• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * z_Windows_NT_util.cpp -- platform specific routines.
3  */
4 
5 //===----------------------------------------------------------------------===//
6 //
7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
8 // See https://llvm.org/LICENSE.txt for license information.
9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "kmp.h"
14 #include "kmp_affinity.h"
15 #include "kmp_i18n.h"
16 #include "kmp_io.h"
17 #include "kmp_itt.h"
18 #include "kmp_wait_release.h"
19 
20 /* This code is related to NtQuerySystemInformation() function. This function
21    is used in the Load balance algorithm for OMP_DYNAMIC=true to find the
22    number of running threads in the system. */
23 
24 #include <ntsecapi.h> // UNICODE_STRING
25 #include <ntstatus.h>
26 
27 enum SYSTEM_INFORMATION_CLASS {
28   SystemProcessInformation = 5
29 }; // SYSTEM_INFORMATION_CLASS
30 
31 struct CLIENT_ID {
32   HANDLE UniqueProcess;
33   HANDLE UniqueThread;
34 }; // struct CLIENT_ID
35 
36 enum THREAD_STATE {
37   StateInitialized,
38   StateReady,
39   StateRunning,
40   StateStandby,
41   StateTerminated,
42   StateWait,
43   StateTransition,
44   StateUnknown
45 }; // enum THREAD_STATE
46 
47 struct VM_COUNTERS {
48   SIZE_T PeakVirtualSize;
49   SIZE_T VirtualSize;
50   ULONG PageFaultCount;
51   SIZE_T PeakWorkingSetSize;
52   SIZE_T WorkingSetSize;
53   SIZE_T QuotaPeakPagedPoolUsage;
54   SIZE_T QuotaPagedPoolUsage;
55   SIZE_T QuotaPeakNonPagedPoolUsage;
56   SIZE_T QuotaNonPagedPoolUsage;
57   SIZE_T PagefileUsage;
58   SIZE_T PeakPagefileUsage;
59   SIZE_T PrivatePageCount;
60 }; // struct VM_COUNTERS
61 
62 struct SYSTEM_THREAD {
63   LARGE_INTEGER KernelTime;
64   LARGE_INTEGER UserTime;
65   LARGE_INTEGER CreateTime;
66   ULONG WaitTime;
67   LPVOID StartAddress;
68   CLIENT_ID ClientId;
69   DWORD Priority;
70   LONG BasePriority;
71   ULONG ContextSwitchCount;
72   THREAD_STATE State;
73   ULONG WaitReason;
74 }; // SYSTEM_THREAD
75 
76 KMP_BUILD_ASSERT(offsetof(SYSTEM_THREAD, KernelTime) == 0);
77 #if KMP_ARCH_X86
78 KMP_BUILD_ASSERT(offsetof(SYSTEM_THREAD, StartAddress) == 28);
79 KMP_BUILD_ASSERT(offsetof(SYSTEM_THREAD, State) == 52);
80 #else
81 KMP_BUILD_ASSERT(offsetof(SYSTEM_THREAD, StartAddress) == 32);
82 KMP_BUILD_ASSERT(offsetof(SYSTEM_THREAD, State) == 68);
83 #endif
84 
85 struct SYSTEM_PROCESS_INFORMATION {
86   ULONG NextEntryOffset;
87   ULONG NumberOfThreads;
88   LARGE_INTEGER Reserved[3];
89   LARGE_INTEGER CreateTime;
90   LARGE_INTEGER UserTime;
91   LARGE_INTEGER KernelTime;
92   UNICODE_STRING ImageName;
93   DWORD BasePriority;
94   HANDLE ProcessId;
95   HANDLE ParentProcessId;
96   ULONG HandleCount;
97   ULONG Reserved2[2];
98   VM_COUNTERS VMCounters;
99   IO_COUNTERS IOCounters;
100   SYSTEM_THREAD Threads[1];
101 }; // SYSTEM_PROCESS_INFORMATION
102 typedef SYSTEM_PROCESS_INFORMATION *PSYSTEM_PROCESS_INFORMATION;
103 
104 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, NextEntryOffset) == 0);
105 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, CreateTime) == 32);
106 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, ImageName) == 56);
107 #if KMP_ARCH_X86
108 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, ProcessId) == 68);
109 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, HandleCount) == 76);
110 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, VMCounters) == 88);
111 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, IOCounters) == 136);
112 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, Threads) == 184);
113 #else
114 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, ProcessId) == 80);
115 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, HandleCount) == 96);
116 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, VMCounters) == 112);
117 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, IOCounters) == 208);
118 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, Threads) == 256);
119 #endif
120 
121 typedef NTSTATUS(NTAPI *NtQuerySystemInformation_t)(SYSTEM_INFORMATION_CLASS,
122                                                     PVOID, ULONG, PULONG);
123 NtQuerySystemInformation_t NtQuerySystemInformation = NULL;
124 
125 HMODULE ntdll = NULL;
126 
127 /* End of NtQuerySystemInformation()-related code */
128 
129 static HMODULE kernel32 = NULL;
130 
131 #if KMP_HANDLE_SIGNALS
132 typedef void (*sig_func_t)(int);
133 static sig_func_t __kmp_sighldrs[NSIG];
134 static int __kmp_siginstalled[NSIG];
135 #endif
136 
137 #if KMP_USE_MONITOR
138 static HANDLE __kmp_monitor_ev;
139 #endif
140 static kmp_int64 __kmp_win32_time;
141 double __kmp_win32_tick;
142 
143 int __kmp_init_runtime = FALSE;
144 CRITICAL_SECTION __kmp_win32_section;
145 
__kmp_win32_mutex_init(kmp_win32_mutex_t * mx)146 void __kmp_win32_mutex_init(kmp_win32_mutex_t *mx) {
147   InitializeCriticalSection(&mx->cs);
148 #if USE_ITT_BUILD
149   __kmp_itt_system_object_created(&mx->cs, "Critical Section");
150 #endif /* USE_ITT_BUILD */
151 }
152 
__kmp_win32_mutex_destroy(kmp_win32_mutex_t * mx)153 void __kmp_win32_mutex_destroy(kmp_win32_mutex_t *mx) {
154   DeleteCriticalSection(&mx->cs);
155 }
156 
__kmp_win32_mutex_lock(kmp_win32_mutex_t * mx)157 void __kmp_win32_mutex_lock(kmp_win32_mutex_t *mx) {
158   EnterCriticalSection(&mx->cs);
159 }
160 
__kmp_win32_mutex_trylock(kmp_win32_mutex_t * mx)161 int __kmp_win32_mutex_trylock(kmp_win32_mutex_t *mx) {
162   return TryEnterCriticalSection(&mx->cs);
163 }
164 
__kmp_win32_mutex_unlock(kmp_win32_mutex_t * mx)165 void __kmp_win32_mutex_unlock(kmp_win32_mutex_t *mx) {
166   LeaveCriticalSection(&mx->cs);
167 }
168 
__kmp_win32_cond_init(kmp_win32_cond_t * cv)169 void __kmp_win32_cond_init(kmp_win32_cond_t *cv) {
170   cv->waiters_count_ = 0;
171   cv->wait_generation_count_ = 0;
172   cv->release_count_ = 0;
173 
174   /* Initialize the critical section */
175   __kmp_win32_mutex_init(&cv->waiters_count_lock_);
176 
177   /* Create a manual-reset event. */
178   cv->event_ = CreateEvent(NULL, // no security
179                            TRUE, // manual-reset
180                            FALSE, // non-signaled initially
181                            NULL); // unnamed
182 #if USE_ITT_BUILD
183   __kmp_itt_system_object_created(cv->event_, "Event");
184 #endif /* USE_ITT_BUILD */
185 }
186 
__kmp_win32_cond_destroy(kmp_win32_cond_t * cv)187 void __kmp_win32_cond_destroy(kmp_win32_cond_t *cv) {
188   __kmp_win32_mutex_destroy(&cv->waiters_count_lock_);
189   __kmp_free_handle(cv->event_);
190   memset(cv, '\0', sizeof(*cv));
191 }
192 
193 /* TODO associate cv with a team instead of a thread so as to optimize
194    the case where we wake up a whole team */
195 
196 template <class C>
__kmp_win32_cond_wait(kmp_win32_cond_t * cv,kmp_win32_mutex_t * mx,kmp_info_t * th,C * flag)197 static void __kmp_win32_cond_wait(kmp_win32_cond_t *cv, kmp_win32_mutex_t *mx,
198                                   kmp_info_t *th, C *flag) {
199   int my_generation;
200   int last_waiter;
201 
202   /* Avoid race conditions */
203   __kmp_win32_mutex_lock(&cv->waiters_count_lock_);
204 
205   /* Increment count of waiters */
206   cv->waiters_count_++;
207 
208   /* Store current generation in our activation record. */
209   my_generation = cv->wait_generation_count_;
210 
211   __kmp_win32_mutex_unlock(&cv->waiters_count_lock_);
212   __kmp_win32_mutex_unlock(mx);
213 
214   for (;;) {
215     int wait_done = 0;
216     DWORD res, timeout = 5000; // just tried to quess an appropriate number
217     /* Wait until the event is signaled */
218     res = WaitForSingleObject(cv->event_, timeout);
219 
220     if (res == WAIT_OBJECT_0) {
221       // event signaled
222       __kmp_win32_mutex_lock(&cv->waiters_count_lock_);
223       /* Exit the loop when the <cv->event_> is signaled and there are still
224          waiting threads from this <wait_generation> that haven't been released
225          from this wait yet. */
226       wait_done = (cv->release_count_ > 0) &&
227                   (cv->wait_generation_count_ != my_generation);
228       __kmp_win32_mutex_unlock(&cv->waiters_count_lock_);
229     } else if (res == WAIT_TIMEOUT || res == WAIT_FAILED) {
230       // check if the flag and cv counters are in consistent state
231       // as MS sent us debug dump whith inconsistent state of data
232       __kmp_win32_mutex_lock(mx);
233       typename C::flag_t old_f = flag->set_sleeping();
234       if (!flag->done_check_val(old_f & ~KMP_BARRIER_SLEEP_STATE)) {
235         __kmp_win32_mutex_unlock(mx);
236         continue;
237       }
238       // condition fulfilled, exiting
239       old_f = flag->unset_sleeping();
240       KMP_DEBUG_ASSERT(old_f & KMP_BARRIER_SLEEP_STATE);
241       TCW_PTR(th->th.th_sleep_loc, NULL);
242       KF_TRACE(50, ("__kmp_win32_cond_wait: exiting, condition "
243                     "fulfilled: flag's loc(%p): %u => %u\n",
244                     flag->get(), old_f, *(flag->get())));
245 
246       __kmp_win32_mutex_lock(&cv->waiters_count_lock_);
247       KMP_DEBUG_ASSERT(cv->waiters_count_ > 0);
248       cv->release_count_ = cv->waiters_count_;
249       cv->wait_generation_count_++;
250       wait_done = 1;
251       __kmp_win32_mutex_unlock(&cv->waiters_count_lock_);
252 
253       __kmp_win32_mutex_unlock(mx);
254     }
255     /* there used to be a semicolon after the if statement, it looked like a
256        bug, so i removed it */
257     if (wait_done)
258       break;
259   }
260 
261   __kmp_win32_mutex_lock(mx);
262   __kmp_win32_mutex_lock(&cv->waiters_count_lock_);
263 
264   cv->waiters_count_--;
265   cv->release_count_--;
266 
267   last_waiter = (cv->release_count_ == 0);
268 
269   __kmp_win32_mutex_unlock(&cv->waiters_count_lock_);
270 
271   if (last_waiter) {
272     /* We're the last waiter to be notified, so reset the manual event. */
273     ResetEvent(cv->event_);
274   }
275 }
276 
__kmp_win32_cond_broadcast(kmp_win32_cond_t * cv)277 void __kmp_win32_cond_broadcast(kmp_win32_cond_t *cv) {
278   __kmp_win32_mutex_lock(&cv->waiters_count_lock_);
279 
280   if (cv->waiters_count_ > 0) {
281     SetEvent(cv->event_);
282     /* Release all the threads in this generation. */
283 
284     cv->release_count_ = cv->waiters_count_;
285 
286     /* Start a new generation. */
287     cv->wait_generation_count_++;
288   }
289 
290   __kmp_win32_mutex_unlock(&cv->waiters_count_lock_);
291 }
292 
__kmp_win32_cond_signal(kmp_win32_cond_t * cv)293 void __kmp_win32_cond_signal(kmp_win32_cond_t *cv) {
294   __kmp_win32_cond_broadcast(cv);
295 }
296 
__kmp_enable(int new_state)297 void __kmp_enable(int new_state) {
298   if (__kmp_init_runtime)
299     LeaveCriticalSection(&__kmp_win32_section);
300 }
301 
__kmp_disable(int * old_state)302 void __kmp_disable(int *old_state) {
303   *old_state = 0;
304 
305   if (__kmp_init_runtime)
306     EnterCriticalSection(&__kmp_win32_section);
307 }
308 
__kmp_suspend_initialize(void)309 void __kmp_suspend_initialize(void) { /* do nothing */
310 }
311 
__kmp_suspend_initialize_thread(kmp_info_t * th)312 void __kmp_suspend_initialize_thread(kmp_info_t *th) {
313   int old_value = KMP_ATOMIC_LD_RLX(&th->th.th_suspend_init);
314   int new_value = TRUE;
315   // Return if already initialized
316   if (old_value == new_value)
317     return;
318   // Wait, then return if being initialized
319   if (old_value == -1 ||
320       !__kmp_atomic_compare_store(&th->th.th_suspend_init, old_value, -1)) {
321     while (KMP_ATOMIC_LD_ACQ(&th->th.th_suspend_init) != new_value) {
322       KMP_CPU_PAUSE();
323     }
324   } else {
325     // Claim to be the initializer and do initializations
326     __kmp_win32_cond_init(&th->th.th_suspend_cv);
327     __kmp_win32_mutex_init(&th->th.th_suspend_mx);
328     KMP_ATOMIC_ST_REL(&th->th.th_suspend_init, new_value);
329   }
330 }
331 
__kmp_suspend_uninitialize_thread(kmp_info_t * th)332 void __kmp_suspend_uninitialize_thread(kmp_info_t *th) {
333   if (KMP_ATOMIC_LD_ACQ(&th->th.th_suspend_init)) {
334     /* this means we have initialize the suspension pthread objects for this
335        thread in this instance of the process */
336     __kmp_win32_cond_destroy(&th->th.th_suspend_cv);
337     __kmp_win32_mutex_destroy(&th->th.th_suspend_mx);
338     KMP_ATOMIC_ST_REL(&th->th.th_suspend_init, FALSE);
339   }
340 }
341 
__kmp_try_suspend_mx(kmp_info_t * th)342 int __kmp_try_suspend_mx(kmp_info_t *th) {
343   return __kmp_win32_mutex_trylock(&th->th.th_suspend_mx);
344 }
345 
__kmp_lock_suspend_mx(kmp_info_t * th)346 void __kmp_lock_suspend_mx(kmp_info_t *th) {
347   __kmp_win32_mutex_lock(&th->th.th_suspend_mx);
348 }
349 
__kmp_unlock_suspend_mx(kmp_info_t * th)350 void __kmp_unlock_suspend_mx(kmp_info_t *th) {
351   __kmp_win32_mutex_unlock(&th->th.th_suspend_mx);
352 }
353 
354 /* This routine puts the calling thread to sleep after setting the
355    sleep bit for the indicated flag variable to true. */
356 template <class C>
__kmp_suspend_template(int th_gtid,C * flag)357 static inline void __kmp_suspend_template(int th_gtid, C *flag) {
358   kmp_info_t *th = __kmp_threads[th_gtid];
359   int status;
360   typename C::flag_t old_spin;
361 
362   KF_TRACE(30, ("__kmp_suspend_template: T#%d enter for flag's loc(%p)\n",
363                 th_gtid, flag->get()));
364 
365   __kmp_suspend_initialize_thread(th);
366   __kmp_lock_suspend_mx(th);
367 
368   KF_TRACE(10, ("__kmp_suspend_template: T#%d setting sleep bit for flag's"
369                 " loc(%p)\n",
370                 th_gtid, flag->get()));
371 
372   /* TODO: shouldn't this use release semantics to ensure that
373      __kmp_suspend_initialize_thread gets called first? */
374   old_spin = flag->set_sleeping();
375   if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME &&
376       __kmp_pause_status != kmp_soft_paused) {
377     flag->unset_sleeping();
378     __kmp_unlock_suspend_mx(th);
379     return;
380   }
381 
382   KF_TRACE(5, ("__kmp_suspend_template: T#%d set sleep bit for flag's"
383                " loc(%p)==%d\n",
384                th_gtid, flag->get(), *(flag->get())));
385 
386   if (flag->done_check_val(old_spin)) {
387     old_spin = flag->unset_sleeping();
388     KF_TRACE(5, ("__kmp_suspend_template: T#%d false alarm, reset sleep bit "
389                  "for flag's loc(%p)\n",
390                  th_gtid, flag->get()));
391   } else {
392 #ifdef DEBUG_SUSPEND
393     __kmp_suspend_count++;
394 #endif
395     /* Encapsulate in a loop as the documentation states that this may "with
396        low probability" return when the condition variable has not been signaled
397        or broadcast */
398     int deactivated = FALSE;
399     TCW_PTR(th->th.th_sleep_loc, (void *)flag);
400     while (flag->is_sleeping()) {
401       KF_TRACE(15, ("__kmp_suspend_template: T#%d about to perform "
402                     "kmp_win32_cond_wait()\n",
403                     th_gtid));
404       // Mark the thread as no longer active (only in the first iteration of the
405       // loop).
406       if (!deactivated) {
407         th->th.th_active = FALSE;
408         if (th->th.th_active_in_pool) {
409           th->th.th_active_in_pool = FALSE;
410           KMP_ATOMIC_DEC(&__kmp_thread_pool_active_nth);
411           KMP_DEBUG_ASSERT(TCR_4(__kmp_thread_pool_active_nth) >= 0);
412         }
413         deactivated = TRUE;
414         __kmp_win32_cond_wait(&th->th.th_suspend_cv, &th->th.th_suspend_mx, th,
415                               flag);
416       } else {
417         __kmp_win32_cond_wait(&th->th.th_suspend_cv, &th->th.th_suspend_mx, th,
418                               flag);
419       }
420 
421 #ifdef KMP_DEBUG
422       if (flag->is_sleeping()) {
423         KF_TRACE(100,
424                  ("__kmp_suspend_template: T#%d spurious wakeup\n", th_gtid));
425       }
426 #endif /* KMP_DEBUG */
427 
428     } // while
429 
430     // Mark the thread as active again (if it was previous marked as inactive)
431     if (deactivated) {
432       th->th.th_active = TRUE;
433       if (TCR_4(th->th.th_in_pool)) {
434         KMP_ATOMIC_INC(&__kmp_thread_pool_active_nth);
435         th->th.th_active_in_pool = TRUE;
436       }
437     }
438   }
439 
440   __kmp_unlock_suspend_mx(th);
441   KF_TRACE(30, ("__kmp_suspend_template: T#%d exit\n", th_gtid));
442 }
443 
444 template <bool C, bool S>
__kmp_suspend_32(int th_gtid,kmp_flag_32<C,S> * flag)445 void __kmp_suspend_32(int th_gtid, kmp_flag_32<C, S> *flag) {
446   __kmp_suspend_template(th_gtid, flag);
447 }
448 template <bool C, bool S>
__kmp_suspend_64(int th_gtid,kmp_flag_64<C,S> * flag)449 void __kmp_suspend_64(int th_gtid, kmp_flag_64<C, S> *flag) {
450   __kmp_suspend_template(th_gtid, flag);
451 }
__kmp_suspend_oncore(int th_gtid,kmp_flag_oncore * flag)452 void __kmp_suspend_oncore(int th_gtid, kmp_flag_oncore *flag) {
453   __kmp_suspend_template(th_gtid, flag);
454 }
455 
456 template void __kmp_suspend_32<false, false>(int, kmp_flag_32<false, false> *);
457 template void __kmp_suspend_64<false, true>(int, kmp_flag_64<false, true> *);
458 template void __kmp_suspend_64<true, false>(int, kmp_flag_64<true, false> *);
459 
460 /* This routine signals the thread specified by target_gtid to wake up
461    after setting the sleep bit indicated by the flag argument to FALSE */
462 template <class C>
__kmp_resume_template(int target_gtid,C * flag)463 static inline void __kmp_resume_template(int target_gtid, C *flag) {
464   kmp_info_t *th = __kmp_threads[target_gtid];
465   int status;
466 
467 #ifdef KMP_DEBUG
468   int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1;
469 #endif
470 
471   KF_TRACE(30, ("__kmp_resume_template: T#%d wants to wakeup T#%d enter\n",
472                 gtid, target_gtid));
473 
474   __kmp_suspend_initialize_thread(th);
475   __kmp_lock_suspend_mx(th);
476 
477   if (!flag) { // coming from __kmp_null_resume_wrapper
478     flag = (C *)th->th.th_sleep_loc;
479   }
480 
481   // First, check if the flag is null or its type has changed. If so, someone
482   // else woke it up.
483   if (!flag || flag->get_type() != flag->get_ptr_type()) { // get_ptr_type
484     // simply shows what
485     // flag was cast to
486     KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already "
487                  "awake: flag's loc(%p)\n",
488                  gtid, target_gtid, NULL));
489     __kmp_unlock_suspend_mx(th);
490     return;
491   } else {
492     typename C::flag_t old_spin = flag->unset_sleeping();
493     if (!flag->is_sleeping_val(old_spin)) {
494       KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already "
495                    "awake: flag's loc(%p): %u => %u\n",
496                    gtid, target_gtid, flag->get(), old_spin, *(flag->get())));
497       __kmp_unlock_suspend_mx(th);
498       return;
499     }
500   }
501   TCW_PTR(th->th.th_sleep_loc, NULL);
502   KF_TRACE(5, ("__kmp_resume_template: T#%d about to wakeup T#%d, reset sleep "
503                "bit for flag's loc(%p)\n",
504                gtid, target_gtid, flag->get()));
505 
506   __kmp_win32_cond_signal(&th->th.th_suspend_cv);
507   __kmp_unlock_suspend_mx(th);
508 
509   KF_TRACE(30, ("__kmp_resume_template: T#%d exiting after signaling wake up"
510                 " for T#%d\n",
511                 gtid, target_gtid));
512 }
513 
514 template <bool C, bool S>
__kmp_resume_32(int target_gtid,kmp_flag_32<C,S> * flag)515 void __kmp_resume_32(int target_gtid, kmp_flag_32<C, S> *flag) {
516   __kmp_resume_template(target_gtid, flag);
517 }
518 template <bool C, bool S>
__kmp_resume_64(int target_gtid,kmp_flag_64<C,S> * flag)519 void __kmp_resume_64(int target_gtid, kmp_flag_64<C, S> *flag) {
520   __kmp_resume_template(target_gtid, flag);
521 }
__kmp_resume_oncore(int target_gtid,kmp_flag_oncore * flag)522 void __kmp_resume_oncore(int target_gtid, kmp_flag_oncore *flag) {
523   __kmp_resume_template(target_gtid, flag);
524 }
525 
526 template void __kmp_resume_32<false, true>(int, kmp_flag_32<false, true> *);
527 template void __kmp_resume_64<false, true>(int, kmp_flag_64<false, true> *);
528 
__kmp_yield()529 void __kmp_yield() { Sleep(0); }
530 
__kmp_gtid_set_specific(int gtid)531 void __kmp_gtid_set_specific(int gtid) {
532   if (__kmp_init_gtid) {
533     KA_TRACE(50, ("__kmp_gtid_set_specific: T#%d key:%d\n", gtid,
534                   __kmp_gtid_threadprivate_key));
535     if (!TlsSetValue(__kmp_gtid_threadprivate_key, (LPVOID)(gtid + 1)))
536       KMP_FATAL(TLSSetValueFailed);
537   } else {
538     KA_TRACE(50, ("__kmp_gtid_set_specific: runtime shutdown, returning\n"));
539   }
540 }
541 
__kmp_gtid_get_specific()542 int __kmp_gtid_get_specific() {
543   int gtid;
544   if (!__kmp_init_gtid) {
545     KA_TRACE(50, ("__kmp_gtid_get_specific: runtime shutdown, returning "
546                   "KMP_GTID_SHUTDOWN\n"));
547     return KMP_GTID_SHUTDOWN;
548   }
549   gtid = (int)(kmp_intptr_t)TlsGetValue(__kmp_gtid_threadprivate_key);
550   if (gtid == 0) {
551     gtid = KMP_GTID_DNE;
552   } else {
553     gtid--;
554   }
555   KA_TRACE(50, ("__kmp_gtid_get_specific: key:%d gtid:%d\n",
556                 __kmp_gtid_threadprivate_key, gtid));
557   return gtid;
558 }
559 
__kmp_affinity_bind_thread(int proc)560 void __kmp_affinity_bind_thread(int proc) {
561   if (__kmp_num_proc_groups > 1) {
562     // Form the GROUP_AFFINITY struct directly, rather than filling
563     // out a bit vector and calling __kmp_set_system_affinity().
564     GROUP_AFFINITY ga;
565     KMP_DEBUG_ASSERT((proc >= 0) && (proc < (__kmp_num_proc_groups * CHAR_BIT *
566                                              sizeof(DWORD_PTR))));
567     ga.Group = proc / (CHAR_BIT * sizeof(DWORD_PTR));
568     ga.Mask = (unsigned long long)1 << (proc % (CHAR_BIT * sizeof(DWORD_PTR)));
569     ga.Reserved[0] = ga.Reserved[1] = ga.Reserved[2] = 0;
570 
571     KMP_DEBUG_ASSERT(__kmp_SetThreadGroupAffinity != NULL);
572     if (__kmp_SetThreadGroupAffinity(GetCurrentThread(), &ga, NULL) == 0) {
573       DWORD error = GetLastError();
574       if (__kmp_affinity_verbose) { // AC: continue silently if not verbose
575         kmp_msg_t err_code = KMP_ERR(error);
576         __kmp_msg(kmp_ms_warning, KMP_MSG(CantSetThreadAffMask), err_code,
577                   __kmp_msg_null);
578         if (__kmp_generate_warnings == kmp_warnings_off) {
579           __kmp_str_free(&err_code.str);
580         }
581       }
582     }
583   } else {
584     kmp_affin_mask_t *mask;
585     KMP_CPU_ALLOC_ON_STACK(mask);
586     KMP_CPU_ZERO(mask);
587     KMP_CPU_SET(proc, mask);
588     __kmp_set_system_affinity(mask, TRUE);
589     KMP_CPU_FREE_FROM_STACK(mask);
590   }
591 }
592 
__kmp_affinity_determine_capable(const char * env_var)593 void __kmp_affinity_determine_capable(const char *env_var) {
594 // All versions of Windows* OS (since Win '95) support SetThreadAffinityMask().
595 
596 #if KMP_GROUP_AFFINITY
597   KMP_AFFINITY_ENABLE(__kmp_num_proc_groups * sizeof(DWORD_PTR));
598 #else
599   KMP_AFFINITY_ENABLE(sizeof(DWORD_PTR));
600 #endif
601 
602   KA_TRACE(10, ("__kmp_affinity_determine_capable: "
603                 "Windows* OS affinity interface functional (mask size = "
604                 "%" KMP_SIZE_T_SPEC ").\n",
605                 __kmp_affin_mask_size));
606 }
607 
__kmp_read_cpu_time(void)608 double __kmp_read_cpu_time(void) {
609   FILETIME CreationTime, ExitTime, KernelTime, UserTime;
610   int status;
611   double cpu_time;
612 
613   cpu_time = 0;
614 
615   status = GetProcessTimes(GetCurrentProcess(), &CreationTime, &ExitTime,
616                            &KernelTime, &UserTime);
617 
618   if (status) {
619     double sec = 0;
620 
621     sec += KernelTime.dwHighDateTime;
622     sec += UserTime.dwHighDateTime;
623 
624     /* Shift left by 32 bits */
625     sec *= (double)(1 << 16) * (double)(1 << 16);
626 
627     sec += KernelTime.dwLowDateTime;
628     sec += UserTime.dwLowDateTime;
629 
630     cpu_time += (sec * 100.0) / KMP_NSEC_PER_SEC;
631   }
632 
633   return cpu_time;
634 }
635 
__kmp_read_system_info(struct kmp_sys_info * info)636 int __kmp_read_system_info(struct kmp_sys_info *info) {
637   info->maxrss = 0; /* the maximum resident set size utilized (in kilobytes) */
638   info->minflt = 0; /* the number of page faults serviced without any I/O */
639   info->majflt = 0; /* the number of page faults serviced that required I/O */
640   info->nswap = 0; // the number of times a process was "swapped" out of memory
641   info->inblock = 0; // the number of times the file system had to perform input
642   info->oublock = 0; // number of times the file system had to perform output
643   info->nvcsw = 0; /* the number of times a context switch was voluntarily */
644   info->nivcsw = 0; /* the number of times a context switch was forced */
645 
646   return 1;
647 }
648 
__kmp_runtime_initialize(void)649 void __kmp_runtime_initialize(void) {
650   SYSTEM_INFO info;
651   kmp_str_buf_t path;
652   UINT path_size;
653 
654   if (__kmp_init_runtime) {
655     return;
656   }
657 
658 #if KMP_DYNAMIC_LIB
659   /* Pin dynamic library for the lifetime of application */
660   {
661     // First, turn off error message boxes
662     UINT err_mode = SetErrorMode(SEM_FAILCRITICALERRORS);
663     HMODULE h;
664     BOOL ret = GetModuleHandleEx(GET_MODULE_HANDLE_EX_FLAG_FROM_ADDRESS |
665                                      GET_MODULE_HANDLE_EX_FLAG_PIN,
666                                  (LPCTSTR)&__kmp_serial_initialize, &h);
667     KMP_DEBUG_ASSERT2(h && ret, "OpenMP RTL cannot find itself loaded");
668     SetErrorMode(err_mode); // Restore error mode
669     KA_TRACE(10, ("__kmp_runtime_initialize: dynamic library pinned\n"));
670   }
671 #endif
672 
673   InitializeCriticalSection(&__kmp_win32_section);
674 #if USE_ITT_BUILD
675   __kmp_itt_system_object_created(&__kmp_win32_section, "Critical Section");
676 #endif /* USE_ITT_BUILD */
677   __kmp_initialize_system_tick();
678 
679 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64)
680   if (!__kmp_cpuinfo.initialized) {
681     __kmp_query_cpuid(&__kmp_cpuinfo);
682   }
683 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
684 
685 /* Set up minimum number of threads to switch to TLS gtid */
686 #if KMP_OS_WINDOWS && !KMP_DYNAMIC_LIB
687   // Windows* OS, static library.
688   /* New thread may use stack space previously used by another thread,
689      currently terminated. On Windows* OS, in case of static linking, we do not
690      know the moment of thread termination, and our structures (__kmp_threads
691      and __kmp_root arrays) are still keep info about dead threads. This leads
692      to problem in __kmp_get_global_thread_id() function: it wrongly finds gtid
693      (by searching through stack addresses of all known threads) for
694      unregistered foreign tread.
695 
696      Setting __kmp_tls_gtid_min to 0 workarounds this problem:
697      __kmp_get_global_thread_id() does not search through stacks, but get gtid
698      from TLS immediately.
699       --ln
700   */
701   __kmp_tls_gtid_min = 0;
702 #else
703   __kmp_tls_gtid_min = KMP_TLS_GTID_MIN;
704 #endif
705 
706   /* for the static library */
707   if (!__kmp_gtid_threadprivate_key) {
708     __kmp_gtid_threadprivate_key = TlsAlloc();
709     if (__kmp_gtid_threadprivate_key == TLS_OUT_OF_INDEXES) {
710       KMP_FATAL(TLSOutOfIndexes);
711     }
712   }
713 
714   // Load ntdll.dll.
715   /* Simple GetModuleHandle( "ntdll.dl" ) is not suitable due to security issue
716      (see http://www.microsoft.com/technet/security/advisory/2269637.mspx). We
717      have to specify full path to the library. */
718   __kmp_str_buf_init(&path);
719   path_size = GetSystemDirectory(path.str, path.size);
720   KMP_DEBUG_ASSERT(path_size > 0);
721   if (path_size >= path.size) {
722     // Buffer is too short.  Expand the buffer and try again.
723     __kmp_str_buf_reserve(&path, path_size);
724     path_size = GetSystemDirectory(path.str, path.size);
725     KMP_DEBUG_ASSERT(path_size > 0);
726   }
727   if (path_size > 0 && path_size < path.size) {
728     // Now we have system directory name in the buffer.
729     // Append backslash and name of dll to form full path,
730     path.used = path_size;
731     __kmp_str_buf_print(&path, "\\%s", "ntdll.dll");
732 
733     // Now load ntdll using full path.
734     ntdll = GetModuleHandle(path.str);
735   }
736 
737   KMP_DEBUG_ASSERT(ntdll != NULL);
738   if (ntdll != NULL) {
739     NtQuerySystemInformation = (NtQuerySystemInformation_t)GetProcAddress(
740         ntdll, "NtQuerySystemInformation");
741   }
742   KMP_DEBUG_ASSERT(NtQuerySystemInformation != NULL);
743 
744 #if KMP_GROUP_AFFINITY
745   // Load kernel32.dll.
746   // Same caveat - must use full system path name.
747   if (path_size > 0 && path_size < path.size) {
748     // Truncate the buffer back to just the system path length,
749     // discarding "\\ntdll.dll", and replacing it with "kernel32.dll".
750     path.used = path_size;
751     __kmp_str_buf_print(&path, "\\%s", "kernel32.dll");
752 
753     // Load kernel32.dll using full path.
754     kernel32 = GetModuleHandle(path.str);
755     KA_TRACE(10, ("__kmp_runtime_initialize: kernel32.dll = %s\n", path.str));
756 
757     // Load the function pointers to kernel32.dll routines
758     // that may or may not exist on this system.
759     if (kernel32 != NULL) {
760       __kmp_GetActiveProcessorCount =
761           (kmp_GetActiveProcessorCount_t)GetProcAddress(
762               kernel32, "GetActiveProcessorCount");
763       __kmp_GetActiveProcessorGroupCount =
764           (kmp_GetActiveProcessorGroupCount_t)GetProcAddress(
765               kernel32, "GetActiveProcessorGroupCount");
766       __kmp_GetThreadGroupAffinity =
767           (kmp_GetThreadGroupAffinity_t)GetProcAddress(
768               kernel32, "GetThreadGroupAffinity");
769       __kmp_SetThreadGroupAffinity =
770           (kmp_SetThreadGroupAffinity_t)GetProcAddress(
771               kernel32, "SetThreadGroupAffinity");
772 
773       KA_TRACE(10, ("__kmp_runtime_initialize: __kmp_GetActiveProcessorCount"
774                     " = %p\n",
775                     __kmp_GetActiveProcessorCount));
776       KA_TRACE(10, ("__kmp_runtime_initialize: "
777                     "__kmp_GetActiveProcessorGroupCount = %p\n",
778                     __kmp_GetActiveProcessorGroupCount));
779       KA_TRACE(10, ("__kmp_runtime_initialize:__kmp_GetThreadGroupAffinity"
780                     " = %p\n",
781                     __kmp_GetThreadGroupAffinity));
782       KA_TRACE(10, ("__kmp_runtime_initialize: __kmp_SetThreadGroupAffinity"
783                     " = %p\n",
784                     __kmp_SetThreadGroupAffinity));
785       KA_TRACE(10, ("__kmp_runtime_initialize: sizeof(kmp_affin_mask_t) = %d\n",
786                     sizeof(kmp_affin_mask_t)));
787 
788       // See if group affinity is supported on this system.
789       // If so, calculate the #groups and #procs.
790       //
791       // Group affinity was introduced with Windows* 7 OS and
792       // Windows* Server 2008 R2 OS.
793       if ((__kmp_GetActiveProcessorCount != NULL) &&
794           (__kmp_GetActiveProcessorGroupCount != NULL) &&
795           (__kmp_GetThreadGroupAffinity != NULL) &&
796           (__kmp_SetThreadGroupAffinity != NULL) &&
797           ((__kmp_num_proc_groups = __kmp_GetActiveProcessorGroupCount()) >
798            1)) {
799         // Calculate the total number of active OS procs.
800         int i;
801 
802         KA_TRACE(10, ("__kmp_runtime_initialize: %d processor groups"
803                       " detected\n",
804                       __kmp_num_proc_groups));
805 
806         __kmp_xproc = 0;
807 
808         for (i = 0; i < __kmp_num_proc_groups; i++) {
809           DWORD size = __kmp_GetActiveProcessorCount(i);
810           __kmp_xproc += size;
811           KA_TRACE(10, ("__kmp_runtime_initialize: proc group %d size = %d\n",
812                         i, size));
813         }
814       } else {
815         KA_TRACE(10, ("__kmp_runtime_initialize: %d processor groups"
816                       " detected\n",
817                       __kmp_num_proc_groups));
818       }
819     }
820   }
821   if (__kmp_num_proc_groups <= 1) {
822     GetSystemInfo(&info);
823     __kmp_xproc = info.dwNumberOfProcessors;
824   }
825 #else
826   GetSystemInfo(&info);
827   __kmp_xproc = info.dwNumberOfProcessors;
828 #endif /* KMP_GROUP_AFFINITY */
829 
830   // If the OS said there were 0 procs, take a guess and use a value of 2.
831   // This is done for Linux* OS, also.  Do we need error / warning?
832   if (__kmp_xproc <= 0) {
833     __kmp_xproc = 2;
834   }
835 
836   KA_TRACE(5,
837            ("__kmp_runtime_initialize: total processors = %d\n", __kmp_xproc));
838 
839   __kmp_str_buf_free(&path);
840 
841 #if USE_ITT_BUILD
842   __kmp_itt_initialize();
843 #endif /* USE_ITT_BUILD */
844 
845   __kmp_init_runtime = TRUE;
846 } // __kmp_runtime_initialize
847 
__kmp_runtime_destroy(void)848 void __kmp_runtime_destroy(void) {
849   if (!__kmp_init_runtime) {
850     return;
851   }
852 
853 #if USE_ITT_BUILD
854   __kmp_itt_destroy();
855 #endif /* USE_ITT_BUILD */
856 
857   /* we can't DeleteCriticalsection( & __kmp_win32_section ); */
858   /* due to the KX_TRACE() commands */
859   KA_TRACE(40, ("__kmp_runtime_destroy\n"));
860 
861   if (__kmp_gtid_threadprivate_key) {
862     TlsFree(__kmp_gtid_threadprivate_key);
863     __kmp_gtid_threadprivate_key = 0;
864   }
865 
866   __kmp_affinity_uninitialize();
867   DeleteCriticalSection(&__kmp_win32_section);
868 
869   ntdll = NULL;
870   NtQuerySystemInformation = NULL;
871 
872 #if KMP_ARCH_X86_64
873   kernel32 = NULL;
874   __kmp_GetActiveProcessorCount = NULL;
875   __kmp_GetActiveProcessorGroupCount = NULL;
876   __kmp_GetThreadGroupAffinity = NULL;
877   __kmp_SetThreadGroupAffinity = NULL;
878 #endif // KMP_ARCH_X86_64
879 
880   __kmp_init_runtime = FALSE;
881 }
882 
__kmp_terminate_thread(int gtid)883 void __kmp_terminate_thread(int gtid) {
884   kmp_info_t *th = __kmp_threads[gtid];
885 
886   if (!th)
887     return;
888 
889   KA_TRACE(10, ("__kmp_terminate_thread: kill (%d)\n", gtid));
890 
891   if (TerminateThread(th->th.th_info.ds.ds_thread, (DWORD)-1) == FALSE) {
892     /* It's OK, the thread may have exited already */
893   }
894   __kmp_free_handle(th->th.th_info.ds.ds_thread);
895 }
896 
__kmp_clear_system_time(void)897 void __kmp_clear_system_time(void) {
898   BOOL status;
899   LARGE_INTEGER time;
900   status = QueryPerformanceCounter(&time);
901   __kmp_win32_time = (kmp_int64)time.QuadPart;
902 }
903 
__kmp_initialize_system_tick(void)904 void __kmp_initialize_system_tick(void) {
905   {
906     BOOL status;
907     LARGE_INTEGER freq;
908 
909     status = QueryPerformanceFrequency(&freq);
910     if (!status) {
911       DWORD error = GetLastError();
912       __kmp_fatal(KMP_MSG(FunctionError, "QueryPerformanceFrequency()"),
913                   KMP_ERR(error), __kmp_msg_null);
914 
915     } else {
916       __kmp_win32_tick = ((double)1.0) / (double)freq.QuadPart;
917     }
918   }
919 }
920 
921 /* Calculate the elapsed wall clock time for the user */
922 
__kmp_elapsed(double * t)923 void __kmp_elapsed(double *t) {
924   BOOL status;
925   LARGE_INTEGER now;
926   status = QueryPerformanceCounter(&now);
927   *t = ((double)now.QuadPart) * __kmp_win32_tick;
928 }
929 
930 /* Calculate the elapsed wall clock tick for the user */
931 
__kmp_elapsed_tick(double * t)932 void __kmp_elapsed_tick(double *t) { *t = __kmp_win32_tick; }
933 
__kmp_read_system_time(double * delta)934 void __kmp_read_system_time(double *delta) {
935   if (delta != NULL) {
936     BOOL status;
937     LARGE_INTEGER now;
938 
939     status = QueryPerformanceCounter(&now);
940 
941     *delta = ((double)(((kmp_int64)now.QuadPart) - __kmp_win32_time)) *
942              __kmp_win32_tick;
943   }
944 }
945 
946 /* Return the current time stamp in nsec */
__kmp_now_nsec()947 kmp_uint64 __kmp_now_nsec() {
948   LARGE_INTEGER now;
949   QueryPerformanceCounter(&now);
950   return 1e9 * __kmp_win32_tick * now.QuadPart;
951 }
952 
953 extern "C"
__kmp_launch_worker(void * arg)954 void *__stdcall __kmp_launch_worker(void *arg) {
955   volatile void *stack_data;
956   void *exit_val;
957   void *padding = 0;
958   kmp_info_t *this_thr = (kmp_info_t *)arg;
959   int gtid;
960 
961   gtid = this_thr->th.th_info.ds.ds_gtid;
962   __kmp_gtid_set_specific(gtid);
963 #ifdef KMP_TDATA_GTID
964 #error "This define causes problems with LoadLibrary() + declspec(thread) " \
965         "on Windows* OS.  See CQ50564, tests kmp_load_library*.c and this MSDN " \
966         "reference: http://support.microsoft.com/kb/118816"
967 //__kmp_gtid = gtid;
968 #endif
969 
970 #if USE_ITT_BUILD
971   __kmp_itt_thread_name(gtid);
972 #endif /* USE_ITT_BUILD */
973 
974   __kmp_affinity_set_init_mask(gtid, FALSE);
975 
976 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
977   // Set FP control regs to be a copy of the parallel initialization thread's.
978   __kmp_clear_x87_fpu_status_word();
979   __kmp_load_x87_fpu_control_word(&__kmp_init_x87_fpu_control_word);
980   __kmp_load_mxcsr(&__kmp_init_mxcsr);
981 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
982 
983   if (__kmp_stkoffset > 0 && gtid > 0) {
984     padding = KMP_ALLOCA(gtid * __kmp_stkoffset);
985   }
986 
987   KMP_FSYNC_RELEASING(&this_thr->th.th_info.ds.ds_alive);
988   this_thr->th.th_info.ds.ds_thread_id = GetCurrentThreadId();
989   TCW_4(this_thr->th.th_info.ds.ds_alive, TRUE);
990 
991   if (TCR_4(__kmp_gtid_mode) <
992       2) { // check stack only if it is used to get gtid
993     TCW_PTR(this_thr->th.th_info.ds.ds_stackbase, &stack_data);
994     KMP_ASSERT(this_thr->th.th_info.ds.ds_stackgrow == FALSE);
995     __kmp_check_stack_overlap(this_thr);
996   }
997   KMP_MB();
998   exit_val = __kmp_launch_thread(this_thr);
999   KMP_FSYNC_RELEASING(&this_thr->th.th_info.ds.ds_alive);
1000   TCW_4(this_thr->th.th_info.ds.ds_alive, FALSE);
1001   KMP_MB();
1002   return exit_val;
1003 }
1004 
1005 #if KMP_USE_MONITOR
1006 /* The monitor thread controls all of the threads in the complex */
1007 
__kmp_launch_monitor(void * arg)1008 void *__stdcall __kmp_launch_monitor(void *arg) {
1009   DWORD wait_status;
1010   kmp_thread_t monitor;
1011   int status;
1012   int interval;
1013   kmp_info_t *this_thr = (kmp_info_t *)arg;
1014 
1015   KMP_DEBUG_ASSERT(__kmp_init_monitor);
1016   TCW_4(__kmp_init_monitor, 2); // AC: Signal library that monitor has started
1017   // TODO: hide "2" in enum (like {true,false,started})
1018   this_thr->th.th_info.ds.ds_thread_id = GetCurrentThreadId();
1019   TCW_4(this_thr->th.th_info.ds.ds_alive, TRUE);
1020 
1021   KMP_MB(); /* Flush all pending memory write invalidates.  */
1022   KA_TRACE(10, ("__kmp_launch_monitor: launched\n"));
1023 
1024   monitor = GetCurrentThread();
1025 
1026   /* set thread priority */
1027   status = SetThreadPriority(monitor, THREAD_PRIORITY_HIGHEST);
1028   if (!status) {
1029     DWORD error = GetLastError();
1030     __kmp_fatal(KMP_MSG(CantSetThreadPriority), KMP_ERR(error), __kmp_msg_null);
1031   }
1032 
1033   /* register us as monitor */
1034   __kmp_gtid_set_specific(KMP_GTID_MONITOR);
1035 #ifdef KMP_TDATA_GTID
1036 #error "This define causes problems with LoadLibrary() + declspec(thread) " \
1037         "on Windows* OS.  See CQ50564, tests kmp_load_library*.c and this MSDN " \
1038         "reference: http://support.microsoft.com/kb/118816"
1039 //__kmp_gtid = KMP_GTID_MONITOR;
1040 #endif
1041 
1042 #if USE_ITT_BUILD
1043   __kmp_itt_thread_ignore(); // Instruct Intel(R) Threading Tools to ignore
1044 // monitor thread.
1045 #endif /* USE_ITT_BUILD */
1046 
1047   KMP_MB(); /* Flush all pending memory write invalidates.  */
1048 
1049   interval = (1000 / __kmp_monitor_wakeups); /* in milliseconds */
1050 
1051   while (!TCR_4(__kmp_global.g.g_done)) {
1052     /*  This thread monitors the state of the system */
1053 
1054     KA_TRACE(15, ("__kmp_launch_monitor: update\n"));
1055 
1056     wait_status = WaitForSingleObject(__kmp_monitor_ev, interval);
1057 
1058     if (wait_status == WAIT_TIMEOUT) {
1059       TCW_4(__kmp_global.g.g_time.dt.t_value,
1060             TCR_4(__kmp_global.g.g_time.dt.t_value) + 1);
1061     }
1062 
1063     KMP_MB(); /* Flush all pending memory write invalidates.  */
1064   }
1065 
1066   KA_TRACE(10, ("__kmp_launch_monitor: finished\n"));
1067 
1068   status = SetThreadPriority(monitor, THREAD_PRIORITY_NORMAL);
1069   if (!status) {
1070     DWORD error = GetLastError();
1071     __kmp_fatal(KMP_MSG(CantSetThreadPriority), KMP_ERR(error), __kmp_msg_null);
1072   }
1073 
1074   if (__kmp_global.g.g_abort != 0) {
1075     /* now we need to terminate the worker threads   */
1076     /* the value of t_abort is the signal we caught */
1077     int gtid;
1078 
1079     KA_TRACE(10, ("__kmp_launch_monitor: terminate sig=%d\n",
1080                   (__kmp_global.g.g_abort)));
1081 
1082     /* terminate the OpenMP worker threads */
1083     /* TODO this is not valid for sibling threads!!
1084      * the uber master might not be 0 anymore.. */
1085     for (gtid = 1; gtid < __kmp_threads_capacity; ++gtid)
1086       __kmp_terminate_thread(gtid);
1087 
1088     __kmp_cleanup();
1089 
1090     Sleep(0);
1091 
1092     KA_TRACE(10,
1093              ("__kmp_launch_monitor: raise sig=%d\n", __kmp_global.g.g_abort));
1094 
1095     if (__kmp_global.g.g_abort > 0) {
1096       raise(__kmp_global.g.g_abort);
1097     }
1098   }
1099 
1100   TCW_4(this_thr->th.th_info.ds.ds_alive, FALSE);
1101 
1102   KMP_MB();
1103   return arg;
1104 }
1105 #endif
1106 
__kmp_create_worker(int gtid,kmp_info_t * th,size_t stack_size)1107 void __kmp_create_worker(int gtid, kmp_info_t *th, size_t stack_size) {
1108   kmp_thread_t handle;
1109   DWORD idThread;
1110 
1111   KA_TRACE(10, ("__kmp_create_worker: try to create thread (%d)\n", gtid));
1112 
1113   th->th.th_info.ds.ds_gtid = gtid;
1114 
1115   if (KMP_UBER_GTID(gtid)) {
1116     int stack_data;
1117 
1118     /* TODO: GetCurrentThread() returns a pseudo-handle that is unsuitable for
1119        other threads to use. Is it appropriate to just use GetCurrentThread?
1120        When should we close this handle?  When unregistering the root? */
1121     {
1122       BOOL rc;
1123       rc = DuplicateHandle(GetCurrentProcess(), GetCurrentThread(),
1124                            GetCurrentProcess(), &th->th.th_info.ds.ds_thread, 0,
1125                            FALSE, DUPLICATE_SAME_ACCESS);
1126       KMP_ASSERT(rc);
1127       KA_TRACE(10, (" __kmp_create_worker: ROOT Handle duplicated, th = %p, "
1128                     "handle = %" KMP_UINTPTR_SPEC "\n",
1129                     (LPVOID)th, th->th.th_info.ds.ds_thread));
1130       th->th.th_info.ds.ds_thread_id = GetCurrentThreadId();
1131     }
1132     if (TCR_4(__kmp_gtid_mode) < 2) { // check stack only if used to get gtid
1133       /* we will dynamically update the stack range if gtid_mode == 1 */
1134       TCW_PTR(th->th.th_info.ds.ds_stackbase, &stack_data);
1135       TCW_PTR(th->th.th_info.ds.ds_stacksize, 0);
1136       TCW_4(th->th.th_info.ds.ds_stackgrow, TRUE);
1137       __kmp_check_stack_overlap(th);
1138     }
1139   } else {
1140     KMP_MB(); /* Flush all pending memory write invalidates.  */
1141 
1142     /* Set stack size for this thread now. */
1143     KA_TRACE(10,
1144              ("__kmp_create_worker: stack_size = %" KMP_SIZE_T_SPEC " bytes\n",
1145               stack_size));
1146 
1147     stack_size += gtid * __kmp_stkoffset;
1148 
1149     TCW_PTR(th->th.th_info.ds.ds_stacksize, stack_size);
1150     TCW_4(th->th.th_info.ds.ds_stackgrow, FALSE);
1151 
1152     KA_TRACE(10,
1153              ("__kmp_create_worker: (before) stack_size = %" KMP_SIZE_T_SPEC
1154               " bytes, &__kmp_launch_worker = %p, th = %p, &idThread = %p\n",
1155               (SIZE_T)stack_size, (LPTHREAD_START_ROUTINE)&__kmp_launch_worker,
1156               (LPVOID)th, &idThread));
1157 
1158     handle = CreateThread(
1159         NULL, (SIZE_T)stack_size, (LPTHREAD_START_ROUTINE)__kmp_launch_worker,
1160         (LPVOID)th, STACK_SIZE_PARAM_IS_A_RESERVATION, &idThread);
1161 
1162     KA_TRACE(10,
1163              ("__kmp_create_worker: (after) stack_size = %" KMP_SIZE_T_SPEC
1164               " bytes, &__kmp_launch_worker = %p, th = %p, "
1165               "idThread = %u, handle = %" KMP_UINTPTR_SPEC "\n",
1166               (SIZE_T)stack_size, (LPTHREAD_START_ROUTINE)&__kmp_launch_worker,
1167               (LPVOID)th, idThread, handle));
1168 
1169     if (handle == 0) {
1170       DWORD error = GetLastError();
1171       __kmp_fatal(KMP_MSG(CantCreateThread), KMP_ERR(error), __kmp_msg_null);
1172     } else {
1173       th->th.th_info.ds.ds_thread = handle;
1174     }
1175 
1176     KMP_MB(); /* Flush all pending memory write invalidates.  */
1177   }
1178 
1179   KA_TRACE(10, ("__kmp_create_worker: done creating thread (%d)\n", gtid));
1180 }
1181 
__kmp_still_running(kmp_info_t * th)1182 int __kmp_still_running(kmp_info_t *th) {
1183   return (WAIT_TIMEOUT == WaitForSingleObject(th->th.th_info.ds.ds_thread, 0));
1184 }
1185 
1186 #if KMP_USE_MONITOR
__kmp_create_monitor(kmp_info_t * th)1187 void __kmp_create_monitor(kmp_info_t *th) {
1188   kmp_thread_t handle;
1189   DWORD idThread;
1190   int ideal, new_ideal;
1191 
1192   if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME) {
1193     // We don't need monitor thread in case of MAX_BLOCKTIME
1194     KA_TRACE(10, ("__kmp_create_monitor: skipping monitor thread because of "
1195                   "MAX blocktime\n"));
1196     th->th.th_info.ds.ds_tid = 0; // this makes reap_monitor no-op
1197     th->th.th_info.ds.ds_gtid = 0;
1198     TCW_4(__kmp_init_monitor, 2); // Signal to stop waiting for monitor creation
1199     return;
1200   }
1201   KA_TRACE(10, ("__kmp_create_monitor: try to create monitor\n"));
1202 
1203   KMP_MB(); /* Flush all pending memory write invalidates.  */
1204 
1205   __kmp_monitor_ev = CreateEvent(NULL, TRUE, FALSE, NULL);
1206   if (__kmp_monitor_ev == NULL) {
1207     DWORD error = GetLastError();
1208     __kmp_fatal(KMP_MSG(CantCreateEvent), KMP_ERR(error), __kmp_msg_null);
1209   }
1210 #if USE_ITT_BUILD
1211   __kmp_itt_system_object_created(__kmp_monitor_ev, "Event");
1212 #endif /* USE_ITT_BUILD */
1213 
1214   th->th.th_info.ds.ds_tid = KMP_GTID_MONITOR;
1215   th->th.th_info.ds.ds_gtid = KMP_GTID_MONITOR;
1216 
1217   // FIXME - on Windows* OS, if __kmp_monitor_stksize = 0, figure out how
1218   // to automatically expand stacksize based on CreateThread error code.
1219   if (__kmp_monitor_stksize == 0) {
1220     __kmp_monitor_stksize = KMP_DEFAULT_MONITOR_STKSIZE;
1221   }
1222   if (__kmp_monitor_stksize < __kmp_sys_min_stksize) {
1223     __kmp_monitor_stksize = __kmp_sys_min_stksize;
1224   }
1225 
1226   KA_TRACE(10, ("__kmp_create_monitor: requested stacksize = %d bytes\n",
1227                 (int)__kmp_monitor_stksize));
1228 
1229   TCW_4(__kmp_global.g.g_time.dt.t_value, 0);
1230 
1231   handle =
1232       CreateThread(NULL, (SIZE_T)__kmp_monitor_stksize,
1233                    (LPTHREAD_START_ROUTINE)__kmp_launch_monitor, (LPVOID)th,
1234                    STACK_SIZE_PARAM_IS_A_RESERVATION, &idThread);
1235   if (handle == 0) {
1236     DWORD error = GetLastError();
1237     __kmp_fatal(KMP_MSG(CantCreateThread), KMP_ERR(error), __kmp_msg_null);
1238   } else
1239     th->th.th_info.ds.ds_thread = handle;
1240 
1241   KMP_MB(); /* Flush all pending memory write invalidates.  */
1242 
1243   KA_TRACE(10, ("__kmp_create_monitor: monitor created %p\n",
1244                 (void *)th->th.th_info.ds.ds_thread));
1245 }
1246 #endif
1247 
1248 /* Check to see if thread is still alive.
1249    NOTE:  The ExitProcess(code) system call causes all threads to Terminate
1250    with a exit_val = code.  Because of this we can not rely on exit_val having
1251    any particular value.  So this routine may return STILL_ALIVE in exit_val
1252    even after the thread is dead. */
1253 
__kmp_is_thread_alive(kmp_info_t * th,DWORD * exit_val)1254 int __kmp_is_thread_alive(kmp_info_t *th, DWORD *exit_val) {
1255   DWORD rc;
1256   rc = GetExitCodeThread(th->th.th_info.ds.ds_thread, exit_val);
1257   if (rc == 0) {
1258     DWORD error = GetLastError();
1259     __kmp_fatal(KMP_MSG(FunctionError, "GetExitCodeThread()"), KMP_ERR(error),
1260                 __kmp_msg_null);
1261   }
1262   return (*exit_val == STILL_ACTIVE);
1263 }
1264 
__kmp_exit_thread(int exit_status)1265 void __kmp_exit_thread(int exit_status) {
1266   ExitThread(exit_status);
1267 } // __kmp_exit_thread
1268 
1269 // This is a common part for both __kmp_reap_worker() and __kmp_reap_monitor().
__kmp_reap_common(kmp_info_t * th)1270 static void __kmp_reap_common(kmp_info_t *th) {
1271   DWORD exit_val;
1272 
1273   KMP_MB(); /* Flush all pending memory write invalidates.  */
1274 
1275   KA_TRACE(
1276       10, ("__kmp_reap_common: try to reap (%d)\n", th->th.th_info.ds.ds_gtid));
1277 
1278   /* 2006-10-19:
1279      There are two opposite situations:
1280      1. Windows* OS keep thread alive after it resets ds_alive flag and
1281      exits from thread function. (For example, see C70770/Q394281 "unloading of
1282      dll based on OMP is very slow".)
1283      2. Windows* OS may kill thread before it resets ds_alive flag.
1284 
1285      Right solution seems to be waiting for *either* thread termination *or*
1286      ds_alive resetting. */
1287   {
1288     // TODO: This code is very similar to KMP_WAIT. Need to generalize
1289     // KMP_WAIT to cover this usage also.
1290     void *obj = NULL;
1291     kmp_uint32 spins;
1292 #if USE_ITT_BUILD
1293     KMP_FSYNC_SPIN_INIT(obj, (void *)&th->th.th_info.ds.ds_alive);
1294 #endif /* USE_ITT_BUILD */
1295     KMP_INIT_YIELD(spins);
1296     do {
1297 #if USE_ITT_BUILD
1298       KMP_FSYNC_SPIN_PREPARE(obj);
1299 #endif /* USE_ITT_BUILD */
1300       __kmp_is_thread_alive(th, &exit_val);
1301       KMP_YIELD_OVERSUB_ELSE_SPIN(spins);
1302     } while (exit_val == STILL_ACTIVE && TCR_4(th->th.th_info.ds.ds_alive));
1303 #if USE_ITT_BUILD
1304     if (exit_val == STILL_ACTIVE) {
1305       KMP_FSYNC_CANCEL(obj);
1306     } else {
1307       KMP_FSYNC_SPIN_ACQUIRED(obj);
1308     }
1309 #endif /* USE_ITT_BUILD */
1310   }
1311 
1312   __kmp_free_handle(th->th.th_info.ds.ds_thread);
1313 
1314   /* NOTE:  The ExitProcess(code) system call causes all threads to Terminate
1315      with a exit_val = code.  Because of this we can not rely on exit_val having
1316      any particular value. */
1317   if (exit_val == STILL_ACTIVE) {
1318     KA_TRACE(1, ("__kmp_reap_common: thread still active.\n"));
1319   } else if ((void *)exit_val != (void *)th) {
1320     KA_TRACE(1, ("__kmp_reap_common: ExitProcess / TerminateThread used?\n"));
1321   }
1322 
1323   KA_TRACE(10,
1324            ("__kmp_reap_common: done reaping (%d), handle = %" KMP_UINTPTR_SPEC
1325             "\n",
1326             th->th.th_info.ds.ds_gtid, th->th.th_info.ds.ds_thread));
1327 
1328   th->th.th_info.ds.ds_thread = 0;
1329   th->th.th_info.ds.ds_tid = KMP_GTID_DNE;
1330   th->th.th_info.ds.ds_gtid = KMP_GTID_DNE;
1331   th->th.th_info.ds.ds_thread_id = 0;
1332 
1333   KMP_MB(); /* Flush all pending memory write invalidates.  */
1334 }
1335 
1336 #if KMP_USE_MONITOR
__kmp_reap_monitor(kmp_info_t * th)1337 void __kmp_reap_monitor(kmp_info_t *th) {
1338   int status;
1339 
1340   KA_TRACE(10, ("__kmp_reap_monitor: try to reap %p\n",
1341                 (void *)th->th.th_info.ds.ds_thread));
1342 
1343   // If monitor has been created, its tid and gtid should be KMP_GTID_MONITOR.
1344   // If both tid and gtid are 0, it means the monitor did not ever start.
1345   // If both tid and gtid are KMP_GTID_DNE, the monitor has been shut down.
1346   KMP_DEBUG_ASSERT(th->th.th_info.ds.ds_tid == th->th.th_info.ds.ds_gtid);
1347   if (th->th.th_info.ds.ds_gtid != KMP_GTID_MONITOR) {
1348     KA_TRACE(10, ("__kmp_reap_monitor: monitor did not start, returning\n"));
1349     return;
1350   }
1351 
1352   KMP_MB(); /* Flush all pending memory write invalidates.  */
1353 
1354   status = SetEvent(__kmp_monitor_ev);
1355   if (status == FALSE) {
1356     DWORD error = GetLastError();
1357     __kmp_fatal(KMP_MSG(CantSetEvent), KMP_ERR(error), __kmp_msg_null);
1358   }
1359   KA_TRACE(10, ("__kmp_reap_monitor: reaping thread (%d)\n",
1360                 th->th.th_info.ds.ds_gtid));
1361   __kmp_reap_common(th);
1362 
1363   __kmp_free_handle(__kmp_monitor_ev);
1364 
1365   KMP_MB(); /* Flush all pending memory write invalidates.  */
1366 }
1367 #endif
1368 
__kmp_reap_worker(kmp_info_t * th)1369 void __kmp_reap_worker(kmp_info_t *th) {
1370   KA_TRACE(10, ("__kmp_reap_worker: reaping thread (%d)\n",
1371                 th->th.th_info.ds.ds_gtid));
1372   __kmp_reap_common(th);
1373 }
1374 
1375 #if KMP_HANDLE_SIGNALS
1376 
__kmp_team_handler(int signo)1377 static void __kmp_team_handler(int signo) {
1378   if (__kmp_global.g.g_abort == 0) {
1379     // Stage 1 signal handler, let's shut down all of the threads.
1380     if (__kmp_debug_buf) {
1381       __kmp_dump_debug_buffer();
1382     }
1383     KMP_MB(); // Flush all pending memory write invalidates.
1384     TCW_4(__kmp_global.g.g_abort, signo);
1385     KMP_MB(); // Flush all pending memory write invalidates.
1386     TCW_4(__kmp_global.g.g_done, TRUE);
1387     KMP_MB(); // Flush all pending memory write invalidates.
1388   }
1389 } // __kmp_team_handler
1390 
__kmp_signal(int signum,sig_func_t handler)1391 static sig_func_t __kmp_signal(int signum, sig_func_t handler) {
1392   sig_func_t old = signal(signum, handler);
1393   if (old == SIG_ERR) {
1394     int error = errno;
1395     __kmp_fatal(KMP_MSG(FunctionError, "signal"), KMP_ERR(error),
1396                 __kmp_msg_null);
1397   }
1398   return old;
1399 }
1400 
__kmp_install_one_handler(int sig,sig_func_t handler,int parallel_init)1401 static void __kmp_install_one_handler(int sig, sig_func_t handler,
1402                                       int parallel_init) {
1403   sig_func_t old;
1404   KMP_MB(); /* Flush all pending memory write invalidates.  */
1405   KB_TRACE(60, ("__kmp_install_one_handler: called: sig=%d\n", sig));
1406   if (parallel_init) {
1407     old = __kmp_signal(sig, handler);
1408     // SIG_DFL on Windows* OS in NULL or 0.
1409     if (old == __kmp_sighldrs[sig]) {
1410       __kmp_siginstalled[sig] = 1;
1411     } else { // Restore/keep user's handler if one previously installed.
1412       old = __kmp_signal(sig, old);
1413     }
1414   } else {
1415     // Save initial/system signal handlers to see if user handlers installed.
1416     // 2009-09-23: It is a dead code. On Windows* OS __kmp_install_signals
1417     // called once with parallel_init == TRUE.
1418     old = __kmp_signal(sig, SIG_DFL);
1419     __kmp_sighldrs[sig] = old;
1420     __kmp_signal(sig, old);
1421   }
1422   KMP_MB(); /* Flush all pending memory write invalidates.  */
1423 } // __kmp_install_one_handler
1424 
__kmp_remove_one_handler(int sig)1425 static void __kmp_remove_one_handler(int sig) {
1426   if (__kmp_siginstalled[sig]) {
1427     sig_func_t old;
1428     KMP_MB(); // Flush all pending memory write invalidates.
1429     KB_TRACE(60, ("__kmp_remove_one_handler: called: sig=%d\n", sig));
1430     old = __kmp_signal(sig, __kmp_sighldrs[sig]);
1431     if (old != __kmp_team_handler) {
1432       KB_TRACE(10, ("__kmp_remove_one_handler: oops, not our handler, "
1433                     "restoring: sig=%d\n",
1434                     sig));
1435       old = __kmp_signal(sig, old);
1436     }
1437     __kmp_sighldrs[sig] = NULL;
1438     __kmp_siginstalled[sig] = 0;
1439     KMP_MB(); // Flush all pending memory write invalidates.
1440   }
1441 } // __kmp_remove_one_handler
1442 
__kmp_install_signals(int parallel_init)1443 void __kmp_install_signals(int parallel_init) {
1444   KB_TRACE(10, ("__kmp_install_signals: called\n"));
1445   if (!__kmp_handle_signals) {
1446     KB_TRACE(10, ("__kmp_install_signals: KMP_HANDLE_SIGNALS is false - "
1447                   "handlers not installed\n"));
1448     return;
1449   }
1450   __kmp_install_one_handler(SIGINT, __kmp_team_handler, parallel_init);
1451   __kmp_install_one_handler(SIGILL, __kmp_team_handler, parallel_init);
1452   __kmp_install_one_handler(SIGABRT, __kmp_team_handler, parallel_init);
1453   __kmp_install_one_handler(SIGFPE, __kmp_team_handler, parallel_init);
1454   __kmp_install_one_handler(SIGSEGV, __kmp_team_handler, parallel_init);
1455   __kmp_install_one_handler(SIGTERM, __kmp_team_handler, parallel_init);
1456 } // __kmp_install_signals
1457 
__kmp_remove_signals(void)1458 void __kmp_remove_signals(void) {
1459   int sig;
1460   KB_TRACE(10, ("__kmp_remove_signals: called\n"));
1461   for (sig = 1; sig < NSIG; ++sig) {
1462     __kmp_remove_one_handler(sig);
1463   }
1464 } // __kmp_remove_signals
1465 
1466 #endif // KMP_HANDLE_SIGNALS
1467 
1468 /* Put the thread to sleep for a time period */
__kmp_thread_sleep(int millis)1469 void __kmp_thread_sleep(int millis) {
1470   DWORD status;
1471 
1472   status = SleepEx((DWORD)millis, FALSE);
1473   if (status) {
1474     DWORD error = GetLastError();
1475     __kmp_fatal(KMP_MSG(FunctionError, "SleepEx()"), KMP_ERR(error),
1476                 __kmp_msg_null);
1477   }
1478 }
1479 
1480 // Determine whether the given address is mapped into the current address space.
__kmp_is_address_mapped(void * addr)1481 int __kmp_is_address_mapped(void *addr) {
1482   DWORD status;
1483   MEMORY_BASIC_INFORMATION lpBuffer;
1484   SIZE_T dwLength;
1485 
1486   dwLength = sizeof(MEMORY_BASIC_INFORMATION);
1487 
1488   status = VirtualQuery(addr, &lpBuffer, dwLength);
1489 
1490   return !(((lpBuffer.State == MEM_RESERVE) || (lpBuffer.State == MEM_FREE)) ||
1491            ((lpBuffer.Protect == PAGE_NOACCESS) ||
1492             (lpBuffer.Protect == PAGE_EXECUTE)));
1493 }
1494 
__kmp_hardware_timestamp(void)1495 kmp_uint64 __kmp_hardware_timestamp(void) {
1496   kmp_uint64 r = 0;
1497 
1498   QueryPerformanceCounter((LARGE_INTEGER *)&r);
1499   return r;
1500 }
1501 
1502 /* Free handle and check the error code */
__kmp_free_handle(kmp_thread_t tHandle)1503 void __kmp_free_handle(kmp_thread_t tHandle) {
1504   /* called with parameter type HANDLE also, thus suppose kmp_thread_t defined
1505    * as HANDLE */
1506   BOOL rc;
1507   rc = CloseHandle(tHandle);
1508   if (!rc) {
1509     DWORD error = GetLastError();
1510     __kmp_fatal(KMP_MSG(CantCloseHandle), KMP_ERR(error), __kmp_msg_null);
1511   }
1512 }
1513 
__kmp_get_load_balance(int max)1514 int __kmp_get_load_balance(int max) {
1515   static ULONG glb_buff_size = 100 * 1024;
1516 
1517   // Saved count of the running threads for the thread balance algorithm
1518   static int glb_running_threads = 0;
1519   static double glb_call_time = 0; /* Thread balance algorithm call time */
1520 
1521   int running_threads = 0; // Number of running threads in the system.
1522   NTSTATUS status = 0;
1523   ULONG buff_size = 0;
1524   ULONG info_size = 0;
1525   void *buffer = NULL;
1526   PSYSTEM_PROCESS_INFORMATION spi = NULL;
1527   int first_time = 1;
1528 
1529   double call_time = 0.0; // start, finish;
1530 
1531   __kmp_elapsed(&call_time);
1532 
1533   if (glb_call_time &&
1534       (call_time - glb_call_time < __kmp_load_balance_interval)) {
1535     running_threads = glb_running_threads;
1536     goto finish;
1537   }
1538   glb_call_time = call_time;
1539 
1540   // Do not spend time on running algorithm if we have a permanent error.
1541   if (NtQuerySystemInformation == NULL) {
1542     running_threads = -1;
1543     goto finish;
1544   }
1545 
1546   if (max <= 0) {
1547     max = INT_MAX;
1548   }
1549 
1550   do {
1551 
1552     if (first_time) {
1553       buff_size = glb_buff_size;
1554     } else {
1555       buff_size = 2 * buff_size;
1556     }
1557 
1558     buffer = KMP_INTERNAL_REALLOC(buffer, buff_size);
1559     if (buffer == NULL) {
1560       running_threads = -1;
1561       goto finish;
1562     }
1563     status = NtQuerySystemInformation(SystemProcessInformation, buffer,
1564                                       buff_size, &info_size);
1565     first_time = 0;
1566 
1567   } while (status == STATUS_INFO_LENGTH_MISMATCH);
1568   glb_buff_size = buff_size;
1569 
1570 #define CHECK(cond)                                                            \
1571   {                                                                            \
1572     KMP_DEBUG_ASSERT(cond);                                                    \
1573     if (!(cond)) {                                                             \
1574       running_threads = -1;                                                    \
1575       goto finish;                                                             \
1576     }                                                                          \
1577   }
1578 
1579   CHECK(buff_size >= info_size);
1580   spi = PSYSTEM_PROCESS_INFORMATION(buffer);
1581   for (;;) {
1582     ptrdiff_t offset = uintptr_t(spi) - uintptr_t(buffer);
1583     CHECK(0 <= offset &&
1584           offset + sizeof(SYSTEM_PROCESS_INFORMATION) < info_size);
1585     HANDLE pid = spi->ProcessId;
1586     ULONG num = spi->NumberOfThreads;
1587     CHECK(num >= 1);
1588     size_t spi_size =
1589         sizeof(SYSTEM_PROCESS_INFORMATION) + sizeof(SYSTEM_THREAD) * (num - 1);
1590     CHECK(offset + spi_size <
1591           info_size); // Make sure process info record fits the buffer.
1592     if (spi->NextEntryOffset != 0) {
1593       CHECK(spi_size <=
1594             spi->NextEntryOffset); // And do not overlap with the next record.
1595     }
1596     // pid == 0 corresponds to the System Idle Process. It always has running
1597     // threads on all cores. So, we don't consider the running threads of this
1598     // process.
1599     if (pid != 0) {
1600       for (int i = 0; i < num; ++i) {
1601         THREAD_STATE state = spi->Threads[i].State;
1602         // Count threads that have Ready or Running state.
1603         // !!! TODO: Why comment does not match the code???
1604         if (state == StateRunning) {
1605           ++running_threads;
1606           // Stop counting running threads if the number is already greater than
1607           // the number of available cores
1608           if (running_threads >= max) {
1609             goto finish;
1610           }
1611         }
1612       }
1613     }
1614     if (spi->NextEntryOffset == 0) {
1615       break;
1616     }
1617     spi = PSYSTEM_PROCESS_INFORMATION(uintptr_t(spi) + spi->NextEntryOffset);
1618   }
1619 
1620 #undef CHECK
1621 
1622 finish: // Clean up and exit.
1623 
1624   if (buffer != NULL) {
1625     KMP_INTERNAL_FREE(buffer);
1626   }
1627 
1628   glb_running_threads = running_threads;
1629 
1630   return running_threads;
1631 } //__kmp_get_load_balance()
1632