_function_context(void** func_ptr, struct sljit_function_context* context, sljit_sw addr, void* func);
1493
1494 #endif /* !(defined SLJIT_INDIRECT_CALL && SLJIT_INDIRECT_CALL) */
1495
1496 #if (defined SLJIT_EXECUTABLE_ALLOCATOR && SLJIT_EXECUTABLE_ALLOCATOR)
1497 /* Free unused executable memory. The allocator keeps some free memory
1498 around to reduce the number of OS executable memory allocations.
1499 This improves performance since these calls are costly. However
1500 it is sometimes desired to free all unused memory regions, e.g.
1501 before the application terminates. */
1502 SLJIT_API_FUNC_ATTRIBUTE void sljit_free_unused_memory_exec(void);
1503 #endif
1504
1505 /* --------------------------------------------------------------------- */
1506 /* CPU specific functions */
1507 /* --------------------------------------------------------------------- */
1508
1509 /* The following function is a helper function for sljit_emit_op_custom.
1510 It returns with the real machine register index ( >=0 ) of any SLJIT_R,
1511 SLJIT_S and SLJIT_SP registers.
1512
1513 Note: it returns with -1 for virtual registers (only on x86-32). */
1514
1515 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_get_register_index(sljit_s32 reg);
1516
1517 /* The following function is a helper function for sljit_emit_op_custom.
1518 It returns with the real machine register index of any SLJIT_FLOAT register.
1519
1520 Note: the index is always an even number on ARM (except ARM-64), MIPS, and SPARC. */
1521
1522 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_get_float_register_index(sljit_s32 reg);
1523
1524 /* Any instruction can be inserted into the instruction stream by
1525 sljit_emit_op_custom. It has a similar purpose as inline assembly.
1526 The size parameter must match to the instruction size of the target
1527 architecture:
1528
1529 x86: 0 < size <= 15. The instruction argument can be byte aligned.
1530 Thumb2: if size == 2, the instruction argument must be 2 byte aligned.
1531 if size == 4, the instruction argument must be 4 byte aligned.
1532 Otherwise: size must be 4 and instruction argument must be 4 byte aligned. */
1533
1534 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op_custom(struct sljit_compiler *compiler,
1535 void *instruction, sljit_s32 size);
1536
1537 /* Define the currently available CPU status flags. It is usually used after an
1538 sljit_emit_op_custom call to define which flags are set. */
1539
1540 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_current_flags(struct sljit_compiler *compiler,
1541 sljit_s32 current_flags);
1542
1543 #ifdef __cplusplus
1544 } /* extern "C" */
1545 #endif
1546
1547 #endif /* SLJIT_LIR_H_ */
1548