1 /*
2 * Copyright 2004 The WebRTC Project Authors. All rights reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
11 #include "p2p/base/port.h"
12
13 #include <string.h>
14
15 #include <cstdint>
16 #include <limits>
17 #include <list>
18 #include <memory>
19 #include <string>
20 #include <utility>
21 #include <vector>
22
23 #include "absl/types/optional.h"
24 #include "api/candidate.h"
25 #include "api/packet_socket_factory.h"
26 #include "api/transport/stun.h"
27 #include "api/units/time_delta.h"
28 #include "p2p/base/basic_packet_socket_factory.h"
29 #include "p2p/base/p2p_constants.h"
30 #include "p2p/base/port_allocator.h"
31 #include "p2p/base/port_interface.h"
32 #include "p2p/base/stun_port.h"
33 #include "p2p/base/stun_server.h"
34 #include "p2p/base/tcp_port.h"
35 #include "p2p/base/test_stun_server.h"
36 #include "p2p/base/test_turn_server.h"
37 #include "p2p/base/transport_description.h"
38 #include "p2p/base/turn_port.h"
39 #include "p2p/base/turn_server.h"
40 #include "p2p/client/relay_port_factory_interface.h"
41 #include "rtc_base/arraysize.h"
42 #include "rtc_base/async_packet_socket.h"
43 #include "rtc_base/async_socket.h"
44 #include "rtc_base/buffer.h"
45 #include "rtc_base/byte_buffer.h"
46 #include "rtc_base/checks.h"
47 #include "rtc_base/dscp.h"
48 #include "rtc_base/fake_clock.h"
49 #include "rtc_base/gunit.h"
50 #include "rtc_base/helpers.h"
51 #include "rtc_base/logging.h"
52 #include "rtc_base/nat_server.h"
53 #include "rtc_base/nat_socket_factory.h"
54 #include "rtc_base/nat_types.h"
55 #include "rtc_base/net_helper.h"
56 #include "rtc_base/network.h"
57 #include "rtc_base/network/sent_packet.h"
58 #include "rtc_base/network_constants.h"
59 #include "rtc_base/proxy_info.h"
60 #include "rtc_base/socket.h"
61 #include "rtc_base/socket_adapters.h"
62 #include "rtc_base/socket_address.h"
63 #include "rtc_base/third_party/sigslot/sigslot.h"
64 #include "rtc_base/thread.h"
65 #include "rtc_base/time_utils.h"
66 #include "rtc_base/virtual_socket_server.h"
67 #include "test/field_trial.h"
68 #include "test/gtest.h"
69
70 using rtc::AsyncPacketSocket;
71 using rtc::ByteBufferReader;
72 using rtc::ByteBufferWriter;
73 using rtc::NAT_ADDR_RESTRICTED;
74 using rtc::NAT_OPEN_CONE;
75 using rtc::NAT_PORT_RESTRICTED;
76 using rtc::NAT_SYMMETRIC;
77 using rtc::NATType;
78 using rtc::PacketSocketFactory;
79 using rtc::Socket;
80 using rtc::SocketAddress;
81
82 namespace cricket {
83 namespace {
84
85 constexpr int kDefaultTimeout = 3000;
86 constexpr int kShortTimeout = 1000;
87 constexpr int kMaxExpectedSimulatedRtt = 200;
88 const SocketAddress kLocalAddr1("192.168.1.2", 0);
89 const SocketAddress kLocalAddr2("192.168.1.3", 0);
90 const SocketAddress kNatAddr1("77.77.77.77", rtc::NAT_SERVER_UDP_PORT);
91 const SocketAddress kNatAddr2("88.88.88.88", rtc::NAT_SERVER_UDP_PORT);
92 const SocketAddress kStunAddr("99.99.99.1", STUN_SERVER_PORT);
93 const SocketAddress kTurnUdpIntAddr("99.99.99.4", STUN_SERVER_PORT);
94 const SocketAddress kTurnTcpIntAddr("99.99.99.4", 5010);
95 const SocketAddress kTurnUdpExtAddr("99.99.99.5", 0);
96 const RelayCredentials kRelayCredentials("test", "test");
97
98 // TODO(?): Update these when RFC5245 is completely supported.
99 // Magic value of 30 is from RFC3484, for IPv4 addresses.
100 const uint32_t kDefaultPrflxPriority = ICE_TYPE_PREFERENCE_PRFLX << 24 |
101 30 << 8 |
102 (256 - ICE_CANDIDATE_COMPONENT_DEFAULT);
103
104 constexpr int kTiebreaker1 = 11111;
105 constexpr int kTiebreaker2 = 22222;
106
107 const char* data = "ABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890";
108
GetCandidate(Port * port)109 Candidate GetCandidate(Port* port) {
110 RTC_DCHECK_GE(port->Candidates().size(), 1);
111 return port->Candidates()[0];
112 }
113
GetAddress(Port * port)114 SocketAddress GetAddress(Port* port) {
115 return GetCandidate(port).address();
116 }
117
CopyStunMessage(const IceMessage & src)118 std::unique_ptr<IceMessage> CopyStunMessage(const IceMessage& src) {
119 auto dst = std::make_unique<IceMessage>();
120 ByteBufferWriter buf;
121 src.Write(&buf);
122 ByteBufferReader read_buf(buf);
123 dst->Read(&read_buf);
124 return dst;
125 }
126
WriteStunMessage(const StunMessage & msg,ByteBufferWriter * buf)127 bool WriteStunMessage(const StunMessage& msg, ByteBufferWriter* buf) {
128 buf->Resize(0); // clear out any existing buffer contents
129 return msg.Write(buf);
130 }
131
132 } // namespace
133
134 // Stub port class for testing STUN generation and processing.
135 class TestPort : public Port {
136 public:
TestPort(rtc::Thread * thread,const std::string & type,rtc::PacketSocketFactory * factory,rtc::Network * network,uint16_t min_port,uint16_t max_port,const std::string & username_fragment,const std::string & password)137 TestPort(rtc::Thread* thread,
138 const std::string& type,
139 rtc::PacketSocketFactory* factory,
140 rtc::Network* network,
141 uint16_t min_port,
142 uint16_t max_port,
143 const std::string& username_fragment,
144 const std::string& password)
145 : Port(thread,
146 type,
147 factory,
148 network,
149 min_port,
150 max_port,
151 username_fragment,
152 password) {}
~TestPort()153 ~TestPort() {}
154
155 // Expose GetStunMessage so that we can test it.
156 using cricket::Port::GetStunMessage;
157
158 // The last StunMessage that was sent on this Port.
159 // TODO(?): Make these const; requires changes to SendXXXXResponse.
last_stun_buf()160 rtc::BufferT<uint8_t>* last_stun_buf() { return last_stun_buf_.get(); }
last_stun_msg()161 IceMessage* last_stun_msg() { return last_stun_msg_.get(); }
last_stun_error_code()162 int last_stun_error_code() {
163 int code = 0;
164 if (last_stun_msg_) {
165 const StunErrorCodeAttribute* error_attr = last_stun_msg_->GetErrorCode();
166 if (error_attr) {
167 code = error_attr->code();
168 }
169 }
170 return code;
171 }
172
PrepareAddress()173 virtual void PrepareAddress() {
174 // Act as if the socket was bound to the best IP on the network, to the
175 // first port in the allowed range.
176 rtc::SocketAddress addr(Network()->GetBestIP(), min_port());
177 AddAddress(addr, addr, rtc::SocketAddress(), "udp", "", "", Type(),
178 ICE_TYPE_PREFERENCE_HOST, 0, "", true);
179 }
180
SupportsProtocol(const std::string & protocol) const181 virtual bool SupportsProtocol(const std::string& protocol) const {
182 return true;
183 }
184
GetProtocol() const185 virtual ProtocolType GetProtocol() const { return PROTO_UDP; }
186
187 // Exposed for testing candidate building.
AddCandidateAddress(const rtc::SocketAddress & addr)188 void AddCandidateAddress(const rtc::SocketAddress& addr) {
189 AddAddress(addr, addr, rtc::SocketAddress(), "udp", "", "", Type(),
190 type_preference_, 0, "", false);
191 }
AddCandidateAddress(const rtc::SocketAddress & addr,const rtc::SocketAddress & base_address,const std::string & type,int type_preference,bool final)192 void AddCandidateAddress(const rtc::SocketAddress& addr,
193 const rtc::SocketAddress& base_address,
194 const std::string& type,
195 int type_preference,
196 bool final) {
197 AddAddress(addr, base_address, rtc::SocketAddress(), "udp", "", "", type,
198 type_preference, 0, "", final);
199 }
200
CreateConnection(const Candidate & remote_candidate,CandidateOrigin origin)201 virtual Connection* CreateConnection(const Candidate& remote_candidate,
202 CandidateOrigin origin) {
203 Connection* conn = new ProxyConnection(this, 0, remote_candidate);
204 AddOrReplaceConnection(conn);
205 // Set use-candidate attribute flag as this will add USE-CANDIDATE attribute
206 // in STUN binding requests.
207 conn->set_use_candidate_attr(true);
208 return conn;
209 }
SendTo(const void * data,size_t size,const rtc::SocketAddress & addr,const rtc::PacketOptions & options,bool payload)210 virtual int SendTo(const void* data,
211 size_t size,
212 const rtc::SocketAddress& addr,
213 const rtc::PacketOptions& options,
214 bool payload) {
215 if (!payload) {
216 auto msg = std::make_unique<IceMessage>();
217 auto buf = std::make_unique<rtc::BufferT<uint8_t>>(
218 static_cast<const char*>(data), size);
219 ByteBufferReader read_buf(*buf);
220 if (!msg->Read(&read_buf)) {
221 return -1;
222 }
223 last_stun_buf_ = std::move(buf);
224 last_stun_msg_ = std::move(msg);
225 }
226 return static_cast<int>(size);
227 }
SetOption(rtc::Socket::Option opt,int value)228 virtual int SetOption(rtc::Socket::Option opt, int value) { return 0; }
GetOption(rtc::Socket::Option opt,int * value)229 virtual int GetOption(rtc::Socket::Option opt, int* value) { return -1; }
GetError()230 virtual int GetError() { return 0; }
Reset()231 void Reset() {
232 last_stun_buf_.reset();
233 last_stun_msg_.reset();
234 }
set_type_preference(int type_preference)235 void set_type_preference(int type_preference) {
236 type_preference_ = type_preference;
237 }
238
239 private:
OnSentPacket(rtc::AsyncPacketSocket * socket,const rtc::SentPacket & sent_packet)240 void OnSentPacket(rtc::AsyncPacketSocket* socket,
241 const rtc::SentPacket& sent_packet) {
242 PortInterface::SignalSentPacket(sent_packet);
243 }
244 std::unique_ptr<rtc::BufferT<uint8_t>> last_stun_buf_;
245 std::unique_ptr<IceMessage> last_stun_msg_;
246 int type_preference_ = 0;
247 };
248
SendPingAndReceiveResponse(Connection * lconn,TestPort * lport,Connection * rconn,TestPort * rport,rtc::ScopedFakeClock * clock,int64_t ms)249 static void SendPingAndReceiveResponse(Connection* lconn,
250 TestPort* lport,
251 Connection* rconn,
252 TestPort* rport,
253 rtc::ScopedFakeClock* clock,
254 int64_t ms) {
255 lconn->Ping(rtc::TimeMillis());
256 ASSERT_TRUE_WAIT(lport->last_stun_msg(), kDefaultTimeout);
257 ASSERT_TRUE(lport->last_stun_buf());
258 rconn->OnReadPacket(lport->last_stun_buf()->data<char>(),
259 lport->last_stun_buf()->size(), /* packet_time_us */ -1);
260 clock->AdvanceTime(webrtc::TimeDelta::Millis(ms));
261 ASSERT_TRUE_WAIT(rport->last_stun_msg(), kDefaultTimeout);
262 ASSERT_TRUE(rport->last_stun_buf());
263 lconn->OnReadPacket(rport->last_stun_buf()->data<char>(),
264 rport->last_stun_buf()->size(), /* packet_time_us */ -1);
265 }
266
267 class TestChannel : public sigslot::has_slots<> {
268 public:
269 // Takes ownership of |p1| (but not |p2|).
TestChannel(std::unique_ptr<Port> p1)270 explicit TestChannel(std::unique_ptr<Port> p1) : port_(std::move(p1)) {
271 port_->SignalPortComplete.connect(this, &TestChannel::OnPortComplete);
272 port_->SignalUnknownAddress.connect(this, &TestChannel::OnUnknownAddress);
273 port_->SignalDestroyed.connect(this, &TestChannel::OnSrcPortDestroyed);
274 }
275
complete_count()276 int complete_count() { return complete_count_; }
conn()277 Connection* conn() { return conn_; }
remote_address()278 const SocketAddress& remote_address() { return remote_address_; }
remote_fragment()279 const std::string remote_fragment() { return remote_frag_; }
280
Start()281 void Start() { port_->PrepareAddress(); }
CreateConnection(const Candidate & remote_candidate)282 void CreateConnection(const Candidate& remote_candidate) {
283 conn_ = port_->CreateConnection(remote_candidate, Port::ORIGIN_MESSAGE);
284 IceMode remote_ice_mode =
285 (ice_mode_ == ICEMODE_FULL) ? ICEMODE_LITE : ICEMODE_FULL;
286 conn_->set_remote_ice_mode(remote_ice_mode);
287 conn_->set_use_candidate_attr(remote_ice_mode == ICEMODE_FULL);
288 conn_->SignalStateChange.connect(this,
289 &TestChannel::OnConnectionStateChange);
290 conn_->SignalDestroyed.connect(this, &TestChannel::OnDestroyed);
291 conn_->SignalReadyToSend.connect(this,
292 &TestChannel::OnConnectionReadyToSend);
293 connection_ready_to_send_ = false;
294 }
OnConnectionStateChange(Connection * conn)295 void OnConnectionStateChange(Connection* conn) {
296 if (conn->write_state() == Connection::STATE_WRITABLE) {
297 conn->set_use_candidate_attr(true);
298 nominated_ = true;
299 }
300 }
AcceptConnection(const Candidate & remote_candidate)301 void AcceptConnection(const Candidate& remote_candidate) {
302 ASSERT_TRUE(remote_request_.get() != NULL);
303 Candidate c = remote_candidate;
304 c.set_address(remote_address_);
305 conn_ = port_->CreateConnection(c, Port::ORIGIN_MESSAGE);
306 conn_->SignalDestroyed.connect(this, &TestChannel::OnDestroyed);
307 conn_->SendStunBindingResponse(remote_request_.get());
308 remote_request_.reset();
309 }
Ping()310 void Ping() { Ping(0); }
Ping(int64_t now)311 void Ping(int64_t now) { conn_->Ping(now); }
Stop()312 void Stop() {
313 if (conn_) {
314 conn_->Destroy();
315 }
316 }
317
OnPortComplete(Port * port)318 void OnPortComplete(Port* port) { complete_count_++; }
SetIceMode(IceMode ice_mode)319 void SetIceMode(IceMode ice_mode) { ice_mode_ = ice_mode; }
320
SendData(const char * data,size_t len)321 int SendData(const char* data, size_t len) {
322 rtc::PacketOptions options;
323 return conn_->Send(data, len, options);
324 }
325
OnUnknownAddress(PortInterface * port,const SocketAddress & addr,ProtocolType proto,IceMessage * msg,const std::string & rf,bool)326 void OnUnknownAddress(PortInterface* port,
327 const SocketAddress& addr,
328 ProtocolType proto,
329 IceMessage* msg,
330 const std::string& rf,
331 bool /*port_muxed*/) {
332 ASSERT_EQ(port_.get(), port);
333 if (!remote_address_.IsNil()) {
334 ASSERT_EQ(remote_address_, addr);
335 }
336 const cricket::StunUInt32Attribute* priority_attr =
337 msg->GetUInt32(STUN_ATTR_PRIORITY);
338 const cricket::StunByteStringAttribute* mi_attr =
339 msg->GetByteString(STUN_ATTR_MESSAGE_INTEGRITY);
340 const cricket::StunUInt32Attribute* fingerprint_attr =
341 msg->GetUInt32(STUN_ATTR_FINGERPRINT);
342 EXPECT_TRUE(priority_attr != NULL);
343 EXPECT_TRUE(mi_attr != NULL);
344 EXPECT_TRUE(fingerprint_attr != NULL);
345 remote_address_ = addr;
346 remote_request_ = CopyStunMessage(*msg);
347 remote_frag_ = rf;
348 }
349
OnDestroyed(Connection * conn)350 void OnDestroyed(Connection* conn) {
351 ASSERT_EQ(conn_, conn);
352 RTC_LOG(INFO) << "OnDestroy connection " << conn << " deleted";
353 conn_ = NULL;
354 // When the connection is destroyed, also clear these fields so future
355 // connections are possible.
356 remote_request_.reset();
357 remote_address_.Clear();
358 }
359
OnSrcPortDestroyed(PortInterface * port)360 void OnSrcPortDestroyed(PortInterface* port) {
361 Port* destroyed_src = port_.release();
362 ASSERT_EQ(destroyed_src, port);
363 }
364
port()365 Port* port() { return port_.get(); }
366
nominated() const367 bool nominated() const { return nominated_; }
368
set_connection_ready_to_send(bool ready)369 void set_connection_ready_to_send(bool ready) {
370 connection_ready_to_send_ = ready;
371 }
connection_ready_to_send() const372 bool connection_ready_to_send() const { return connection_ready_to_send_; }
373
374 private:
375 // ReadyToSend will only issue after a Connection recovers from ENOTCONN
OnConnectionReadyToSend(Connection * conn)376 void OnConnectionReadyToSend(Connection* conn) {
377 ASSERT_EQ(conn, conn_);
378 connection_ready_to_send_ = true;
379 }
380
381 IceMode ice_mode_ = ICEMODE_FULL;
382 std::unique_ptr<Port> port_;
383
384 int complete_count_ = 0;
385 Connection* conn_ = nullptr;
386 SocketAddress remote_address_;
387 std::unique_ptr<StunMessage> remote_request_;
388 std::string remote_frag_;
389 bool nominated_ = false;
390 bool connection_ready_to_send_ = false;
391 };
392
393 class PortTest : public ::testing::Test, public sigslot::has_slots<> {
394 public:
PortTest()395 PortTest()
396 : ss_(new rtc::VirtualSocketServer()),
397 main_(ss_.get()),
398 socket_factory_(rtc::Thread::Current()),
399 nat_factory1_(ss_.get(), kNatAddr1, SocketAddress()),
400 nat_factory2_(ss_.get(), kNatAddr2, SocketAddress()),
401 nat_socket_factory1_(&nat_factory1_),
402 nat_socket_factory2_(&nat_factory2_),
403 stun_server_(TestStunServer::Create(&main_, kStunAddr)),
404 turn_server_(&main_, kTurnUdpIntAddr, kTurnUdpExtAddr),
405 username_(rtc::CreateRandomString(ICE_UFRAG_LENGTH)),
406 password_(rtc::CreateRandomString(ICE_PWD_LENGTH)),
407 role_conflict_(false),
408 ports_destroyed_(0) {}
409
410 protected:
password()411 std::string password() { return password_; }
412
TestLocalToLocal()413 void TestLocalToLocal() {
414 auto port1 = CreateUdpPort(kLocalAddr1);
415 port1->SetIceRole(cricket::ICEROLE_CONTROLLING);
416 auto port2 = CreateUdpPort(kLocalAddr2);
417 port2->SetIceRole(cricket::ICEROLE_CONTROLLED);
418 TestConnectivity("udp", std::move(port1), "udp", std::move(port2), true,
419 true, true, true);
420 }
TestLocalToStun(NATType ntype)421 void TestLocalToStun(NATType ntype) {
422 auto port1 = CreateUdpPort(kLocalAddr1);
423 port1->SetIceRole(cricket::ICEROLE_CONTROLLING);
424 nat_server2_ = CreateNatServer(kNatAddr2, ntype);
425 auto port2 = CreateStunPort(kLocalAddr2, &nat_socket_factory2_);
426 port2->SetIceRole(cricket::ICEROLE_CONTROLLED);
427 TestConnectivity("udp", std::move(port1), StunName(ntype), std::move(port2),
428 ntype == NAT_OPEN_CONE, true, ntype != NAT_SYMMETRIC,
429 true);
430 }
TestLocalToRelay(ProtocolType proto)431 void TestLocalToRelay(ProtocolType proto) {
432 auto port1 = CreateUdpPort(kLocalAddr1);
433 port1->SetIceRole(cricket::ICEROLE_CONTROLLING);
434 auto port2 = CreateRelayPort(kLocalAddr2, proto, PROTO_UDP);
435 port2->SetIceRole(cricket::ICEROLE_CONTROLLED);
436 TestConnectivity("udp", std::move(port1), RelayName(proto),
437 std::move(port2), false, true, true, true);
438 }
TestStunToLocal(NATType ntype)439 void TestStunToLocal(NATType ntype) {
440 nat_server1_ = CreateNatServer(kNatAddr1, ntype);
441 auto port1 = CreateStunPort(kLocalAddr1, &nat_socket_factory1_);
442 port1->SetIceRole(cricket::ICEROLE_CONTROLLING);
443 auto port2 = CreateUdpPort(kLocalAddr2);
444 port2->SetIceRole(cricket::ICEROLE_CONTROLLED);
445 TestConnectivity(StunName(ntype), std::move(port1), "udp", std::move(port2),
446 true, ntype != NAT_SYMMETRIC, true, true);
447 }
TestStunToStun(NATType ntype1,NATType ntype2)448 void TestStunToStun(NATType ntype1, NATType ntype2) {
449 nat_server1_ = CreateNatServer(kNatAddr1, ntype1);
450 auto port1 = CreateStunPort(kLocalAddr1, &nat_socket_factory1_);
451 port1->SetIceRole(cricket::ICEROLE_CONTROLLING);
452 nat_server2_ = CreateNatServer(kNatAddr2, ntype2);
453 auto port2 = CreateStunPort(kLocalAddr2, &nat_socket_factory2_);
454 port2->SetIceRole(cricket::ICEROLE_CONTROLLED);
455 TestConnectivity(StunName(ntype1), std::move(port1), StunName(ntype2),
456 std::move(port2), ntype2 == NAT_OPEN_CONE,
457 ntype1 != NAT_SYMMETRIC, ntype2 != NAT_SYMMETRIC,
458 ntype1 + ntype2 < (NAT_PORT_RESTRICTED + NAT_SYMMETRIC));
459 }
TestStunToRelay(NATType ntype,ProtocolType proto)460 void TestStunToRelay(NATType ntype, ProtocolType proto) {
461 nat_server1_ = CreateNatServer(kNatAddr1, ntype);
462 auto port1 = CreateStunPort(kLocalAddr1, &nat_socket_factory1_);
463 port1->SetIceRole(cricket::ICEROLE_CONTROLLING);
464 auto port2 = CreateRelayPort(kLocalAddr2, proto, PROTO_UDP);
465 port2->SetIceRole(cricket::ICEROLE_CONTROLLED);
466 TestConnectivity(StunName(ntype), std::move(port1), RelayName(proto),
467 std::move(port2), false, ntype != NAT_SYMMETRIC, true,
468 true);
469 }
TestTcpToTcp()470 void TestTcpToTcp() {
471 auto port1 = CreateTcpPort(kLocalAddr1);
472 port1->SetIceRole(cricket::ICEROLE_CONTROLLING);
473 auto port2 = CreateTcpPort(kLocalAddr2);
474 port2->SetIceRole(cricket::ICEROLE_CONTROLLED);
475 TestConnectivity("tcp", std::move(port1), "tcp", std::move(port2), true,
476 false, true, true);
477 }
TestTcpToRelay(ProtocolType proto)478 void TestTcpToRelay(ProtocolType proto) {
479 auto port1 = CreateTcpPort(kLocalAddr1);
480 port1->SetIceRole(cricket::ICEROLE_CONTROLLING);
481 auto port2 = CreateRelayPort(kLocalAddr2, proto, PROTO_TCP);
482 port2->SetIceRole(cricket::ICEROLE_CONTROLLED);
483 TestConnectivity("tcp", std::move(port1), RelayName(proto),
484 std::move(port2), false, false, true, true);
485 }
TestSslTcpToRelay(ProtocolType proto)486 void TestSslTcpToRelay(ProtocolType proto) {
487 auto port1 = CreateTcpPort(kLocalAddr1);
488 port1->SetIceRole(cricket::ICEROLE_CONTROLLING);
489 auto port2 = CreateRelayPort(kLocalAddr2, proto, PROTO_SSLTCP);
490 port2->SetIceRole(cricket::ICEROLE_CONTROLLED);
491 TestConnectivity("ssltcp", std::move(port1), RelayName(proto),
492 std::move(port2), false, false, true, true);
493 }
494
MakeNetwork(const SocketAddress & addr)495 rtc::Network* MakeNetwork(const SocketAddress& addr) {
496 networks_.emplace_back("unittest", "unittest", addr.ipaddr(), 32);
497 networks_.back().AddIP(addr.ipaddr());
498 return &networks_.back();
499 }
500
501 // helpers for above functions
CreateUdpPort(const SocketAddress & addr)502 std::unique_ptr<UDPPort> CreateUdpPort(const SocketAddress& addr) {
503 return CreateUdpPort(addr, &socket_factory_);
504 }
CreateUdpPort(const SocketAddress & addr,PacketSocketFactory * socket_factory)505 std::unique_ptr<UDPPort> CreateUdpPort(const SocketAddress& addr,
506 PacketSocketFactory* socket_factory) {
507 return UDPPort::Create(&main_, socket_factory, MakeNetwork(addr), 0, 0,
508 username_, password_, std::string(), true,
509 absl::nullopt);
510 }
CreateTcpPort(const SocketAddress & addr)511 std::unique_ptr<TCPPort> CreateTcpPort(const SocketAddress& addr) {
512 return CreateTcpPort(addr, &socket_factory_);
513 }
CreateTcpPort(const SocketAddress & addr,PacketSocketFactory * socket_factory)514 std::unique_ptr<TCPPort> CreateTcpPort(const SocketAddress& addr,
515 PacketSocketFactory* socket_factory) {
516 return TCPPort::Create(&main_, socket_factory, MakeNetwork(addr), 0, 0,
517 username_, password_, true);
518 }
CreateStunPort(const SocketAddress & addr,rtc::PacketSocketFactory * factory)519 std::unique_ptr<StunPort> CreateStunPort(const SocketAddress& addr,
520 rtc::PacketSocketFactory* factory) {
521 ServerAddresses stun_servers;
522 stun_servers.insert(kStunAddr);
523 return StunPort::Create(&main_, factory, MakeNetwork(addr), 0, 0, username_,
524 password_, stun_servers, std::string(),
525 absl::nullopt);
526 }
CreateRelayPort(const SocketAddress & addr,ProtocolType int_proto,ProtocolType ext_proto)527 std::unique_ptr<Port> CreateRelayPort(const SocketAddress& addr,
528 ProtocolType int_proto,
529 ProtocolType ext_proto) {
530 return CreateTurnPort(addr, &socket_factory_, int_proto, ext_proto);
531 }
CreateTurnPort(const SocketAddress & addr,PacketSocketFactory * socket_factory,ProtocolType int_proto,ProtocolType ext_proto)532 std::unique_ptr<TurnPort> CreateTurnPort(const SocketAddress& addr,
533 PacketSocketFactory* socket_factory,
534 ProtocolType int_proto,
535 ProtocolType ext_proto) {
536 SocketAddress server_addr =
537 int_proto == PROTO_TCP ? kTurnTcpIntAddr : kTurnUdpIntAddr;
538 return CreateTurnPort(addr, socket_factory, int_proto, ext_proto,
539 server_addr);
540 }
CreateTurnPort(const SocketAddress & addr,PacketSocketFactory * socket_factory,ProtocolType int_proto,ProtocolType ext_proto,const rtc::SocketAddress & server_addr)541 std::unique_ptr<TurnPort> CreateTurnPort(
542 const SocketAddress& addr,
543 PacketSocketFactory* socket_factory,
544 ProtocolType int_proto,
545 ProtocolType ext_proto,
546 const rtc::SocketAddress& server_addr) {
547 return TurnPort::Create(&main_, socket_factory, MakeNetwork(addr), 0, 0,
548 username_, password_,
549 ProtocolAddress(server_addr, int_proto),
550 kRelayCredentials, 0, "", {}, {}, nullptr, nullptr);
551 }
CreateNatServer(const SocketAddress & addr,rtc::NATType type)552 std::unique_ptr<rtc::NATServer> CreateNatServer(const SocketAddress& addr,
553 rtc::NATType type) {
554 return std::make_unique<rtc::NATServer>(type, ss_.get(), addr, addr,
555 ss_.get(), addr);
556 }
StunName(NATType type)557 static const char* StunName(NATType type) {
558 switch (type) {
559 case NAT_OPEN_CONE:
560 return "stun(open cone)";
561 case NAT_ADDR_RESTRICTED:
562 return "stun(addr restricted)";
563 case NAT_PORT_RESTRICTED:
564 return "stun(port restricted)";
565 case NAT_SYMMETRIC:
566 return "stun(symmetric)";
567 default:
568 return "stun(?)";
569 }
570 }
RelayName(ProtocolType proto)571 static const char* RelayName(ProtocolType proto) {
572 switch (proto) {
573 case PROTO_UDP:
574 return "turn(udp)";
575 case PROTO_TCP:
576 return "turn(tcp)";
577 case PROTO_SSLTCP:
578 return "turn(ssltcp)";
579 case PROTO_TLS:
580 return "turn(tls)";
581 default:
582 return "turn(?)";
583 }
584 }
585
586 void TestCrossFamilyPorts(int type);
587
588 void ExpectPortsCanConnect(bool can_connect, Port* p1, Port* p2);
589
590 // This does all the work and then deletes |port1| and |port2|.
591 void TestConnectivity(const char* name1,
592 std::unique_ptr<Port> port1,
593 const char* name2,
594 std::unique_ptr<Port> port2,
595 bool accept,
596 bool same_addr1,
597 bool same_addr2,
598 bool possible);
599
600 // This connects the provided channels which have already started. |ch1|
601 // should have its Connection created (either through CreateConnection() or
602 // TCP reconnecting mechanism before entering this function.
ConnectStartedChannels(TestChannel * ch1,TestChannel * ch2)603 void ConnectStartedChannels(TestChannel* ch1, TestChannel* ch2) {
604 ASSERT_TRUE(ch1->conn());
605 EXPECT_TRUE_WAIT(ch1->conn()->connected(),
606 kDefaultTimeout); // for TCP connect
607 ch1->Ping();
608 WAIT(!ch2->remote_address().IsNil(), kShortTimeout);
609
610 // Send a ping from dst to src.
611 ch2->AcceptConnection(GetCandidate(ch1->port()));
612 ch2->Ping();
613 EXPECT_EQ_WAIT(Connection::STATE_WRITABLE, ch2->conn()->write_state(),
614 kDefaultTimeout);
615 }
616
617 // This connects and disconnects the provided channels in the same sequence as
618 // TestConnectivity with all options set to |true|. It does not delete either
619 // channel.
StartConnectAndStopChannels(TestChannel * ch1,TestChannel * ch2)620 void StartConnectAndStopChannels(TestChannel* ch1, TestChannel* ch2) {
621 // Acquire addresses.
622 ch1->Start();
623 ch2->Start();
624
625 ch1->CreateConnection(GetCandidate(ch2->port()));
626 ConnectStartedChannels(ch1, ch2);
627
628 // Destroy the connections.
629 ch1->Stop();
630 ch2->Stop();
631 }
632
633 // This disconnects both end's Connection and make sure ch2 ready for new
634 // connection.
DisconnectTcpTestChannels(TestChannel * ch1,TestChannel * ch2)635 void DisconnectTcpTestChannels(TestChannel* ch1, TestChannel* ch2) {
636 TCPConnection* tcp_conn1 = static_cast<TCPConnection*>(ch1->conn());
637 TCPConnection* tcp_conn2 = static_cast<TCPConnection*>(ch2->conn());
638 ASSERT_TRUE(
639 ss_->CloseTcpConnections(tcp_conn1->socket()->GetLocalAddress(),
640 tcp_conn2->socket()->GetLocalAddress()));
641
642 // Wait for both OnClose are delivered.
643 EXPECT_TRUE_WAIT(!ch1->conn()->connected(), kDefaultTimeout);
644 EXPECT_TRUE_WAIT(!ch2->conn()->connected(), kDefaultTimeout);
645
646 // Ensure redundant SignalClose events on TcpConnection won't break tcp
647 // reconnection. Chromium will fire SignalClose for all outstanding IPC
648 // packets during reconnection.
649 tcp_conn1->socket()->SignalClose(tcp_conn1->socket(), 0);
650 tcp_conn2->socket()->SignalClose(tcp_conn2->socket(), 0);
651
652 // Speed up destroying ch2's connection such that the test is ready to
653 // accept a new connection from ch1 before ch1's connection destroys itself.
654 ch2->conn()->Destroy();
655 EXPECT_TRUE_WAIT(ch2->conn() == NULL, kDefaultTimeout);
656 }
657
TestTcpReconnect(bool ping_after_disconnected,bool send_after_disconnected)658 void TestTcpReconnect(bool ping_after_disconnected,
659 bool send_after_disconnected) {
660 auto port1 = CreateTcpPort(kLocalAddr1);
661 port1->SetIceRole(cricket::ICEROLE_CONTROLLING);
662 auto port2 = CreateTcpPort(kLocalAddr2);
663 port2->SetIceRole(cricket::ICEROLE_CONTROLLED);
664
665 port1->set_component(cricket::ICE_CANDIDATE_COMPONENT_DEFAULT);
666 port2->set_component(cricket::ICE_CANDIDATE_COMPONENT_DEFAULT);
667
668 // Set up channels and ensure both ports will be deleted.
669 TestChannel ch1(std::move(port1));
670 TestChannel ch2(std::move(port2));
671 EXPECT_EQ(0, ch1.complete_count());
672 EXPECT_EQ(0, ch2.complete_count());
673
674 ch1.Start();
675 ch2.Start();
676 ASSERT_EQ_WAIT(1, ch1.complete_count(), kDefaultTimeout);
677 ASSERT_EQ_WAIT(1, ch2.complete_count(), kDefaultTimeout);
678
679 // Initial connecting the channel, create connection on channel1.
680 ch1.CreateConnection(GetCandidate(ch2.port()));
681 ConnectStartedChannels(&ch1, &ch2);
682
683 // Shorten the timeout period.
684 const int kTcpReconnectTimeout = kDefaultTimeout;
685 static_cast<TCPConnection*>(ch1.conn())
686 ->set_reconnection_timeout(kTcpReconnectTimeout);
687 static_cast<TCPConnection*>(ch2.conn())
688 ->set_reconnection_timeout(kTcpReconnectTimeout);
689
690 EXPECT_FALSE(ch1.connection_ready_to_send());
691 EXPECT_FALSE(ch2.connection_ready_to_send());
692
693 // Once connected, disconnect them.
694 DisconnectTcpTestChannels(&ch1, &ch2);
695
696 if (send_after_disconnected || ping_after_disconnected) {
697 if (send_after_disconnected) {
698 // First SendData after disconnect should fail but will trigger
699 // reconnect.
700 EXPECT_EQ(-1, ch1.SendData(data, static_cast<int>(strlen(data))));
701 }
702
703 if (ping_after_disconnected) {
704 // Ping should trigger reconnect.
705 ch1.Ping();
706 }
707
708 // Wait for channel's outgoing TCPConnection connected.
709 EXPECT_TRUE_WAIT(ch1.conn()->connected(), kDefaultTimeout);
710
711 // Verify that we could still connect channels.
712 ConnectStartedChannels(&ch1, &ch2);
713 EXPECT_TRUE_WAIT(ch1.connection_ready_to_send(), kTcpReconnectTimeout);
714 // Channel2 is the passive one so a new connection is created during
715 // reconnect. This new connection should never have issued ENOTCONN
716 // hence the connection_ready_to_send() should be false.
717 EXPECT_FALSE(ch2.connection_ready_to_send());
718 } else {
719 EXPECT_EQ(ch1.conn()->write_state(), Connection::STATE_WRITABLE);
720 // Since the reconnection never happens, the connections should have been
721 // destroyed after the timeout.
722 EXPECT_TRUE_WAIT(!ch1.conn(), kTcpReconnectTimeout + kDefaultTimeout);
723 EXPECT_TRUE(!ch2.conn());
724 }
725
726 // Tear down and ensure that goes smoothly.
727 ch1.Stop();
728 ch2.Stop();
729 EXPECT_TRUE_WAIT(ch1.conn() == NULL, kDefaultTimeout);
730 EXPECT_TRUE_WAIT(ch2.conn() == NULL, kDefaultTimeout);
731 }
732
CreateStunMessage(int type)733 std::unique_ptr<IceMessage> CreateStunMessage(int type) {
734 auto msg = std::make_unique<IceMessage>();
735 msg->SetType(type);
736 msg->SetTransactionID("TESTTESTTEST");
737 return msg;
738 }
CreateStunMessageWithUsername(int type,const std::string & username)739 std::unique_ptr<IceMessage> CreateStunMessageWithUsername(
740 int type,
741 const std::string& username) {
742 std::unique_ptr<IceMessage> msg = CreateStunMessage(type);
743 msg->AddAttribute(std::make_unique<StunByteStringAttribute>(
744 STUN_ATTR_USERNAME, username));
745 return msg;
746 }
CreateTestPort(const rtc::SocketAddress & addr,const std::string & username,const std::string & password)747 std::unique_ptr<TestPort> CreateTestPort(const rtc::SocketAddress& addr,
748 const std::string& username,
749 const std::string& password) {
750 auto port =
751 std::make_unique<TestPort>(&main_, "test", &socket_factory_,
752 MakeNetwork(addr), 0, 0, username, password);
753 port->SignalRoleConflict.connect(this, &PortTest::OnRoleConflict);
754 return port;
755 }
CreateTestPort(const rtc::SocketAddress & addr,const std::string & username,const std::string & password,cricket::IceRole role,int tiebreaker)756 std::unique_ptr<TestPort> CreateTestPort(const rtc::SocketAddress& addr,
757 const std::string& username,
758 const std::string& password,
759 cricket::IceRole role,
760 int tiebreaker) {
761 auto port = CreateTestPort(addr, username, password);
762 port->SetIceRole(role);
763 port->SetIceTiebreaker(tiebreaker);
764 return port;
765 }
766 // Overload to create a test port given an rtc::Network directly.
CreateTestPort(rtc::Network * network,const std::string & username,const std::string & password)767 std::unique_ptr<TestPort> CreateTestPort(rtc::Network* network,
768 const std::string& username,
769 const std::string& password) {
770 auto port = std::make_unique<TestPort>(&main_, "test", &socket_factory_,
771 network, 0, 0, username, password);
772 port->SignalRoleConflict.connect(this, &PortTest::OnRoleConflict);
773 return port;
774 }
775
OnRoleConflict(PortInterface * port)776 void OnRoleConflict(PortInterface* port) { role_conflict_ = true; }
role_conflict() const777 bool role_conflict() const { return role_conflict_; }
778
ConnectToSignalDestroyed(PortInterface * port)779 void ConnectToSignalDestroyed(PortInterface* port) {
780 port->SignalDestroyed.connect(this, &PortTest::OnDestroyed);
781 }
782
OnDestroyed(PortInterface * port)783 void OnDestroyed(PortInterface* port) { ++ports_destroyed_; }
ports_destroyed() const784 int ports_destroyed() const { return ports_destroyed_; }
785
nat_socket_factory1()786 rtc::BasicPacketSocketFactory* nat_socket_factory1() {
787 return &nat_socket_factory1_;
788 }
789
vss()790 rtc::VirtualSocketServer* vss() { return ss_.get(); }
791
792 private:
793 // When a "create port" helper method is called with an IP, we create a
794 // Network with that IP and add it to this list. Using a list instead of a
795 // vector so that when it grows, pointers aren't invalidated.
796 std::list<rtc::Network> networks_;
797 std::unique_ptr<rtc::VirtualSocketServer> ss_;
798 rtc::AutoSocketServerThread main_;
799 rtc::BasicPacketSocketFactory socket_factory_;
800 std::unique_ptr<rtc::NATServer> nat_server1_;
801 std::unique_ptr<rtc::NATServer> nat_server2_;
802 rtc::NATSocketFactory nat_factory1_;
803 rtc::NATSocketFactory nat_factory2_;
804 rtc::BasicPacketSocketFactory nat_socket_factory1_;
805 rtc::BasicPacketSocketFactory nat_socket_factory2_;
806 std::unique_ptr<TestStunServer> stun_server_;
807 TestTurnServer turn_server_;
808 std::string username_;
809 std::string password_;
810 bool role_conflict_;
811 int ports_destroyed_;
812 };
813
TestConnectivity(const char * name1,std::unique_ptr<Port> port1,const char * name2,std::unique_ptr<Port> port2,bool accept,bool same_addr1,bool same_addr2,bool possible)814 void PortTest::TestConnectivity(const char* name1,
815 std::unique_ptr<Port> port1,
816 const char* name2,
817 std::unique_ptr<Port> port2,
818 bool accept,
819 bool same_addr1,
820 bool same_addr2,
821 bool possible) {
822 rtc::ScopedFakeClock clock;
823 RTC_LOG(LS_INFO) << "Test: " << name1 << " to " << name2 << ": ";
824 port1->set_component(cricket::ICE_CANDIDATE_COMPONENT_DEFAULT);
825 port2->set_component(cricket::ICE_CANDIDATE_COMPONENT_DEFAULT);
826
827 // Set up channels and ensure both ports will be deleted.
828 TestChannel ch1(std::move(port1));
829 TestChannel ch2(std::move(port2));
830 EXPECT_EQ(0, ch1.complete_count());
831 EXPECT_EQ(0, ch2.complete_count());
832
833 // Acquire addresses.
834 ch1.Start();
835 ch2.Start();
836 ASSERT_EQ_SIMULATED_WAIT(1, ch1.complete_count(), kDefaultTimeout, clock);
837 ASSERT_EQ_SIMULATED_WAIT(1, ch2.complete_count(), kDefaultTimeout, clock);
838
839 // Send a ping from src to dst. This may or may not make it.
840 ch1.CreateConnection(GetCandidate(ch2.port()));
841 ASSERT_TRUE(ch1.conn() != NULL);
842 EXPECT_TRUE_SIMULATED_WAIT(ch1.conn()->connected(), kDefaultTimeout,
843 clock); // for TCP connect
844 ch1.Ping();
845 SIMULATED_WAIT(!ch2.remote_address().IsNil(), kShortTimeout, clock);
846
847 if (accept) {
848 // We are able to send a ping from src to dst. This is the case when
849 // sending to UDP ports and cone NATs.
850 EXPECT_TRUE(ch1.remote_address().IsNil());
851 EXPECT_EQ(ch2.remote_fragment(), ch1.port()->username_fragment());
852
853 // Ensure the ping came from the same address used for src.
854 // This is the case unless the source NAT was symmetric.
855 if (same_addr1)
856 EXPECT_EQ(ch2.remote_address(), GetAddress(ch1.port()));
857 EXPECT_TRUE(same_addr2);
858
859 // Send a ping from dst to src.
860 ch2.AcceptConnection(GetCandidate(ch1.port()));
861 ASSERT_TRUE(ch2.conn() != NULL);
862 ch2.Ping();
863 EXPECT_EQ_SIMULATED_WAIT(Connection::STATE_WRITABLE,
864 ch2.conn()->write_state(), kDefaultTimeout, clock);
865 } else {
866 // We can't send a ping from src to dst, so flip it around. This will happen
867 // when the destination NAT is addr/port restricted or symmetric.
868 EXPECT_TRUE(ch1.remote_address().IsNil());
869 EXPECT_TRUE(ch2.remote_address().IsNil());
870
871 // Send a ping from dst to src. Again, this may or may not make it.
872 ch2.CreateConnection(GetCandidate(ch1.port()));
873 ASSERT_TRUE(ch2.conn() != NULL);
874 ch2.Ping();
875 SIMULATED_WAIT(ch2.conn()->write_state() == Connection::STATE_WRITABLE,
876 kShortTimeout, clock);
877
878 if (same_addr1 && same_addr2) {
879 // The new ping got back to the source.
880 EXPECT_TRUE(ch1.conn()->receiving());
881 EXPECT_EQ(Connection::STATE_WRITABLE, ch2.conn()->write_state());
882
883 // First connection may not be writable if the first ping did not get
884 // through. So we will have to do another.
885 if (ch1.conn()->write_state() == Connection::STATE_WRITE_INIT) {
886 ch1.Ping();
887 EXPECT_EQ_SIMULATED_WAIT(Connection::STATE_WRITABLE,
888 ch1.conn()->write_state(), kDefaultTimeout,
889 clock);
890 }
891 } else if (!same_addr1 && possible) {
892 // The new ping went to the candidate address, but that address was bad.
893 // This will happen when the source NAT is symmetric.
894 EXPECT_TRUE(ch1.remote_address().IsNil());
895 EXPECT_TRUE(ch2.remote_address().IsNil());
896
897 // However, since we have now sent a ping to the source IP, we should be
898 // able to get a ping from it. This gives us the real source address.
899 ch1.Ping();
900 EXPECT_TRUE_SIMULATED_WAIT(!ch2.remote_address().IsNil(), kDefaultTimeout,
901 clock);
902 EXPECT_FALSE(ch2.conn()->receiving());
903 EXPECT_TRUE(ch1.remote_address().IsNil());
904
905 // Pick up the actual address and establish the connection.
906 ch2.AcceptConnection(GetCandidate(ch1.port()));
907 ASSERT_TRUE(ch2.conn() != NULL);
908 ch2.Ping();
909 EXPECT_EQ_SIMULATED_WAIT(Connection::STATE_WRITABLE,
910 ch2.conn()->write_state(), kDefaultTimeout,
911 clock);
912 } else if (!same_addr2 && possible) {
913 // The new ping came in, but from an unexpected address. This will happen
914 // when the destination NAT is symmetric.
915 EXPECT_FALSE(ch1.remote_address().IsNil());
916 EXPECT_FALSE(ch1.conn()->receiving());
917
918 // Update our address and complete the connection.
919 ch1.AcceptConnection(GetCandidate(ch2.port()));
920 ch1.Ping();
921 EXPECT_EQ_SIMULATED_WAIT(Connection::STATE_WRITABLE,
922 ch1.conn()->write_state(), kDefaultTimeout,
923 clock);
924 } else { // (!possible)
925 // There should be s no way for the pings to reach each other. Check it.
926 EXPECT_TRUE(ch1.remote_address().IsNil());
927 EXPECT_TRUE(ch2.remote_address().IsNil());
928 ch1.Ping();
929 SIMULATED_WAIT(!ch2.remote_address().IsNil(), kShortTimeout, clock);
930 EXPECT_TRUE(ch1.remote_address().IsNil());
931 EXPECT_TRUE(ch2.remote_address().IsNil());
932 }
933 }
934
935 // Everything should be good, unless we know the situation is impossible.
936 ASSERT_TRUE(ch1.conn() != NULL);
937 ASSERT_TRUE(ch2.conn() != NULL);
938 if (possible) {
939 EXPECT_TRUE(ch1.conn()->receiving());
940 EXPECT_EQ(Connection::STATE_WRITABLE, ch1.conn()->write_state());
941 EXPECT_TRUE(ch2.conn()->receiving());
942 EXPECT_EQ(Connection::STATE_WRITABLE, ch2.conn()->write_state());
943 } else {
944 EXPECT_FALSE(ch1.conn()->receiving());
945 EXPECT_NE(Connection::STATE_WRITABLE, ch1.conn()->write_state());
946 EXPECT_FALSE(ch2.conn()->receiving());
947 EXPECT_NE(Connection::STATE_WRITABLE, ch2.conn()->write_state());
948 }
949
950 // Tear down and ensure that goes smoothly.
951 ch1.Stop();
952 ch2.Stop();
953 EXPECT_TRUE_SIMULATED_WAIT(ch1.conn() == NULL, kDefaultTimeout, clock);
954 EXPECT_TRUE_SIMULATED_WAIT(ch2.conn() == NULL, kDefaultTimeout, clock);
955 }
956
957 class FakePacketSocketFactory : public rtc::PacketSocketFactory {
958 public:
FakePacketSocketFactory()959 FakePacketSocketFactory()
960 : next_udp_socket_(NULL), next_server_tcp_socket_(NULL) {}
~FakePacketSocketFactory()961 ~FakePacketSocketFactory() override {}
962
CreateUdpSocket(const SocketAddress & address,uint16_t min_port,uint16_t max_port)963 AsyncPacketSocket* CreateUdpSocket(const SocketAddress& address,
964 uint16_t min_port,
965 uint16_t max_port) override {
966 EXPECT_TRUE(next_udp_socket_ != NULL);
967 AsyncPacketSocket* result = next_udp_socket_;
968 next_udp_socket_ = NULL;
969 return result;
970 }
971
CreateServerTcpSocket(const SocketAddress & local_address,uint16_t min_port,uint16_t max_port,int opts)972 AsyncPacketSocket* CreateServerTcpSocket(const SocketAddress& local_address,
973 uint16_t min_port,
974 uint16_t max_port,
975 int opts) override {
976 EXPECT_TRUE(next_server_tcp_socket_ != NULL);
977 AsyncPacketSocket* result = next_server_tcp_socket_;
978 next_server_tcp_socket_ = NULL;
979 return result;
980 }
981
CreateClientTcpSocket(const SocketAddress & local_address,const SocketAddress & remote_address,const rtc::ProxyInfo & proxy_info,const std::string & user_agent,const rtc::PacketSocketTcpOptions & opts)982 AsyncPacketSocket* CreateClientTcpSocket(
983 const SocketAddress& local_address,
984 const SocketAddress& remote_address,
985 const rtc::ProxyInfo& proxy_info,
986 const std::string& user_agent,
987 const rtc::PacketSocketTcpOptions& opts) override {
988 EXPECT_TRUE(next_client_tcp_socket_.has_value());
989 AsyncPacketSocket* result = *next_client_tcp_socket_;
990 next_client_tcp_socket_ = nullptr;
991 return result;
992 }
993
set_next_udp_socket(AsyncPacketSocket * next_udp_socket)994 void set_next_udp_socket(AsyncPacketSocket* next_udp_socket) {
995 next_udp_socket_ = next_udp_socket;
996 }
set_next_server_tcp_socket(AsyncPacketSocket * next_server_tcp_socket)997 void set_next_server_tcp_socket(AsyncPacketSocket* next_server_tcp_socket) {
998 next_server_tcp_socket_ = next_server_tcp_socket;
999 }
set_next_client_tcp_socket(AsyncPacketSocket * next_client_tcp_socket)1000 void set_next_client_tcp_socket(AsyncPacketSocket* next_client_tcp_socket) {
1001 next_client_tcp_socket_ = next_client_tcp_socket;
1002 }
CreateAsyncResolver()1003 rtc::AsyncResolverInterface* CreateAsyncResolver() override { return NULL; }
1004
1005 private:
1006 AsyncPacketSocket* next_udp_socket_;
1007 AsyncPacketSocket* next_server_tcp_socket_;
1008 absl::optional<AsyncPacketSocket*> next_client_tcp_socket_;
1009 };
1010
1011 class FakeAsyncPacketSocket : public AsyncPacketSocket {
1012 public:
1013 // Returns current local address. Address may be set to NULL if the
1014 // socket is not bound yet (GetState() returns STATE_BINDING).
GetLocalAddress() const1015 virtual SocketAddress GetLocalAddress() const { return local_address_; }
1016
1017 // Returns remote address. Returns zeroes if this is not a client TCP socket.
GetRemoteAddress() const1018 virtual SocketAddress GetRemoteAddress() const { return remote_address_; }
1019
1020 // Send a packet.
Send(const void * pv,size_t cb,const rtc::PacketOptions & options)1021 virtual int Send(const void* pv,
1022 size_t cb,
1023 const rtc::PacketOptions& options) {
1024 if (error_ == 0) {
1025 return static_cast<int>(cb);
1026 } else {
1027 return -1;
1028 }
1029 }
SendTo(const void * pv,size_t cb,const SocketAddress & addr,const rtc::PacketOptions & options)1030 virtual int SendTo(const void* pv,
1031 size_t cb,
1032 const SocketAddress& addr,
1033 const rtc::PacketOptions& options) {
1034 if (error_ == 0) {
1035 return static_cast<int>(cb);
1036 } else {
1037 return -1;
1038 }
1039 }
Close()1040 virtual int Close() { return 0; }
1041
GetState() const1042 virtual State GetState() const { return state_; }
GetOption(Socket::Option opt,int * value)1043 virtual int GetOption(Socket::Option opt, int* value) { return 0; }
SetOption(Socket::Option opt,int value)1044 virtual int SetOption(Socket::Option opt, int value) { return 0; }
GetError() const1045 virtual int GetError() const { return 0; }
SetError(int error)1046 virtual void SetError(int error) { error_ = error; }
1047
set_state(State state)1048 void set_state(State state) { state_ = state; }
1049
1050 SocketAddress local_address_;
1051 SocketAddress remote_address_;
1052
1053 private:
1054 int error_ = 0;
1055 State state_;
1056 };
1057
1058 // Local -> XXXX
TEST_F(PortTest,TestLocalToLocal)1059 TEST_F(PortTest, TestLocalToLocal) {
1060 TestLocalToLocal();
1061 }
1062
TEST_F(PortTest,TestLocalToConeNat)1063 TEST_F(PortTest, TestLocalToConeNat) {
1064 TestLocalToStun(NAT_OPEN_CONE);
1065 }
1066
TEST_F(PortTest,TestLocalToARNat)1067 TEST_F(PortTest, TestLocalToARNat) {
1068 TestLocalToStun(NAT_ADDR_RESTRICTED);
1069 }
1070
TEST_F(PortTest,TestLocalToPRNat)1071 TEST_F(PortTest, TestLocalToPRNat) {
1072 TestLocalToStun(NAT_PORT_RESTRICTED);
1073 }
1074
TEST_F(PortTest,TestLocalToSymNat)1075 TEST_F(PortTest, TestLocalToSymNat) {
1076 TestLocalToStun(NAT_SYMMETRIC);
1077 }
1078
1079 // Flaky: https://code.google.com/p/webrtc/issues/detail?id=3316.
TEST_F(PortTest,DISABLED_TestLocalToTurn)1080 TEST_F(PortTest, DISABLED_TestLocalToTurn) {
1081 TestLocalToRelay(PROTO_UDP);
1082 }
1083
1084 // Cone NAT -> XXXX
TEST_F(PortTest,TestConeNatToLocal)1085 TEST_F(PortTest, TestConeNatToLocal) {
1086 TestStunToLocal(NAT_OPEN_CONE);
1087 }
1088
TEST_F(PortTest,TestConeNatToConeNat)1089 TEST_F(PortTest, TestConeNatToConeNat) {
1090 TestStunToStun(NAT_OPEN_CONE, NAT_OPEN_CONE);
1091 }
1092
TEST_F(PortTest,TestConeNatToARNat)1093 TEST_F(PortTest, TestConeNatToARNat) {
1094 TestStunToStun(NAT_OPEN_CONE, NAT_ADDR_RESTRICTED);
1095 }
1096
TEST_F(PortTest,TestConeNatToPRNat)1097 TEST_F(PortTest, TestConeNatToPRNat) {
1098 TestStunToStun(NAT_OPEN_CONE, NAT_PORT_RESTRICTED);
1099 }
1100
TEST_F(PortTest,TestConeNatToSymNat)1101 TEST_F(PortTest, TestConeNatToSymNat) {
1102 TestStunToStun(NAT_OPEN_CONE, NAT_SYMMETRIC);
1103 }
1104
TEST_F(PortTest,TestConeNatToTurn)1105 TEST_F(PortTest, TestConeNatToTurn) {
1106 TestStunToRelay(NAT_OPEN_CONE, PROTO_UDP);
1107 }
1108
1109 // Address-restricted NAT -> XXXX
TEST_F(PortTest,TestARNatToLocal)1110 TEST_F(PortTest, TestARNatToLocal) {
1111 TestStunToLocal(NAT_ADDR_RESTRICTED);
1112 }
1113
TEST_F(PortTest,TestARNatToConeNat)1114 TEST_F(PortTest, TestARNatToConeNat) {
1115 TestStunToStun(NAT_ADDR_RESTRICTED, NAT_OPEN_CONE);
1116 }
1117
TEST_F(PortTest,TestARNatToARNat)1118 TEST_F(PortTest, TestARNatToARNat) {
1119 TestStunToStun(NAT_ADDR_RESTRICTED, NAT_ADDR_RESTRICTED);
1120 }
1121
TEST_F(PortTest,TestARNatToPRNat)1122 TEST_F(PortTest, TestARNatToPRNat) {
1123 TestStunToStun(NAT_ADDR_RESTRICTED, NAT_PORT_RESTRICTED);
1124 }
1125
TEST_F(PortTest,TestARNatToSymNat)1126 TEST_F(PortTest, TestARNatToSymNat) {
1127 TestStunToStun(NAT_ADDR_RESTRICTED, NAT_SYMMETRIC);
1128 }
1129
TEST_F(PortTest,TestARNatToTurn)1130 TEST_F(PortTest, TestARNatToTurn) {
1131 TestStunToRelay(NAT_ADDR_RESTRICTED, PROTO_UDP);
1132 }
1133
1134 // Port-restricted NAT -> XXXX
TEST_F(PortTest,TestPRNatToLocal)1135 TEST_F(PortTest, TestPRNatToLocal) {
1136 TestStunToLocal(NAT_PORT_RESTRICTED);
1137 }
1138
TEST_F(PortTest,TestPRNatToConeNat)1139 TEST_F(PortTest, TestPRNatToConeNat) {
1140 TestStunToStun(NAT_PORT_RESTRICTED, NAT_OPEN_CONE);
1141 }
1142
TEST_F(PortTest,TestPRNatToARNat)1143 TEST_F(PortTest, TestPRNatToARNat) {
1144 TestStunToStun(NAT_PORT_RESTRICTED, NAT_ADDR_RESTRICTED);
1145 }
1146
TEST_F(PortTest,TestPRNatToPRNat)1147 TEST_F(PortTest, TestPRNatToPRNat) {
1148 TestStunToStun(NAT_PORT_RESTRICTED, NAT_PORT_RESTRICTED);
1149 }
1150
TEST_F(PortTest,TestPRNatToSymNat)1151 TEST_F(PortTest, TestPRNatToSymNat) {
1152 // Will "fail"
1153 TestStunToStun(NAT_PORT_RESTRICTED, NAT_SYMMETRIC);
1154 }
1155
TEST_F(PortTest,TestPRNatToTurn)1156 TEST_F(PortTest, TestPRNatToTurn) {
1157 TestStunToRelay(NAT_PORT_RESTRICTED, PROTO_UDP);
1158 }
1159
1160 // Symmetric NAT -> XXXX
TEST_F(PortTest,TestSymNatToLocal)1161 TEST_F(PortTest, TestSymNatToLocal) {
1162 TestStunToLocal(NAT_SYMMETRIC);
1163 }
1164
TEST_F(PortTest,TestSymNatToConeNat)1165 TEST_F(PortTest, TestSymNatToConeNat) {
1166 TestStunToStun(NAT_SYMMETRIC, NAT_OPEN_CONE);
1167 }
1168
TEST_F(PortTest,TestSymNatToARNat)1169 TEST_F(PortTest, TestSymNatToARNat) {
1170 TestStunToStun(NAT_SYMMETRIC, NAT_ADDR_RESTRICTED);
1171 }
1172
TEST_F(PortTest,TestSymNatToPRNat)1173 TEST_F(PortTest, TestSymNatToPRNat) {
1174 // Will "fail"
1175 TestStunToStun(NAT_SYMMETRIC, NAT_PORT_RESTRICTED);
1176 }
1177
TEST_F(PortTest,TestSymNatToSymNat)1178 TEST_F(PortTest, TestSymNatToSymNat) {
1179 // Will "fail"
1180 TestStunToStun(NAT_SYMMETRIC, NAT_SYMMETRIC);
1181 }
1182
TEST_F(PortTest,TestSymNatToTurn)1183 TEST_F(PortTest, TestSymNatToTurn) {
1184 TestStunToRelay(NAT_SYMMETRIC, PROTO_UDP);
1185 }
1186
1187 // Outbound TCP -> XXXX
TEST_F(PortTest,TestTcpToTcp)1188 TEST_F(PortTest, TestTcpToTcp) {
1189 TestTcpToTcp();
1190 }
1191
TEST_F(PortTest,TestTcpReconnectOnSendPacket)1192 TEST_F(PortTest, TestTcpReconnectOnSendPacket) {
1193 TestTcpReconnect(false /* ping */, true /* send */);
1194 }
1195
TEST_F(PortTest,TestTcpReconnectOnPing)1196 TEST_F(PortTest, TestTcpReconnectOnPing) {
1197 TestTcpReconnect(true /* ping */, false /* send */);
1198 }
1199
TEST_F(PortTest,TestTcpReconnectTimeout)1200 TEST_F(PortTest, TestTcpReconnectTimeout) {
1201 TestTcpReconnect(false /* ping */, false /* send */);
1202 }
1203
1204 // Test when TcpConnection never connects, the OnClose() will be called to
1205 // destroy the connection.
TEST_F(PortTest,TestTcpNeverConnect)1206 TEST_F(PortTest, TestTcpNeverConnect) {
1207 auto port1 = CreateTcpPort(kLocalAddr1);
1208 port1->SetIceRole(cricket::ICEROLE_CONTROLLING);
1209 port1->set_component(cricket::ICE_CANDIDATE_COMPONENT_DEFAULT);
1210
1211 // Set up a channel and ensure the port will be deleted.
1212 TestChannel ch1(std::move(port1));
1213 EXPECT_EQ(0, ch1.complete_count());
1214
1215 ch1.Start();
1216 ASSERT_EQ_WAIT(1, ch1.complete_count(), kDefaultTimeout);
1217
1218 std::unique_ptr<rtc::AsyncSocket> server(
1219 vss()->CreateAsyncSocket(kLocalAddr2.family(), SOCK_STREAM));
1220 // Bind but not listen.
1221 EXPECT_EQ(0, server->Bind(kLocalAddr2));
1222
1223 Candidate c = GetCandidate(ch1.port());
1224 c.set_address(server->GetLocalAddress());
1225
1226 ch1.CreateConnection(c);
1227 EXPECT_TRUE(ch1.conn());
1228 EXPECT_TRUE_WAIT(!ch1.conn(), kDefaultTimeout); // for TCP connect
1229 }
1230
1231 /* TODO(?): Enable these once testrelayserver can accept external TCP.
1232 TEST_F(PortTest, TestTcpToTcpRelay) {
1233 TestTcpToRelay(PROTO_TCP);
1234 }
1235
1236 TEST_F(PortTest, TestTcpToSslTcpRelay) {
1237 TestTcpToRelay(PROTO_SSLTCP);
1238 }
1239 */
1240
1241 // Outbound SSLTCP -> XXXX
1242 /* TODO(?): Enable these once testrelayserver can accept external SSL.
1243 TEST_F(PortTest, TestSslTcpToTcpRelay) {
1244 TestSslTcpToRelay(PROTO_TCP);
1245 }
1246
1247 TEST_F(PortTest, TestSslTcpToSslTcpRelay) {
1248 TestSslTcpToRelay(PROTO_SSLTCP);
1249 }
1250 */
1251
1252 // Test that a connection will be dead and deleted if
1253 // i) it has never received anything for MIN_CONNECTION_LIFETIME milliseconds
1254 // since it was created, or
1255 // ii) it has not received anything for DEAD_CONNECTION_RECEIVE_TIMEOUT
1256 // milliseconds since last receiving.
TEST_F(PortTest,TestConnectionDead)1257 TEST_F(PortTest, TestConnectionDead) {
1258 TestChannel ch1(CreateUdpPort(kLocalAddr1));
1259 TestChannel ch2(CreateUdpPort(kLocalAddr2));
1260 // Acquire address.
1261 ch1.Start();
1262 ch2.Start();
1263 ASSERT_EQ_WAIT(1, ch1.complete_count(), kDefaultTimeout);
1264 ASSERT_EQ_WAIT(1, ch2.complete_count(), kDefaultTimeout);
1265
1266 // Test case that the connection has never received anything.
1267 int64_t before_created = rtc::TimeMillis();
1268 ch1.CreateConnection(GetCandidate(ch2.port()));
1269 int64_t after_created = rtc::TimeMillis();
1270 Connection* conn = ch1.conn();
1271 ASSERT_NE(conn, nullptr);
1272 // It is not dead if it is after MIN_CONNECTION_LIFETIME but not pruned.
1273 conn->UpdateState(after_created + MIN_CONNECTION_LIFETIME + 1);
1274 rtc::Thread::Current()->ProcessMessages(0);
1275 EXPECT_TRUE(ch1.conn() != nullptr);
1276 // It is not dead if it is before MIN_CONNECTION_LIFETIME and pruned.
1277 conn->UpdateState(before_created + MIN_CONNECTION_LIFETIME - 1);
1278 conn->Prune();
1279 rtc::Thread::Current()->ProcessMessages(0);
1280 EXPECT_TRUE(ch1.conn() != nullptr);
1281 // It will be dead after MIN_CONNECTION_LIFETIME and pruned.
1282 conn->UpdateState(after_created + MIN_CONNECTION_LIFETIME + 1);
1283 EXPECT_TRUE_WAIT(ch1.conn() == nullptr, kDefaultTimeout);
1284
1285 // Test case that the connection has received something.
1286 // Create a connection again and receive a ping.
1287 ch1.CreateConnection(GetCandidate(ch2.port()));
1288 conn = ch1.conn();
1289 ASSERT_NE(conn, nullptr);
1290 int64_t before_last_receiving = rtc::TimeMillis();
1291 conn->ReceivedPing();
1292 int64_t after_last_receiving = rtc::TimeMillis();
1293 // The connection will be dead after DEAD_CONNECTION_RECEIVE_TIMEOUT
1294 conn->UpdateState(before_last_receiving + DEAD_CONNECTION_RECEIVE_TIMEOUT -
1295 1);
1296 rtc::Thread::Current()->ProcessMessages(100);
1297 EXPECT_TRUE(ch1.conn() != nullptr);
1298 conn->UpdateState(after_last_receiving + DEAD_CONNECTION_RECEIVE_TIMEOUT + 1);
1299 EXPECT_TRUE_WAIT(ch1.conn() == nullptr, kDefaultTimeout);
1300 }
1301
TEST_F(PortTest,TestConnectionDeadWithDeadConnectionTimeout)1302 TEST_F(PortTest, TestConnectionDeadWithDeadConnectionTimeout) {
1303 TestChannel ch1(CreateUdpPort(kLocalAddr1));
1304 TestChannel ch2(CreateUdpPort(kLocalAddr2));
1305 // Acquire address.
1306 ch1.Start();
1307 ch2.Start();
1308 ASSERT_EQ_WAIT(1, ch1.complete_count(), kDefaultTimeout);
1309 ASSERT_EQ_WAIT(1, ch2.complete_count(), kDefaultTimeout);
1310
1311 // Note: set field trials manually since they are parsed by
1312 // P2PTransportChannel but P2PTransportChannel is not used in this test.
1313 IceFieldTrials field_trials;
1314 field_trials.dead_connection_timeout_ms = 90000;
1315
1316 // Create a connection again and receive a ping.
1317 ch1.CreateConnection(GetCandidate(ch2.port()));
1318 auto conn = ch1.conn();
1319 conn->SetIceFieldTrials(&field_trials);
1320
1321 ASSERT_NE(conn, nullptr);
1322 int64_t before_last_receiving = rtc::TimeMillis();
1323 conn->ReceivedPing();
1324 int64_t after_last_receiving = rtc::TimeMillis();
1325 // The connection will be dead after 90s
1326 conn->UpdateState(before_last_receiving + 90000 - 1);
1327 rtc::Thread::Current()->ProcessMessages(100);
1328 EXPECT_TRUE(ch1.conn() != nullptr);
1329 conn->UpdateState(after_last_receiving + 90000 + 1);
1330 EXPECT_TRUE_WAIT(ch1.conn() == nullptr, kDefaultTimeout);
1331 }
1332
TEST_F(PortTest,TestConnectionDeadOutstandingPing)1333 TEST_F(PortTest, TestConnectionDeadOutstandingPing) {
1334 auto port1 = CreateUdpPort(kLocalAddr1);
1335 port1->SetIceRole(cricket::ICEROLE_CONTROLLING);
1336 port1->SetIceTiebreaker(kTiebreaker1);
1337 auto port2 = CreateUdpPort(kLocalAddr2);
1338 port2->SetIceRole(cricket::ICEROLE_CONTROLLED);
1339 port2->SetIceTiebreaker(kTiebreaker2);
1340
1341 TestChannel ch1(std::move(port1));
1342 TestChannel ch2(std::move(port2));
1343 // Acquire address.
1344 ch1.Start();
1345 ch2.Start();
1346 ASSERT_EQ_WAIT(1, ch1.complete_count(), kDefaultTimeout);
1347 ASSERT_EQ_WAIT(1, ch2.complete_count(), kDefaultTimeout);
1348
1349 // Note: set field trials manually since they are parsed by
1350 // P2PTransportChannel but P2PTransportChannel is not used in this test.
1351 IceFieldTrials field_trials;
1352 field_trials.dead_connection_timeout_ms = 360000;
1353
1354 // Create a connection again and receive a ping and then send
1355 // a ping and keep it outstanding.
1356 ch1.CreateConnection(GetCandidate(ch2.port()));
1357 auto conn = ch1.conn();
1358 conn->SetIceFieldTrials(&field_trials);
1359
1360 ASSERT_NE(conn, nullptr);
1361 conn->ReceivedPing();
1362 int64_t send_ping_timestamp = rtc::TimeMillis();
1363 conn->Ping(send_ping_timestamp);
1364
1365 // The connection will be dead 30s after the ping was sent.
1366 conn->UpdateState(send_ping_timestamp + DEAD_CONNECTION_RECEIVE_TIMEOUT - 1);
1367 rtc::Thread::Current()->ProcessMessages(100);
1368 EXPECT_TRUE(ch1.conn() != nullptr);
1369 conn->UpdateState(send_ping_timestamp + DEAD_CONNECTION_RECEIVE_TIMEOUT + 1);
1370 EXPECT_TRUE_WAIT(ch1.conn() == nullptr, kDefaultTimeout);
1371 }
1372
1373 // This test case verifies standard ICE features in STUN messages. Currently it
1374 // verifies Message Integrity attribute in STUN messages and username in STUN
1375 // binding request will have colon (":") between remote and local username.
TEST_F(PortTest,TestLocalToLocalStandard)1376 TEST_F(PortTest, TestLocalToLocalStandard) {
1377 auto port1 = CreateUdpPort(kLocalAddr1);
1378 port1->SetIceRole(cricket::ICEROLE_CONTROLLING);
1379 port1->SetIceTiebreaker(kTiebreaker1);
1380 auto port2 = CreateUdpPort(kLocalAddr2);
1381 port2->SetIceRole(cricket::ICEROLE_CONTROLLED);
1382 port2->SetIceTiebreaker(kTiebreaker2);
1383 // Same parameters as TestLocalToLocal above.
1384 TestConnectivity("udp", std::move(port1), "udp", std::move(port2), true, true,
1385 true, true);
1386 }
1387
1388 // This test is trying to validate a successful and failure scenario in a
1389 // loopback test when protocol is RFC5245. For success IceTiebreaker, username
1390 // should remain equal to the request generated by the port and role of port
1391 // must be in controlling.
TEST_F(PortTest,TestLoopbackCall)1392 TEST_F(PortTest, TestLoopbackCall) {
1393 auto lport = CreateTestPort(kLocalAddr1, "lfrag", "lpass");
1394 lport->SetIceRole(cricket::ICEROLE_CONTROLLING);
1395 lport->SetIceTiebreaker(kTiebreaker1);
1396 lport->PrepareAddress();
1397 ASSERT_FALSE(lport->Candidates().empty());
1398 Connection* conn =
1399 lport->CreateConnection(lport->Candidates()[0], Port::ORIGIN_MESSAGE);
1400 conn->Ping(0);
1401
1402 ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, kDefaultTimeout);
1403 IceMessage* msg = lport->last_stun_msg();
1404 EXPECT_EQ(STUN_BINDING_REQUEST, msg->type());
1405 conn->OnReadPacket(lport->last_stun_buf()->data<char>(),
1406 lport->last_stun_buf()->size(), /* packet_time_us */ -1);
1407 ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, kDefaultTimeout);
1408 msg = lport->last_stun_msg();
1409 EXPECT_EQ(STUN_BINDING_RESPONSE, msg->type());
1410
1411 // If the tiebreaker value is different from port, we expect a error
1412 // response.
1413 lport->Reset();
1414 lport->AddCandidateAddress(kLocalAddr2);
1415 // Creating a different connection as |conn| is receiving.
1416 Connection* conn1 =
1417 lport->CreateConnection(lport->Candidates()[1], Port::ORIGIN_MESSAGE);
1418 conn1->Ping(0);
1419
1420 ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, kDefaultTimeout);
1421 msg = lport->last_stun_msg();
1422 EXPECT_EQ(STUN_BINDING_REQUEST, msg->type());
1423 std::unique_ptr<IceMessage> modified_req(
1424 CreateStunMessage(STUN_BINDING_REQUEST));
1425 const StunByteStringAttribute* username_attr =
1426 msg->GetByteString(STUN_ATTR_USERNAME);
1427 modified_req->AddAttribute(std::make_unique<StunByteStringAttribute>(
1428 STUN_ATTR_USERNAME, username_attr->GetString()));
1429 // To make sure we receive error response, adding tiebreaker less than
1430 // what's present in request.
1431 modified_req->AddAttribute(std::make_unique<StunUInt64Attribute>(
1432 STUN_ATTR_ICE_CONTROLLING, kTiebreaker1 - 1));
1433 modified_req->AddMessageIntegrity("lpass");
1434 modified_req->AddFingerprint();
1435
1436 lport->Reset();
1437 auto buf = std::make_unique<ByteBufferWriter>();
1438 WriteStunMessage(*modified_req, buf.get());
1439 conn1->OnReadPacket(buf->Data(), buf->Length(), /* packet_time_us */ -1);
1440 ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, kDefaultTimeout);
1441 msg = lport->last_stun_msg();
1442 EXPECT_EQ(STUN_BINDING_ERROR_RESPONSE, msg->type());
1443 }
1444
1445 // This test verifies role conflict signal is received when there is
1446 // conflict in the role. In this case both ports are in controlling and
1447 // |rport| has higher tiebreaker value than |lport|. Since |lport| has lower
1448 // value of tiebreaker, when it receives ping request from |rport| it will
1449 // send role conflict signal.
TEST_F(PortTest,TestIceRoleConflict)1450 TEST_F(PortTest, TestIceRoleConflict) {
1451 auto lport = CreateTestPort(kLocalAddr1, "lfrag", "lpass");
1452 lport->SetIceRole(cricket::ICEROLE_CONTROLLING);
1453 lport->SetIceTiebreaker(kTiebreaker1);
1454 auto rport = CreateTestPort(kLocalAddr2, "rfrag", "rpass");
1455 rport->SetIceRole(cricket::ICEROLE_CONTROLLING);
1456 rport->SetIceTiebreaker(kTiebreaker2);
1457
1458 lport->PrepareAddress();
1459 rport->PrepareAddress();
1460 ASSERT_FALSE(lport->Candidates().empty());
1461 ASSERT_FALSE(rport->Candidates().empty());
1462 Connection* lconn =
1463 lport->CreateConnection(rport->Candidates()[0], Port::ORIGIN_MESSAGE);
1464 Connection* rconn =
1465 rport->CreateConnection(lport->Candidates()[0], Port::ORIGIN_MESSAGE);
1466 rconn->Ping(0);
1467
1468 ASSERT_TRUE_WAIT(rport->last_stun_msg() != NULL, kDefaultTimeout);
1469 IceMessage* msg = rport->last_stun_msg();
1470 EXPECT_EQ(STUN_BINDING_REQUEST, msg->type());
1471 // Send rport binding request to lport.
1472 lconn->OnReadPacket(rport->last_stun_buf()->data<char>(),
1473 rport->last_stun_buf()->size(), /* packet_time_us */ -1);
1474
1475 ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, kDefaultTimeout);
1476 EXPECT_EQ(STUN_BINDING_RESPONSE, lport->last_stun_msg()->type());
1477 EXPECT_TRUE(role_conflict());
1478 }
1479
TEST_F(PortTest,TestTcpNoDelay)1480 TEST_F(PortTest, TestTcpNoDelay) {
1481 auto port1 = CreateTcpPort(kLocalAddr1);
1482 port1->SetIceRole(cricket::ICEROLE_CONTROLLING);
1483 int option_value = -1;
1484 int success = port1->GetOption(rtc::Socket::OPT_NODELAY, &option_value);
1485 ASSERT_EQ(0, success); // GetOption() should complete successfully w/ 0
1486 ASSERT_EQ(1, option_value);
1487 }
1488
TEST_F(PortTest,TestDelayedBindingUdp)1489 TEST_F(PortTest, TestDelayedBindingUdp) {
1490 FakeAsyncPacketSocket* socket = new FakeAsyncPacketSocket();
1491 FakePacketSocketFactory socket_factory;
1492
1493 socket_factory.set_next_udp_socket(socket);
1494 auto port = CreateUdpPort(kLocalAddr1, &socket_factory);
1495
1496 socket->set_state(AsyncPacketSocket::STATE_BINDING);
1497 port->PrepareAddress();
1498
1499 EXPECT_EQ(0U, port->Candidates().size());
1500 socket->SignalAddressReady(socket, kLocalAddr2);
1501
1502 EXPECT_EQ(1U, port->Candidates().size());
1503 }
1504
TEST_F(PortTest,TestDelayedBindingTcp)1505 TEST_F(PortTest, TestDelayedBindingTcp) {
1506 FakeAsyncPacketSocket* socket = new FakeAsyncPacketSocket();
1507 FakePacketSocketFactory socket_factory;
1508
1509 socket_factory.set_next_server_tcp_socket(socket);
1510 auto port = CreateTcpPort(kLocalAddr1, &socket_factory);
1511
1512 socket->set_state(AsyncPacketSocket::STATE_BINDING);
1513 port->PrepareAddress();
1514
1515 EXPECT_EQ(0U, port->Candidates().size());
1516 socket->SignalAddressReady(socket, kLocalAddr2);
1517
1518 EXPECT_EQ(1U, port->Candidates().size());
1519 }
1520
TEST_F(PortTest,TestDisableInterfaceOfTcpPort)1521 TEST_F(PortTest, TestDisableInterfaceOfTcpPort) {
1522 FakeAsyncPacketSocket* lsocket = new FakeAsyncPacketSocket();
1523 FakeAsyncPacketSocket* rsocket = new FakeAsyncPacketSocket();
1524 FakePacketSocketFactory socket_factory;
1525
1526 socket_factory.set_next_server_tcp_socket(lsocket);
1527 auto lport = CreateTcpPort(kLocalAddr1, &socket_factory);
1528
1529 socket_factory.set_next_server_tcp_socket(rsocket);
1530 auto rport = CreateTcpPort(kLocalAddr2, &socket_factory);
1531
1532 lsocket->set_state(AsyncPacketSocket::STATE_BINDING);
1533 lsocket->SignalAddressReady(lsocket, kLocalAddr1);
1534 rsocket->set_state(AsyncPacketSocket::STATE_BINDING);
1535 rsocket->SignalAddressReady(rsocket, kLocalAddr2);
1536
1537 lport->SetIceRole(cricket::ICEROLE_CONTROLLING);
1538 lport->SetIceTiebreaker(kTiebreaker1);
1539 rport->SetIceRole(cricket::ICEROLE_CONTROLLED);
1540 rport->SetIceTiebreaker(kTiebreaker2);
1541
1542 lport->PrepareAddress();
1543 rport->PrepareAddress();
1544 ASSERT_FALSE(rport->Candidates().empty());
1545
1546 // A client socket.
1547 FakeAsyncPacketSocket* socket = new FakeAsyncPacketSocket();
1548 socket->local_address_ = kLocalAddr1;
1549 socket->remote_address_ = kLocalAddr2;
1550 socket_factory.set_next_client_tcp_socket(socket);
1551 Connection* lconn =
1552 lport->CreateConnection(rport->Candidates()[0], Port::ORIGIN_MESSAGE);
1553 ASSERT_NE(lconn, nullptr);
1554 socket->SignalConnect(socket);
1555 lconn->Ping(0);
1556
1557 // Now disconnect the client socket...
1558 socket->SignalClose(socket, 1);
1559
1560 // And prevent new sockets from being created.
1561 socket_factory.set_next_client_tcp_socket(nullptr);
1562
1563 // Test that Ping() does not cause SEGV.
1564 lconn->Ping(0);
1565 }
1566
TestCrossFamilyPorts(int type)1567 void PortTest::TestCrossFamilyPorts(int type) {
1568 FakePacketSocketFactory factory;
1569 std::unique_ptr<Port> ports[4];
1570 SocketAddress addresses[4] = {
1571 SocketAddress("192.168.1.3", 0), SocketAddress("192.168.1.4", 0),
1572 SocketAddress("2001:db8::1", 0), SocketAddress("2001:db8::2", 0)};
1573 for (int i = 0; i < 4; i++) {
1574 FakeAsyncPacketSocket* socket = new FakeAsyncPacketSocket();
1575 if (type == SOCK_DGRAM) {
1576 factory.set_next_udp_socket(socket);
1577 ports[i] = CreateUdpPort(addresses[i], &factory);
1578 } else if (type == SOCK_STREAM) {
1579 factory.set_next_server_tcp_socket(socket);
1580 ports[i] = CreateTcpPort(addresses[i], &factory);
1581 }
1582 socket->set_state(AsyncPacketSocket::STATE_BINDING);
1583 socket->SignalAddressReady(socket, addresses[i]);
1584 ports[i]->PrepareAddress();
1585 }
1586
1587 // IPv4 Port, connects to IPv6 candidate and then to IPv4 candidate.
1588 if (type == SOCK_STREAM) {
1589 FakeAsyncPacketSocket* clientsocket = new FakeAsyncPacketSocket();
1590 factory.set_next_client_tcp_socket(clientsocket);
1591 }
1592 Connection* c = ports[0]->CreateConnection(GetCandidate(ports[2].get()),
1593 Port::ORIGIN_MESSAGE);
1594 EXPECT_TRUE(NULL == c);
1595 EXPECT_EQ(0U, ports[0]->connections().size());
1596 c = ports[0]->CreateConnection(GetCandidate(ports[1].get()),
1597 Port::ORIGIN_MESSAGE);
1598 EXPECT_FALSE(NULL == c);
1599 EXPECT_EQ(1U, ports[0]->connections().size());
1600
1601 // IPv6 Port, connects to IPv4 candidate and to IPv6 candidate.
1602 if (type == SOCK_STREAM) {
1603 FakeAsyncPacketSocket* clientsocket = new FakeAsyncPacketSocket();
1604 factory.set_next_client_tcp_socket(clientsocket);
1605 }
1606 c = ports[2]->CreateConnection(GetCandidate(ports[0].get()),
1607 Port::ORIGIN_MESSAGE);
1608 EXPECT_TRUE(NULL == c);
1609 EXPECT_EQ(0U, ports[2]->connections().size());
1610 c = ports[2]->CreateConnection(GetCandidate(ports[3].get()),
1611 Port::ORIGIN_MESSAGE);
1612 EXPECT_FALSE(NULL == c);
1613 EXPECT_EQ(1U, ports[2]->connections().size());
1614 }
1615
TEST_F(PortTest,TestSkipCrossFamilyTcp)1616 TEST_F(PortTest, TestSkipCrossFamilyTcp) {
1617 TestCrossFamilyPorts(SOCK_STREAM);
1618 }
1619
TEST_F(PortTest,TestSkipCrossFamilyUdp)1620 TEST_F(PortTest, TestSkipCrossFamilyUdp) {
1621 TestCrossFamilyPorts(SOCK_DGRAM);
1622 }
1623
ExpectPortsCanConnect(bool can_connect,Port * p1,Port * p2)1624 void PortTest::ExpectPortsCanConnect(bool can_connect, Port* p1, Port* p2) {
1625 Connection* c = p1->CreateConnection(GetCandidate(p2), Port::ORIGIN_MESSAGE);
1626 if (can_connect) {
1627 EXPECT_FALSE(NULL == c);
1628 EXPECT_EQ(1U, p1->connections().size());
1629 } else {
1630 EXPECT_TRUE(NULL == c);
1631 EXPECT_EQ(0U, p1->connections().size());
1632 }
1633 }
1634
TEST_F(PortTest,TestUdpV6CrossTypePorts)1635 TEST_F(PortTest, TestUdpV6CrossTypePorts) {
1636 FakePacketSocketFactory factory;
1637 std::unique_ptr<Port> ports[4];
1638 SocketAddress addresses[4] = {
1639 SocketAddress("2001:db8::1", 0), SocketAddress("fe80::1", 0),
1640 SocketAddress("fe80::2", 0), SocketAddress("::1", 0)};
1641 for (int i = 0; i < 4; i++) {
1642 FakeAsyncPacketSocket* socket = new FakeAsyncPacketSocket();
1643 factory.set_next_udp_socket(socket);
1644 ports[i] = CreateUdpPort(addresses[i], &factory);
1645 socket->set_state(AsyncPacketSocket::STATE_BINDING);
1646 socket->SignalAddressReady(socket, addresses[i]);
1647 ports[i]->PrepareAddress();
1648 }
1649
1650 Port* standard = ports[0].get();
1651 Port* link_local1 = ports[1].get();
1652 Port* link_local2 = ports[2].get();
1653 Port* localhost = ports[3].get();
1654
1655 ExpectPortsCanConnect(false, link_local1, standard);
1656 ExpectPortsCanConnect(false, standard, link_local1);
1657 ExpectPortsCanConnect(false, link_local1, localhost);
1658 ExpectPortsCanConnect(false, localhost, link_local1);
1659
1660 ExpectPortsCanConnect(true, link_local1, link_local2);
1661 ExpectPortsCanConnect(true, localhost, standard);
1662 ExpectPortsCanConnect(true, standard, localhost);
1663 }
1664
1665 // This test verifies DSCP value set through SetOption interface can be
1666 // get through DefaultDscpValue.
TEST_F(PortTest,TestDefaultDscpValue)1667 TEST_F(PortTest, TestDefaultDscpValue) {
1668 int dscp;
1669 auto udpport = CreateUdpPort(kLocalAddr1);
1670 EXPECT_EQ(0, udpport->SetOption(rtc::Socket::OPT_DSCP, rtc::DSCP_CS6));
1671 EXPECT_EQ(0, udpport->GetOption(rtc::Socket::OPT_DSCP, &dscp));
1672 auto tcpport = CreateTcpPort(kLocalAddr1);
1673 EXPECT_EQ(0, tcpport->SetOption(rtc::Socket::OPT_DSCP, rtc::DSCP_AF31));
1674 EXPECT_EQ(0, tcpport->GetOption(rtc::Socket::OPT_DSCP, &dscp));
1675 EXPECT_EQ(rtc::DSCP_AF31, dscp);
1676 auto stunport = CreateStunPort(kLocalAddr1, nat_socket_factory1());
1677 EXPECT_EQ(0, stunport->SetOption(rtc::Socket::OPT_DSCP, rtc::DSCP_AF41));
1678 EXPECT_EQ(0, stunport->GetOption(rtc::Socket::OPT_DSCP, &dscp));
1679 EXPECT_EQ(rtc::DSCP_AF41, dscp);
1680 auto turnport1 =
1681 CreateTurnPort(kLocalAddr1, nat_socket_factory1(), PROTO_UDP, PROTO_UDP);
1682 // Socket is created in PrepareAddress.
1683 turnport1->PrepareAddress();
1684 EXPECT_EQ(0, turnport1->SetOption(rtc::Socket::OPT_DSCP, rtc::DSCP_CS7));
1685 EXPECT_EQ(0, turnport1->GetOption(rtc::Socket::OPT_DSCP, &dscp));
1686 EXPECT_EQ(rtc::DSCP_CS7, dscp);
1687 // This will verify correct value returned without the socket.
1688 auto turnport2 =
1689 CreateTurnPort(kLocalAddr1, nat_socket_factory1(), PROTO_UDP, PROTO_UDP);
1690 EXPECT_EQ(0, turnport2->SetOption(rtc::Socket::OPT_DSCP, rtc::DSCP_CS6));
1691 EXPECT_EQ(0, turnport2->GetOption(rtc::Socket::OPT_DSCP, &dscp));
1692 EXPECT_EQ(rtc::DSCP_CS6, dscp);
1693 }
1694
1695 // Test sending STUN messages.
TEST_F(PortTest,TestSendStunMessage)1696 TEST_F(PortTest, TestSendStunMessage) {
1697 auto lport = CreateTestPort(kLocalAddr1, "lfrag", "lpass");
1698 auto rport = CreateTestPort(kLocalAddr2, "rfrag", "rpass");
1699 lport->SetIceRole(cricket::ICEROLE_CONTROLLING);
1700 lport->SetIceTiebreaker(kTiebreaker1);
1701 rport->SetIceRole(cricket::ICEROLE_CONTROLLED);
1702 rport->SetIceTiebreaker(kTiebreaker2);
1703
1704 // Send a fake ping from lport to rport.
1705 lport->PrepareAddress();
1706 rport->PrepareAddress();
1707 ASSERT_FALSE(rport->Candidates().empty());
1708 Connection* lconn =
1709 lport->CreateConnection(rport->Candidates()[0], Port::ORIGIN_MESSAGE);
1710 Connection* rconn =
1711 rport->CreateConnection(lport->Candidates()[0], Port::ORIGIN_MESSAGE);
1712 lconn->Ping(0);
1713
1714 // Check that it's a proper BINDING-REQUEST.
1715 ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, kDefaultTimeout);
1716 IceMessage* msg = lport->last_stun_msg();
1717 EXPECT_EQ(STUN_BINDING_REQUEST, msg->type());
1718 EXPECT_FALSE(msg->IsLegacy());
1719 const StunByteStringAttribute* username_attr =
1720 msg->GetByteString(STUN_ATTR_USERNAME);
1721 ASSERT_TRUE(username_attr != NULL);
1722 const StunUInt32Attribute* priority_attr = msg->GetUInt32(STUN_ATTR_PRIORITY);
1723 ASSERT_TRUE(priority_attr != NULL);
1724 EXPECT_EQ(kDefaultPrflxPriority, priority_attr->value());
1725 EXPECT_EQ("rfrag:lfrag", username_attr->GetString());
1726 EXPECT_TRUE(msg->GetByteString(STUN_ATTR_MESSAGE_INTEGRITY) != NULL);
1727 EXPECT_TRUE(StunMessage::ValidateMessageIntegrity(
1728 lport->last_stun_buf()->data<char>(), lport->last_stun_buf()->size(),
1729 "rpass"));
1730 const StunUInt64Attribute* ice_controlling_attr =
1731 msg->GetUInt64(STUN_ATTR_ICE_CONTROLLING);
1732 ASSERT_TRUE(ice_controlling_attr != NULL);
1733 EXPECT_EQ(lport->IceTiebreaker(), ice_controlling_attr->value());
1734 EXPECT_TRUE(msg->GetByteString(STUN_ATTR_ICE_CONTROLLED) == NULL);
1735 EXPECT_TRUE(msg->GetByteString(STUN_ATTR_USE_CANDIDATE) != NULL);
1736 EXPECT_TRUE(msg->GetUInt32(STUN_ATTR_FINGERPRINT) != NULL);
1737 EXPECT_TRUE(StunMessage::ValidateFingerprint(
1738 lport->last_stun_buf()->data<char>(), lport->last_stun_buf()->size()));
1739
1740 // Request should not include ping count.
1741 ASSERT_TRUE(msg->GetUInt32(STUN_ATTR_RETRANSMIT_COUNT) == NULL);
1742
1743 // Save a copy of the BINDING-REQUEST for use below.
1744 std::unique_ptr<IceMessage> request = CopyStunMessage(*msg);
1745
1746 // Receive the BINDING-REQUEST and respond with BINDING-RESPONSE.
1747 rconn->OnReadPacket(lport->last_stun_buf()->data<char>(),
1748 lport->last_stun_buf()->size(), /* packet_time_us */ -1);
1749 msg = rport->last_stun_msg();
1750 ASSERT_TRUE(msg != NULL);
1751 EXPECT_EQ(STUN_BINDING_RESPONSE, msg->type());
1752 // Received a BINDING-RESPONSE.
1753 lconn->OnReadPacket(rport->last_stun_buf()->data<char>(),
1754 rport->last_stun_buf()->size(), /* packet_time_us */ -1);
1755 // Verify the STUN Stats.
1756 EXPECT_EQ(1U, lconn->stats().sent_ping_requests_total);
1757 EXPECT_EQ(1U, lconn->stats().sent_ping_requests_before_first_response);
1758 EXPECT_EQ(1U, lconn->stats().recv_ping_responses);
1759 EXPECT_EQ(1U, rconn->stats().recv_ping_requests);
1760 EXPECT_EQ(1U, rconn->stats().sent_ping_responses);
1761
1762 EXPECT_FALSE(msg->IsLegacy());
1763 const StunAddressAttribute* addr_attr =
1764 msg->GetAddress(STUN_ATTR_XOR_MAPPED_ADDRESS);
1765 ASSERT_TRUE(addr_attr != NULL);
1766 EXPECT_EQ(lport->Candidates()[0].address(), addr_attr->GetAddress());
1767 EXPECT_TRUE(msg->GetByteString(STUN_ATTR_MESSAGE_INTEGRITY) != NULL);
1768 EXPECT_TRUE(StunMessage::ValidateMessageIntegrity(
1769 rport->last_stun_buf()->data<char>(), rport->last_stun_buf()->size(),
1770 "rpass"));
1771 EXPECT_TRUE(msg->GetUInt32(STUN_ATTR_FINGERPRINT) != NULL);
1772 EXPECT_TRUE(StunMessage::ValidateFingerprint(
1773 lport->last_stun_buf()->data<char>(), lport->last_stun_buf()->size()));
1774 // No USERNAME or PRIORITY in ICE responses.
1775 EXPECT_TRUE(msg->GetByteString(STUN_ATTR_USERNAME) == NULL);
1776 EXPECT_TRUE(msg->GetByteString(STUN_ATTR_PRIORITY) == NULL);
1777 EXPECT_TRUE(msg->GetByteString(STUN_ATTR_MAPPED_ADDRESS) == NULL);
1778 EXPECT_TRUE(msg->GetByteString(STUN_ATTR_ICE_CONTROLLING) == NULL);
1779 EXPECT_TRUE(msg->GetByteString(STUN_ATTR_ICE_CONTROLLED) == NULL);
1780 EXPECT_TRUE(msg->GetByteString(STUN_ATTR_USE_CANDIDATE) == NULL);
1781
1782 // Response should not include ping count.
1783 ASSERT_TRUE(msg->GetUInt32(STUN_ATTR_RETRANSMIT_COUNT) == NULL);
1784
1785 // Respond with a BINDING-ERROR-RESPONSE. This wouldn't happen in real life,
1786 // but we can do it here.
1787 rport->SendBindingErrorResponse(
1788 request.get(), lport->Candidates()[0].address(), STUN_ERROR_SERVER_ERROR,
1789 STUN_ERROR_REASON_SERVER_ERROR);
1790 msg = rport->last_stun_msg();
1791 ASSERT_TRUE(msg != NULL);
1792 EXPECT_EQ(STUN_BINDING_ERROR_RESPONSE, msg->type());
1793 EXPECT_FALSE(msg->IsLegacy());
1794 const StunErrorCodeAttribute* error_attr = msg->GetErrorCode();
1795 ASSERT_TRUE(error_attr != NULL);
1796 EXPECT_EQ(STUN_ERROR_SERVER_ERROR, error_attr->code());
1797 EXPECT_EQ(std::string(STUN_ERROR_REASON_SERVER_ERROR), error_attr->reason());
1798 EXPECT_TRUE(msg->GetByteString(STUN_ATTR_MESSAGE_INTEGRITY) != NULL);
1799 EXPECT_TRUE(StunMessage::ValidateMessageIntegrity(
1800 rport->last_stun_buf()->data<char>(), rport->last_stun_buf()->size(),
1801 "rpass"));
1802 EXPECT_TRUE(msg->GetUInt32(STUN_ATTR_FINGERPRINT) != NULL);
1803 EXPECT_TRUE(StunMessage::ValidateFingerprint(
1804 lport->last_stun_buf()->data<char>(), lport->last_stun_buf()->size()));
1805 // No USERNAME with ICE.
1806 EXPECT_TRUE(msg->GetByteString(STUN_ATTR_USERNAME) == NULL);
1807 EXPECT_TRUE(msg->GetByteString(STUN_ATTR_PRIORITY) == NULL);
1808
1809 // Testing STUN binding requests from rport --> lport, having ICE_CONTROLLED
1810 // and (incremented) RETRANSMIT_COUNT attributes.
1811 rport->Reset();
1812 rport->set_send_retransmit_count_attribute(true);
1813 rconn->Ping(0);
1814 rconn->Ping(0);
1815 rconn->Ping(0);
1816 ASSERT_TRUE_WAIT(rport->last_stun_msg() != NULL, kDefaultTimeout);
1817 msg = rport->last_stun_msg();
1818 EXPECT_EQ(STUN_BINDING_REQUEST, msg->type());
1819 const StunUInt64Attribute* ice_controlled_attr =
1820 msg->GetUInt64(STUN_ATTR_ICE_CONTROLLED);
1821 ASSERT_TRUE(ice_controlled_attr != NULL);
1822 EXPECT_EQ(rport->IceTiebreaker(), ice_controlled_attr->value());
1823 EXPECT_TRUE(msg->GetByteString(STUN_ATTR_USE_CANDIDATE) == NULL);
1824
1825 // Request should include ping count.
1826 const StunUInt32Attribute* retransmit_attr =
1827 msg->GetUInt32(STUN_ATTR_RETRANSMIT_COUNT);
1828 ASSERT_TRUE(retransmit_attr != NULL);
1829 EXPECT_EQ(2U, retransmit_attr->value());
1830
1831 // Respond with a BINDING-RESPONSE.
1832 request = CopyStunMessage(*msg);
1833 lconn->OnReadPacket(rport->last_stun_buf()->data<char>(),
1834 rport->last_stun_buf()->size(), /* packet_time_us */ -1);
1835 msg = lport->last_stun_msg();
1836 // Receive the BINDING-RESPONSE.
1837 rconn->OnReadPacket(lport->last_stun_buf()->data<char>(),
1838 lport->last_stun_buf()->size(), /* packet_time_us */ -1);
1839
1840 // Verify the Stun ping stats.
1841 EXPECT_EQ(3U, rconn->stats().sent_ping_requests_total);
1842 EXPECT_EQ(3U, rconn->stats().sent_ping_requests_before_first_response);
1843 EXPECT_EQ(1U, rconn->stats().recv_ping_responses);
1844 EXPECT_EQ(1U, lconn->stats().sent_ping_responses);
1845 EXPECT_EQ(1U, lconn->stats().recv_ping_requests);
1846 // Ping after receiver the first response
1847 rconn->Ping(0);
1848 rconn->Ping(0);
1849 EXPECT_EQ(5U, rconn->stats().sent_ping_requests_total);
1850 EXPECT_EQ(3U, rconn->stats().sent_ping_requests_before_first_response);
1851
1852 // Response should include same ping count.
1853 retransmit_attr = msg->GetUInt32(STUN_ATTR_RETRANSMIT_COUNT);
1854 ASSERT_TRUE(retransmit_attr != NULL);
1855 EXPECT_EQ(2U, retransmit_attr->value());
1856 }
1857
TEST_F(PortTest,TestNomination)1858 TEST_F(PortTest, TestNomination) {
1859 auto lport = CreateTestPort(kLocalAddr1, "lfrag", "lpass");
1860 auto rport = CreateTestPort(kLocalAddr2, "rfrag", "rpass");
1861 lport->SetIceRole(cricket::ICEROLE_CONTROLLING);
1862 lport->SetIceTiebreaker(kTiebreaker1);
1863 rport->SetIceRole(cricket::ICEROLE_CONTROLLED);
1864 rport->SetIceTiebreaker(kTiebreaker2);
1865
1866 lport->PrepareAddress();
1867 rport->PrepareAddress();
1868 ASSERT_FALSE(lport->Candidates().empty());
1869 ASSERT_FALSE(rport->Candidates().empty());
1870 Connection* lconn =
1871 lport->CreateConnection(rport->Candidates()[0], Port::ORIGIN_MESSAGE);
1872 Connection* rconn =
1873 rport->CreateConnection(lport->Candidates()[0], Port::ORIGIN_MESSAGE);
1874
1875 // |lconn| is controlling, |rconn| is controlled.
1876 uint32_t nomination = 1234;
1877 lconn->set_nomination(nomination);
1878
1879 EXPECT_FALSE(lconn->nominated());
1880 EXPECT_FALSE(rconn->nominated());
1881 EXPECT_EQ(lconn->nominated(), lconn->stats().nominated);
1882 EXPECT_EQ(rconn->nominated(), rconn->stats().nominated);
1883
1884 // Send ping (including the nomination value) from |lconn| to |rconn|. This
1885 // should set the remote nomination of |rconn|.
1886 lconn->Ping(0);
1887 ASSERT_TRUE_WAIT(lport->last_stun_msg(), kDefaultTimeout);
1888 ASSERT_TRUE(lport->last_stun_buf());
1889 rconn->OnReadPacket(lport->last_stun_buf()->data<char>(),
1890 lport->last_stun_buf()->size(), /* packet_time_us */ -1);
1891 EXPECT_EQ(nomination, rconn->remote_nomination());
1892 EXPECT_FALSE(lconn->nominated());
1893 EXPECT_TRUE(rconn->nominated());
1894 EXPECT_EQ(lconn->nominated(), lconn->stats().nominated);
1895 EXPECT_EQ(rconn->nominated(), rconn->stats().nominated);
1896
1897 // This should result in an acknowledgment sent back from |rconn| to |lconn|,
1898 // updating the acknowledged nomination of |lconn|.
1899 ASSERT_TRUE_WAIT(rport->last_stun_msg(), kDefaultTimeout);
1900 ASSERT_TRUE(rport->last_stun_buf());
1901 lconn->OnReadPacket(rport->last_stun_buf()->data<char>(),
1902 rport->last_stun_buf()->size(), /* packet_time_us */ -1);
1903 EXPECT_EQ(nomination, lconn->acked_nomination());
1904 EXPECT_TRUE(lconn->nominated());
1905 EXPECT_TRUE(rconn->nominated());
1906 EXPECT_EQ(lconn->nominated(), lconn->stats().nominated);
1907 EXPECT_EQ(rconn->nominated(), rconn->stats().nominated);
1908 }
1909
TEST_F(PortTest,TestRoundTripTime)1910 TEST_F(PortTest, TestRoundTripTime) {
1911 rtc::ScopedFakeClock clock;
1912
1913 auto lport = CreateTestPort(kLocalAddr1, "lfrag", "lpass");
1914 auto rport = CreateTestPort(kLocalAddr2, "rfrag", "rpass");
1915 lport->SetIceRole(cricket::ICEROLE_CONTROLLING);
1916 lport->SetIceTiebreaker(kTiebreaker1);
1917 rport->SetIceRole(cricket::ICEROLE_CONTROLLED);
1918 rport->SetIceTiebreaker(kTiebreaker2);
1919
1920 lport->PrepareAddress();
1921 rport->PrepareAddress();
1922 ASSERT_FALSE(lport->Candidates().empty());
1923 ASSERT_FALSE(rport->Candidates().empty());
1924 Connection* lconn =
1925 lport->CreateConnection(rport->Candidates()[0], Port::ORIGIN_MESSAGE);
1926 Connection* rconn =
1927 rport->CreateConnection(lport->Candidates()[0], Port::ORIGIN_MESSAGE);
1928
1929 EXPECT_EQ(0u, lconn->stats().total_round_trip_time_ms);
1930 EXPECT_FALSE(lconn->stats().current_round_trip_time_ms);
1931
1932 SendPingAndReceiveResponse(lconn, lport.get(), rconn, rport.get(), &clock,
1933 10);
1934 EXPECT_EQ(10u, lconn->stats().total_round_trip_time_ms);
1935 ASSERT_TRUE(lconn->stats().current_round_trip_time_ms);
1936 EXPECT_EQ(10u, *lconn->stats().current_round_trip_time_ms);
1937
1938 SendPingAndReceiveResponse(lconn, lport.get(), rconn, rport.get(), &clock,
1939 20);
1940 EXPECT_EQ(30u, lconn->stats().total_round_trip_time_ms);
1941 ASSERT_TRUE(lconn->stats().current_round_trip_time_ms);
1942 EXPECT_EQ(20u, *lconn->stats().current_round_trip_time_ms);
1943
1944 SendPingAndReceiveResponse(lconn, lport.get(), rconn, rport.get(), &clock,
1945 30);
1946 EXPECT_EQ(60u, lconn->stats().total_round_trip_time_ms);
1947 ASSERT_TRUE(lconn->stats().current_round_trip_time_ms);
1948 EXPECT_EQ(30u, *lconn->stats().current_round_trip_time_ms);
1949 }
1950
TEST_F(PortTest,TestUseCandidateAttribute)1951 TEST_F(PortTest, TestUseCandidateAttribute) {
1952 auto lport = CreateTestPort(kLocalAddr1, "lfrag", "lpass");
1953 auto rport = CreateTestPort(kLocalAddr2, "rfrag", "rpass");
1954 lport->SetIceRole(cricket::ICEROLE_CONTROLLING);
1955 lport->SetIceTiebreaker(kTiebreaker1);
1956 rport->SetIceRole(cricket::ICEROLE_CONTROLLED);
1957 rport->SetIceTiebreaker(kTiebreaker2);
1958
1959 // Send a fake ping from lport to rport.
1960 lport->PrepareAddress();
1961 rport->PrepareAddress();
1962 ASSERT_FALSE(rport->Candidates().empty());
1963 Connection* lconn =
1964 lport->CreateConnection(rport->Candidates()[0], Port::ORIGIN_MESSAGE);
1965 lconn->Ping(0);
1966 ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, kDefaultTimeout);
1967 IceMessage* msg = lport->last_stun_msg();
1968 const StunUInt64Attribute* ice_controlling_attr =
1969 msg->GetUInt64(STUN_ATTR_ICE_CONTROLLING);
1970 ASSERT_TRUE(ice_controlling_attr != NULL);
1971 const StunByteStringAttribute* use_candidate_attr =
1972 msg->GetByteString(STUN_ATTR_USE_CANDIDATE);
1973 ASSERT_TRUE(use_candidate_attr != NULL);
1974 }
1975
1976 // Tests that when the network type changes, the network cost of the port will
1977 // change, the network cost of the local candidates will change. Also tests that
1978 // the remote network costs are updated with the stun binding requests.
TEST_F(PortTest,TestNetworkCostChange)1979 TEST_F(PortTest, TestNetworkCostChange) {
1980 rtc::Network* test_network = MakeNetwork(kLocalAddr1);
1981 auto lport = CreateTestPort(test_network, "lfrag", "lpass");
1982 auto rport = CreateTestPort(test_network, "rfrag", "rpass");
1983 lport->SetIceRole(cricket::ICEROLE_CONTROLLING);
1984 lport->SetIceTiebreaker(kTiebreaker1);
1985 rport->SetIceRole(cricket::ICEROLE_CONTROLLED);
1986 rport->SetIceTiebreaker(kTiebreaker2);
1987 lport->PrepareAddress();
1988 rport->PrepareAddress();
1989
1990 // Default local port cost is rtc::kNetworkCostUnknown.
1991 EXPECT_EQ(rtc::kNetworkCostUnknown, lport->network_cost());
1992 ASSERT_TRUE(!lport->Candidates().empty());
1993 for (const cricket::Candidate& candidate : lport->Candidates()) {
1994 EXPECT_EQ(rtc::kNetworkCostUnknown, candidate.network_cost());
1995 }
1996
1997 // Change the network type to wifi.
1998 test_network->set_type(rtc::ADAPTER_TYPE_WIFI);
1999 EXPECT_EQ(rtc::kNetworkCostLow, lport->network_cost());
2000 for (const cricket::Candidate& candidate : lport->Candidates()) {
2001 EXPECT_EQ(rtc::kNetworkCostLow, candidate.network_cost());
2002 }
2003
2004 // Add a connection and then change the network type.
2005 Connection* lconn =
2006 lport->CreateConnection(rport->Candidates()[0], Port::ORIGIN_MESSAGE);
2007 // Change the network type to cellular.
2008 test_network->set_type(rtc::ADAPTER_TYPE_CELLULAR);
2009 EXPECT_EQ(rtc::kNetworkCostHigh, lport->network_cost());
2010 for (const cricket::Candidate& candidate : lport->Candidates()) {
2011 EXPECT_EQ(rtc::kNetworkCostHigh, candidate.network_cost());
2012 }
2013
2014 test_network->set_type(rtc::ADAPTER_TYPE_WIFI);
2015 Connection* rconn =
2016 rport->CreateConnection(lport->Candidates()[0], Port::ORIGIN_MESSAGE);
2017 test_network->set_type(rtc::ADAPTER_TYPE_CELLULAR);
2018 lconn->Ping(0);
2019 // The rconn's remote candidate cost is rtc::kNetworkCostLow, but the ping
2020 // contains an attribute of network cost of rtc::kNetworkCostHigh. Once the
2021 // message is handled in rconn, The rconn's remote candidate will have cost
2022 // rtc::kNetworkCostHigh;
2023 EXPECT_EQ(rtc::kNetworkCostLow, rconn->remote_candidate().network_cost());
2024 ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, kDefaultTimeout);
2025 IceMessage* msg = lport->last_stun_msg();
2026 EXPECT_EQ(STUN_BINDING_REQUEST, msg->type());
2027 // Pass the binding request to rport.
2028 rconn->OnReadPacket(lport->last_stun_buf()->data<char>(),
2029 lport->last_stun_buf()->size(), /* packet_time_us */ -1);
2030 // Wait until rport sends the response and then check the remote network cost.
2031 ASSERT_TRUE_WAIT(rport->last_stun_msg() != NULL, kDefaultTimeout);
2032 EXPECT_EQ(rtc::kNetworkCostHigh, rconn->remote_candidate().network_cost());
2033 }
2034
TEST_F(PortTest,TestNetworkInfoAttribute)2035 TEST_F(PortTest, TestNetworkInfoAttribute) {
2036 rtc::Network* test_network = MakeNetwork(kLocalAddr1);
2037 auto lport = CreateTestPort(test_network, "lfrag", "lpass");
2038 auto rport = CreateTestPort(test_network, "rfrag", "rpass");
2039 lport->SetIceRole(cricket::ICEROLE_CONTROLLING);
2040 lport->SetIceTiebreaker(kTiebreaker1);
2041 rport->SetIceRole(cricket::ICEROLE_CONTROLLED);
2042 rport->SetIceTiebreaker(kTiebreaker2);
2043
2044 uint16_t lnetwork_id = 9;
2045 lport->Network()->set_id(lnetwork_id);
2046 // Send a fake ping from lport to rport.
2047 lport->PrepareAddress();
2048 rport->PrepareAddress();
2049 Connection* lconn =
2050 lport->CreateConnection(rport->Candidates()[0], Port::ORIGIN_MESSAGE);
2051 lconn->Ping(0);
2052 ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, kDefaultTimeout);
2053 IceMessage* msg = lport->last_stun_msg();
2054 const StunUInt32Attribute* network_info_attr =
2055 msg->GetUInt32(STUN_ATTR_NETWORK_INFO);
2056 ASSERT_TRUE(network_info_attr != NULL);
2057 uint32_t network_info = network_info_attr->value();
2058 EXPECT_EQ(lnetwork_id, network_info >> 16);
2059 // Default network has unknown type and cost kNetworkCostUnknown.
2060 EXPECT_EQ(rtc::kNetworkCostUnknown, network_info & 0xFFFF);
2061
2062 // Set the network type to be cellular so its cost will be kNetworkCostHigh.
2063 // Send a fake ping from rport to lport.
2064 test_network->set_type(rtc::ADAPTER_TYPE_CELLULAR);
2065 uint16_t rnetwork_id = 8;
2066 rport->Network()->set_id(rnetwork_id);
2067 Connection* rconn =
2068 rport->CreateConnection(lport->Candidates()[0], Port::ORIGIN_MESSAGE);
2069 rconn->Ping(0);
2070 ASSERT_TRUE_WAIT(rport->last_stun_msg() != NULL, kDefaultTimeout);
2071 msg = rport->last_stun_msg();
2072 network_info_attr = msg->GetUInt32(STUN_ATTR_NETWORK_INFO);
2073 ASSERT_TRUE(network_info_attr != NULL);
2074 network_info = network_info_attr->value();
2075 EXPECT_EQ(rnetwork_id, network_info >> 16);
2076 EXPECT_EQ(rtc::kNetworkCostHigh, network_info & 0xFFFF);
2077 }
2078
2079 // Test handling STUN messages.
TEST_F(PortTest,TestHandleStunMessage)2080 TEST_F(PortTest, TestHandleStunMessage) {
2081 // Our port will act as the "remote" port.
2082 auto port = CreateTestPort(kLocalAddr2, "rfrag", "rpass");
2083
2084 std::unique_ptr<IceMessage> in_msg, out_msg;
2085 auto buf = std::make_unique<ByteBufferWriter>();
2086 rtc::SocketAddress addr(kLocalAddr1);
2087 std::string username;
2088
2089 // BINDING-REQUEST from local to remote with valid ICE username,
2090 // MESSAGE-INTEGRITY, and FINGERPRINT.
2091 in_msg = CreateStunMessageWithUsername(STUN_BINDING_REQUEST, "rfrag:lfrag");
2092 in_msg->AddMessageIntegrity("rpass");
2093 in_msg->AddFingerprint();
2094 WriteStunMessage(*in_msg, buf.get());
2095 EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr, &out_msg,
2096 &username));
2097 EXPECT_TRUE(out_msg.get() != NULL);
2098 EXPECT_EQ("lfrag", username);
2099
2100 // BINDING-RESPONSE without username, with MESSAGE-INTEGRITY and FINGERPRINT.
2101 in_msg = CreateStunMessage(STUN_BINDING_RESPONSE);
2102 in_msg->AddAttribute(std::make_unique<StunXorAddressAttribute>(
2103 STUN_ATTR_XOR_MAPPED_ADDRESS, kLocalAddr2));
2104 in_msg->AddMessageIntegrity("rpass");
2105 in_msg->AddFingerprint();
2106 WriteStunMessage(*in_msg, buf.get());
2107 EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr, &out_msg,
2108 &username));
2109 EXPECT_TRUE(out_msg.get() != NULL);
2110 EXPECT_EQ("", username);
2111
2112 // BINDING-ERROR-RESPONSE without username, with error, M-I, and FINGERPRINT.
2113 in_msg = CreateStunMessage(STUN_BINDING_ERROR_RESPONSE);
2114 in_msg->AddAttribute(std::make_unique<StunErrorCodeAttribute>(
2115 STUN_ATTR_ERROR_CODE, STUN_ERROR_SERVER_ERROR,
2116 STUN_ERROR_REASON_SERVER_ERROR));
2117 in_msg->AddFingerprint();
2118 WriteStunMessage(*in_msg, buf.get());
2119 EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr, &out_msg,
2120 &username));
2121 EXPECT_TRUE(out_msg.get() != NULL);
2122 EXPECT_EQ("", username);
2123 ASSERT_TRUE(out_msg->GetErrorCode() != NULL);
2124 EXPECT_EQ(STUN_ERROR_SERVER_ERROR, out_msg->GetErrorCode()->code());
2125 EXPECT_EQ(std::string(STUN_ERROR_REASON_SERVER_ERROR),
2126 out_msg->GetErrorCode()->reason());
2127 }
2128
2129 // Tests handling of ICE binding requests with missing or incorrect usernames.
TEST_F(PortTest,TestHandleStunMessageBadUsername)2130 TEST_F(PortTest, TestHandleStunMessageBadUsername) {
2131 auto port = CreateTestPort(kLocalAddr2, "rfrag", "rpass");
2132
2133 std::unique_ptr<IceMessage> in_msg, out_msg;
2134 auto buf = std::make_unique<ByteBufferWriter>();
2135 rtc::SocketAddress addr(kLocalAddr1);
2136 std::string username;
2137
2138 // BINDING-REQUEST with no username.
2139 in_msg = CreateStunMessage(STUN_BINDING_REQUEST);
2140 in_msg->AddMessageIntegrity("rpass");
2141 in_msg->AddFingerprint();
2142 WriteStunMessage(*in_msg, buf.get());
2143 EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr, &out_msg,
2144 &username));
2145 EXPECT_TRUE(out_msg.get() == NULL);
2146 EXPECT_EQ("", username);
2147 EXPECT_EQ(STUN_ERROR_BAD_REQUEST, port->last_stun_error_code());
2148
2149 // BINDING-REQUEST with empty username.
2150 in_msg = CreateStunMessageWithUsername(STUN_BINDING_REQUEST, "");
2151 in_msg->AddMessageIntegrity("rpass");
2152 in_msg->AddFingerprint();
2153 WriteStunMessage(*in_msg, buf.get());
2154 EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr, &out_msg,
2155 &username));
2156 EXPECT_TRUE(out_msg.get() == NULL);
2157 EXPECT_EQ("", username);
2158 EXPECT_EQ(STUN_ERROR_UNAUTHORIZED, port->last_stun_error_code());
2159
2160 // BINDING-REQUEST with too-short username.
2161 in_msg = CreateStunMessageWithUsername(STUN_BINDING_REQUEST, "rfra");
2162 in_msg->AddMessageIntegrity("rpass");
2163 in_msg->AddFingerprint();
2164 WriteStunMessage(*in_msg, buf.get());
2165 EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr, &out_msg,
2166 &username));
2167 EXPECT_TRUE(out_msg.get() == NULL);
2168 EXPECT_EQ("", username);
2169 EXPECT_EQ(STUN_ERROR_UNAUTHORIZED, port->last_stun_error_code());
2170
2171 // BINDING-REQUEST with reversed username.
2172 in_msg = CreateStunMessageWithUsername(STUN_BINDING_REQUEST, "lfrag:rfrag");
2173 in_msg->AddMessageIntegrity("rpass");
2174 in_msg->AddFingerprint();
2175 WriteStunMessage(*in_msg, buf.get());
2176 EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr, &out_msg,
2177 &username));
2178 EXPECT_TRUE(out_msg.get() == NULL);
2179 EXPECT_EQ("", username);
2180 EXPECT_EQ(STUN_ERROR_UNAUTHORIZED, port->last_stun_error_code());
2181
2182 // BINDING-REQUEST with garbage username.
2183 in_msg = CreateStunMessageWithUsername(STUN_BINDING_REQUEST, "abcd:efgh");
2184 in_msg->AddMessageIntegrity("rpass");
2185 in_msg->AddFingerprint();
2186 WriteStunMessage(*in_msg, buf.get());
2187 EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr, &out_msg,
2188 &username));
2189 EXPECT_TRUE(out_msg.get() == NULL);
2190 EXPECT_EQ("", username);
2191 EXPECT_EQ(STUN_ERROR_UNAUTHORIZED, port->last_stun_error_code());
2192 }
2193
2194 // Test handling STUN messages with missing or malformed M-I.
TEST_F(PortTest,TestHandleStunMessageBadMessageIntegrity)2195 TEST_F(PortTest, TestHandleStunMessageBadMessageIntegrity) {
2196 // Our port will act as the "remote" port.
2197 auto port = CreateTestPort(kLocalAddr2, "rfrag", "rpass");
2198
2199 std::unique_ptr<IceMessage> in_msg, out_msg;
2200 auto buf = std::make_unique<ByteBufferWriter>();
2201 rtc::SocketAddress addr(kLocalAddr1);
2202 std::string username;
2203
2204 // BINDING-REQUEST from local to remote with valid ICE username and
2205 // FINGERPRINT, but no MESSAGE-INTEGRITY.
2206 in_msg = CreateStunMessageWithUsername(STUN_BINDING_REQUEST, "rfrag:lfrag");
2207 in_msg->AddFingerprint();
2208 WriteStunMessage(*in_msg, buf.get());
2209 EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr, &out_msg,
2210 &username));
2211 EXPECT_TRUE(out_msg.get() == NULL);
2212 EXPECT_EQ("", username);
2213 EXPECT_EQ(STUN_ERROR_BAD_REQUEST, port->last_stun_error_code());
2214
2215 // BINDING-REQUEST from local to remote with valid ICE username and
2216 // FINGERPRINT, but invalid MESSAGE-INTEGRITY.
2217 in_msg = CreateStunMessageWithUsername(STUN_BINDING_REQUEST, "rfrag:lfrag");
2218 in_msg->AddMessageIntegrity("invalid");
2219 in_msg->AddFingerprint();
2220 WriteStunMessage(*in_msg, buf.get());
2221 EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr, &out_msg,
2222 &username));
2223 EXPECT_TRUE(out_msg.get() == NULL);
2224 EXPECT_EQ("", username);
2225 EXPECT_EQ(STUN_ERROR_UNAUTHORIZED, port->last_stun_error_code());
2226
2227 // TODO(?): BINDING-RESPONSES and BINDING-ERROR-RESPONSES are checked
2228 // by the Connection, not the Port, since they require the remote username.
2229 // Change this test to pass in data via Connection::OnReadPacket instead.
2230 }
2231
2232 // Test handling STUN messages with missing or malformed FINGERPRINT.
TEST_F(PortTest,TestHandleStunMessageBadFingerprint)2233 TEST_F(PortTest, TestHandleStunMessageBadFingerprint) {
2234 // Our port will act as the "remote" port.
2235 auto port = CreateTestPort(kLocalAddr2, "rfrag", "rpass");
2236
2237 std::unique_ptr<IceMessage> in_msg, out_msg;
2238 auto buf = std::make_unique<ByteBufferWriter>();
2239 rtc::SocketAddress addr(kLocalAddr1);
2240 std::string username;
2241
2242 // BINDING-REQUEST from local to remote with valid ICE username and
2243 // MESSAGE-INTEGRITY, but no FINGERPRINT; GetStunMessage should fail.
2244 in_msg = CreateStunMessageWithUsername(STUN_BINDING_REQUEST, "rfrag:lfrag");
2245 in_msg->AddMessageIntegrity("rpass");
2246 WriteStunMessage(*in_msg, buf.get());
2247 EXPECT_FALSE(port->GetStunMessage(buf->Data(), buf->Length(), addr, &out_msg,
2248 &username));
2249 EXPECT_EQ(0, port->last_stun_error_code());
2250
2251 // Now, add a fingerprint, but munge the message so it's not valid.
2252 in_msg->AddFingerprint();
2253 in_msg->SetTransactionID("TESTTESTBADD");
2254 WriteStunMessage(*in_msg, buf.get());
2255 EXPECT_FALSE(port->GetStunMessage(buf->Data(), buf->Length(), addr, &out_msg,
2256 &username));
2257 EXPECT_EQ(0, port->last_stun_error_code());
2258
2259 // Valid BINDING-RESPONSE, except no FINGERPRINT.
2260 in_msg = CreateStunMessage(STUN_BINDING_RESPONSE);
2261 in_msg->AddAttribute(std::make_unique<StunXorAddressAttribute>(
2262 STUN_ATTR_XOR_MAPPED_ADDRESS, kLocalAddr2));
2263 in_msg->AddMessageIntegrity("rpass");
2264 WriteStunMessage(*in_msg, buf.get());
2265 EXPECT_FALSE(port->GetStunMessage(buf->Data(), buf->Length(), addr, &out_msg,
2266 &username));
2267 EXPECT_EQ(0, port->last_stun_error_code());
2268
2269 // Now, add a fingerprint, but munge the message so it's not valid.
2270 in_msg->AddFingerprint();
2271 in_msg->SetTransactionID("TESTTESTBADD");
2272 WriteStunMessage(*in_msg, buf.get());
2273 EXPECT_FALSE(port->GetStunMessage(buf->Data(), buf->Length(), addr, &out_msg,
2274 &username));
2275 EXPECT_EQ(0, port->last_stun_error_code());
2276
2277 // Valid BINDING-ERROR-RESPONSE, except no FINGERPRINT.
2278 in_msg = CreateStunMessage(STUN_BINDING_ERROR_RESPONSE);
2279 in_msg->AddAttribute(std::make_unique<StunErrorCodeAttribute>(
2280 STUN_ATTR_ERROR_CODE, STUN_ERROR_SERVER_ERROR,
2281 STUN_ERROR_REASON_SERVER_ERROR));
2282 in_msg->AddMessageIntegrity("rpass");
2283 WriteStunMessage(*in_msg, buf.get());
2284 EXPECT_FALSE(port->GetStunMessage(buf->Data(), buf->Length(), addr, &out_msg,
2285 &username));
2286 EXPECT_EQ(0, port->last_stun_error_code());
2287
2288 // Now, add a fingerprint, but munge the message so it's not valid.
2289 in_msg->AddFingerprint();
2290 in_msg->SetTransactionID("TESTTESTBADD");
2291 WriteStunMessage(*in_msg, buf.get());
2292 EXPECT_FALSE(port->GetStunMessage(buf->Data(), buf->Length(), addr, &out_msg,
2293 &username));
2294 EXPECT_EQ(0, port->last_stun_error_code());
2295 }
2296
2297 // Test handling a STUN message with unknown attributes in the
2298 // "comprehension-required" range. Should respond with an error with the
2299 // unknown attributes' IDs.
TEST_F(PortTest,TestHandleStunRequestWithUnknownComprehensionRequiredAttribute)2300 TEST_F(PortTest,
2301 TestHandleStunRequestWithUnknownComprehensionRequiredAttribute) {
2302 // Our port will act as the "remote" port.
2303 std::unique_ptr<TestPort> port(CreateTestPort(kLocalAddr2, "rfrag", "rpass"));
2304
2305 std::unique_ptr<IceMessage> in_msg, out_msg;
2306 auto buf = std::make_unique<ByteBufferWriter>();
2307 rtc::SocketAddress addr(kLocalAddr1);
2308 std::string username;
2309
2310 // Build ordinary message with valid ufrag/pass.
2311 in_msg = CreateStunMessageWithUsername(STUN_BINDING_REQUEST, "rfrag:lfrag");
2312 in_msg->AddMessageIntegrity("rpass");
2313 // Add a couple attributes with ID in comprehension-required range.
2314 in_msg->AddAttribute(StunAttribute::CreateUInt32(0x7777));
2315 in_msg->AddAttribute(StunAttribute::CreateUInt32(0x4567));
2316 // ... And one outside the range.
2317 in_msg->AddAttribute(StunAttribute::CreateUInt32(0xdead));
2318 in_msg->AddFingerprint();
2319 WriteStunMessage(*in_msg, buf.get());
2320 ASSERT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr, &out_msg,
2321 &username));
2322 IceMessage* error_response = port->last_stun_msg();
2323 ASSERT_NE(nullptr, error_response);
2324
2325 // Verify that the "unknown attribute" error response has the right error
2326 // code, and includes an attribute that lists out the unrecognized attribute
2327 // types.
2328 EXPECT_EQ(STUN_ERROR_UNKNOWN_ATTRIBUTE, error_response->GetErrorCodeValue());
2329 const StunUInt16ListAttribute* unknown_attributes =
2330 error_response->GetUnknownAttributes();
2331 ASSERT_NE(nullptr, unknown_attributes);
2332 ASSERT_EQ(2u, unknown_attributes->Size());
2333 EXPECT_EQ(0x7777, unknown_attributes->GetType(0));
2334 EXPECT_EQ(0x4567, unknown_attributes->GetType(1));
2335 }
2336
2337 // Similar to the above, but with a response instead of a request. In this
2338 // case the response should just be ignored and transaction treated is failed.
TEST_F(PortTest,TestHandleStunResponseWithUnknownComprehensionRequiredAttribute)2339 TEST_F(PortTest,
2340 TestHandleStunResponseWithUnknownComprehensionRequiredAttribute) {
2341 // Generic setup.
2342 auto lport = CreateTestPort(kLocalAddr1, "lfrag", "lpass");
2343 lport->SetIceRole(cricket::ICEROLE_CONTROLLING);
2344 auto rport = CreateTestPort(kLocalAddr2, "rfrag", "rpass");
2345 rport->SetIceRole(cricket::ICEROLE_CONTROLLED);
2346 lport->PrepareAddress();
2347 rport->PrepareAddress();
2348 ASSERT_FALSE(lport->Candidates().empty());
2349 ASSERT_FALSE(rport->Candidates().empty());
2350 Connection* lconn =
2351 lport->CreateConnection(rport->Candidates()[0], Port::ORIGIN_MESSAGE);
2352 Connection* rconn =
2353 rport->CreateConnection(lport->Candidates()[0], Port::ORIGIN_MESSAGE);
2354
2355 // Send request.
2356 lconn->Ping(0);
2357 ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, kDefaultTimeout);
2358 rconn->OnReadPacket(lport->last_stun_buf()->data<char>(),
2359 lport->last_stun_buf()->size(), /* packet_time_us */ -1);
2360
2361 // Intercept request and add comprehension required attribute.
2362 ASSERT_TRUE_WAIT(rport->last_stun_msg() != NULL, kDefaultTimeout);
2363 auto modified_response = rport->last_stun_msg()->Clone();
2364 modified_response->AddAttribute(StunAttribute::CreateUInt32(0x7777));
2365 modified_response->RemoveAttribute(STUN_ATTR_FINGERPRINT);
2366 modified_response->AddFingerprint();
2367 ByteBufferWriter buf;
2368 WriteStunMessage(*modified_response, &buf);
2369 lconn->OnReadPacket(buf.Data(), buf.Length(), /* packet_time_us */ -1);
2370 // Response should have been ignored, leaving us unwritable still.
2371 EXPECT_FALSE(lconn->writable());
2372 }
2373
2374 // Similar to the above, but with an indication. As with a response, it should
2375 // just be ignored.
TEST_F(PortTest,TestHandleStunIndicationWithUnknownComprehensionRequiredAttribute)2376 TEST_F(PortTest,
2377 TestHandleStunIndicationWithUnknownComprehensionRequiredAttribute) {
2378 // Generic set up.
2379 auto lport = CreateTestPort(kLocalAddr2, "lfrag", "lpass");
2380 lport->SetIceRole(cricket::ICEROLE_CONTROLLING);
2381 auto rport = CreateTestPort(kLocalAddr2, "rfrag", "rpass");
2382 rport->SetIceRole(cricket::ICEROLE_CONTROLLED);
2383 lport->PrepareAddress();
2384 rport->PrepareAddress();
2385 ASSERT_FALSE(lport->Candidates().empty());
2386 ASSERT_FALSE(rport->Candidates().empty());
2387 Connection* lconn =
2388 lport->CreateConnection(rport->Candidates()[0], Port::ORIGIN_MESSAGE);
2389
2390 // Generate indication with comprehension required attribute and verify it
2391 // doesn't update last_ping_received.
2392 auto in_msg = CreateStunMessage(STUN_BINDING_INDICATION);
2393 in_msg->AddAttribute(StunAttribute::CreateUInt32(0x7777));
2394 in_msg->AddFingerprint();
2395 ByteBufferWriter buf;
2396 WriteStunMessage(*in_msg, &buf);
2397 lconn->OnReadPacket(buf.Data(), buf.Length(), /* packet_time_us */ -1);
2398 EXPECT_EQ(0u, lconn->last_ping_received());
2399 }
2400
2401 // Test handling of STUN binding indication messages . STUN binding
2402 // indications are allowed only to the connection which is in read mode.
TEST_F(PortTest,TestHandleStunBindingIndication)2403 TEST_F(PortTest, TestHandleStunBindingIndication) {
2404 auto lport = CreateTestPort(kLocalAddr2, "lfrag", "lpass");
2405 lport->SetIceRole(cricket::ICEROLE_CONTROLLING);
2406 lport->SetIceTiebreaker(kTiebreaker1);
2407
2408 // Verifying encoding and decoding STUN indication message.
2409 std::unique_ptr<IceMessage> in_msg, out_msg;
2410 std::unique_ptr<ByteBufferWriter> buf(new ByteBufferWriter());
2411 rtc::SocketAddress addr(kLocalAddr1);
2412 std::string username;
2413
2414 in_msg = CreateStunMessage(STUN_BINDING_INDICATION);
2415 in_msg->AddFingerprint();
2416 WriteStunMessage(*in_msg, buf.get());
2417 EXPECT_TRUE(lport->GetStunMessage(buf->Data(), buf->Length(), addr, &out_msg,
2418 &username));
2419 EXPECT_TRUE(out_msg.get() != NULL);
2420 EXPECT_EQ(out_msg->type(), STUN_BINDING_INDICATION);
2421 EXPECT_EQ("", username);
2422
2423 // Verify connection can handle STUN indication and updates
2424 // last_ping_received.
2425 auto rport = CreateTestPort(kLocalAddr2, "rfrag", "rpass");
2426 rport->SetIceRole(cricket::ICEROLE_CONTROLLED);
2427 rport->SetIceTiebreaker(kTiebreaker2);
2428
2429 lport->PrepareAddress();
2430 rport->PrepareAddress();
2431 ASSERT_FALSE(lport->Candidates().empty());
2432 ASSERT_FALSE(rport->Candidates().empty());
2433
2434 Connection* lconn =
2435 lport->CreateConnection(rport->Candidates()[0], Port::ORIGIN_MESSAGE);
2436 Connection* rconn =
2437 rport->CreateConnection(lport->Candidates()[0], Port::ORIGIN_MESSAGE);
2438 rconn->Ping(0);
2439
2440 ASSERT_TRUE_WAIT(rport->last_stun_msg() != NULL, kDefaultTimeout);
2441 IceMessage* msg = rport->last_stun_msg();
2442 EXPECT_EQ(STUN_BINDING_REQUEST, msg->type());
2443 // Send rport binding request to lport.
2444 lconn->OnReadPacket(rport->last_stun_buf()->data<char>(),
2445 rport->last_stun_buf()->size(), /* packet_time_us */ -1);
2446 ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, kDefaultTimeout);
2447 EXPECT_EQ(STUN_BINDING_RESPONSE, lport->last_stun_msg()->type());
2448 int64_t last_ping_received1 = lconn->last_ping_received();
2449
2450 // Adding a delay of 100ms.
2451 rtc::Thread::Current()->ProcessMessages(100);
2452 // Pinging lconn using stun indication message.
2453 lconn->OnReadPacket(buf->Data(), buf->Length(), /* packet_time_us */ -1);
2454 int64_t last_ping_received2 = lconn->last_ping_received();
2455 EXPECT_GT(last_ping_received2, last_ping_received1);
2456 }
2457
TEST_F(PortTest,TestComputeCandidatePriority)2458 TEST_F(PortTest, TestComputeCandidatePriority) {
2459 auto port = CreateTestPort(kLocalAddr1, "name", "pass");
2460 port->set_type_preference(90);
2461 port->set_component(177);
2462 port->AddCandidateAddress(SocketAddress("192.168.1.4", 1234));
2463 port->AddCandidateAddress(SocketAddress("2001:db8::1234", 1234));
2464 port->AddCandidateAddress(SocketAddress("fc12:3456::1234", 1234));
2465 port->AddCandidateAddress(SocketAddress("::ffff:192.168.1.4", 1234));
2466 port->AddCandidateAddress(SocketAddress("::192.168.1.4", 1234));
2467 port->AddCandidateAddress(SocketAddress("2002::1234:5678", 1234));
2468 port->AddCandidateAddress(SocketAddress("2001::1234:5678", 1234));
2469 port->AddCandidateAddress(SocketAddress("fecf::1234:5678", 1234));
2470 port->AddCandidateAddress(SocketAddress("3ffe::1234:5678", 1234));
2471 // These should all be:
2472 // (90 << 24) | ([rfc3484 pref value] << 8) | (256 - 177)
2473 uint32_t expected_priority_v4 = 1509957199U;
2474 uint32_t expected_priority_v6 = 1509959759U;
2475 uint32_t expected_priority_ula = 1509962319U;
2476 uint32_t expected_priority_v4mapped = expected_priority_v4;
2477 uint32_t expected_priority_v4compat = 1509949775U;
2478 uint32_t expected_priority_6to4 = 1509954639U;
2479 uint32_t expected_priority_teredo = 1509952079U;
2480 uint32_t expected_priority_sitelocal = 1509949775U;
2481 uint32_t expected_priority_6bone = 1509949775U;
2482 ASSERT_EQ(expected_priority_v4, port->Candidates()[0].priority());
2483 ASSERT_EQ(expected_priority_v6, port->Candidates()[1].priority());
2484 ASSERT_EQ(expected_priority_ula, port->Candidates()[2].priority());
2485 ASSERT_EQ(expected_priority_v4mapped, port->Candidates()[3].priority());
2486 ASSERT_EQ(expected_priority_v4compat, port->Candidates()[4].priority());
2487 ASSERT_EQ(expected_priority_6to4, port->Candidates()[5].priority());
2488 ASSERT_EQ(expected_priority_teredo, port->Candidates()[6].priority());
2489 ASSERT_EQ(expected_priority_sitelocal, port->Candidates()[7].priority());
2490 ASSERT_EQ(expected_priority_6bone, port->Candidates()[8].priority());
2491 }
2492
2493 // In the case of shared socket, one port may be shared by local and stun.
2494 // Test that candidates with different types will have different foundation.
TEST_F(PortTest,TestFoundation)2495 TEST_F(PortTest, TestFoundation) {
2496 auto testport = CreateTestPort(kLocalAddr1, "name", "pass");
2497 testport->AddCandidateAddress(kLocalAddr1, kLocalAddr1, LOCAL_PORT_TYPE,
2498 cricket::ICE_TYPE_PREFERENCE_HOST, false);
2499 testport->AddCandidateAddress(kLocalAddr2, kLocalAddr1, STUN_PORT_TYPE,
2500 cricket::ICE_TYPE_PREFERENCE_SRFLX, true);
2501 EXPECT_NE(testport->Candidates()[0].foundation(),
2502 testport->Candidates()[1].foundation());
2503 }
2504
2505 // This test verifies the foundation of different types of ICE candidates.
TEST_F(PortTest,TestCandidateFoundation)2506 TEST_F(PortTest, TestCandidateFoundation) {
2507 std::unique_ptr<rtc::NATServer> nat_server(
2508 CreateNatServer(kNatAddr1, NAT_OPEN_CONE));
2509 auto udpport1 = CreateUdpPort(kLocalAddr1);
2510 udpport1->PrepareAddress();
2511 auto udpport2 = CreateUdpPort(kLocalAddr1);
2512 udpport2->PrepareAddress();
2513 EXPECT_EQ(udpport1->Candidates()[0].foundation(),
2514 udpport2->Candidates()[0].foundation());
2515 auto tcpport1 = CreateTcpPort(kLocalAddr1);
2516 tcpport1->PrepareAddress();
2517 auto tcpport2 = CreateTcpPort(kLocalAddr1);
2518 tcpport2->PrepareAddress();
2519 EXPECT_EQ(tcpport1->Candidates()[0].foundation(),
2520 tcpport2->Candidates()[0].foundation());
2521 auto stunport = CreateStunPort(kLocalAddr1, nat_socket_factory1());
2522 stunport->PrepareAddress();
2523 ASSERT_EQ_WAIT(1U, stunport->Candidates().size(), kDefaultTimeout);
2524 EXPECT_NE(tcpport1->Candidates()[0].foundation(),
2525 stunport->Candidates()[0].foundation());
2526 EXPECT_NE(tcpport2->Candidates()[0].foundation(),
2527 stunport->Candidates()[0].foundation());
2528 EXPECT_NE(udpport1->Candidates()[0].foundation(),
2529 stunport->Candidates()[0].foundation());
2530 EXPECT_NE(udpport2->Candidates()[0].foundation(),
2531 stunport->Candidates()[0].foundation());
2532 // Verifying TURN candidate foundation.
2533 auto turnport1 =
2534 CreateTurnPort(kLocalAddr1, nat_socket_factory1(), PROTO_UDP, PROTO_UDP);
2535 turnport1->PrepareAddress();
2536 ASSERT_EQ_WAIT(1U, turnport1->Candidates().size(), kDefaultTimeout);
2537 EXPECT_NE(udpport1->Candidates()[0].foundation(),
2538 turnport1->Candidates()[0].foundation());
2539 EXPECT_NE(udpport2->Candidates()[0].foundation(),
2540 turnport1->Candidates()[0].foundation());
2541 EXPECT_NE(stunport->Candidates()[0].foundation(),
2542 turnport1->Candidates()[0].foundation());
2543 auto turnport2 =
2544 CreateTurnPort(kLocalAddr1, nat_socket_factory1(), PROTO_UDP, PROTO_UDP);
2545 turnport2->PrepareAddress();
2546 ASSERT_EQ_WAIT(1U, turnport2->Candidates().size(), kDefaultTimeout);
2547 EXPECT_EQ(turnport1->Candidates()[0].foundation(),
2548 turnport2->Candidates()[0].foundation());
2549
2550 // Running a second turn server, to get different base IP address.
2551 SocketAddress kTurnUdpIntAddr2("99.99.98.4", STUN_SERVER_PORT);
2552 SocketAddress kTurnUdpExtAddr2("99.99.98.5", 0);
2553 TestTurnServer turn_server2(rtc::Thread::Current(), kTurnUdpIntAddr2,
2554 kTurnUdpExtAddr2);
2555 auto turnport3 = CreateTurnPort(kLocalAddr1, nat_socket_factory1(), PROTO_UDP,
2556 PROTO_UDP, kTurnUdpIntAddr2);
2557 turnport3->PrepareAddress();
2558 ASSERT_EQ_WAIT(1U, turnport3->Candidates().size(), kDefaultTimeout);
2559 EXPECT_NE(turnport3->Candidates()[0].foundation(),
2560 turnport2->Candidates()[0].foundation());
2561
2562 // Start a TCP turn server, and check that two turn candidates have
2563 // different foundations if their relay protocols are different.
2564 TestTurnServer turn_server3(rtc::Thread::Current(), kTurnTcpIntAddr,
2565 kTurnUdpExtAddr, PROTO_TCP);
2566 auto turnport4 =
2567 CreateTurnPort(kLocalAddr1, nat_socket_factory1(), PROTO_TCP, PROTO_UDP);
2568 turnport4->PrepareAddress();
2569 ASSERT_EQ_WAIT(1U, turnport4->Candidates().size(), kDefaultTimeout);
2570 EXPECT_NE(turnport2->Candidates()[0].foundation(),
2571 turnport4->Candidates()[0].foundation());
2572 }
2573
2574 // This test verifies the related addresses of different types of
2575 // ICE candiates.
TEST_F(PortTest,TestCandidateRelatedAddress)2576 TEST_F(PortTest, TestCandidateRelatedAddress) {
2577 auto nat_server = CreateNatServer(kNatAddr1, NAT_OPEN_CONE);
2578 auto udpport = CreateUdpPort(kLocalAddr1);
2579 udpport->PrepareAddress();
2580 // For UDPPort, related address will be empty.
2581 EXPECT_TRUE(udpport->Candidates()[0].related_address().IsNil());
2582 // Testing related address for stun candidates.
2583 // For stun candidate related address must be equal to the base
2584 // socket address.
2585 auto stunport = CreateStunPort(kLocalAddr1, nat_socket_factory1());
2586 stunport->PrepareAddress();
2587 ASSERT_EQ_WAIT(1U, stunport->Candidates().size(), kDefaultTimeout);
2588 // Check STUN candidate address.
2589 EXPECT_EQ(stunport->Candidates()[0].address().ipaddr(), kNatAddr1.ipaddr());
2590 // Check STUN candidate related address.
2591 EXPECT_EQ(stunport->Candidates()[0].related_address(),
2592 stunport->GetLocalAddress());
2593 // Verifying the related address for TURN candidate.
2594 // For TURN related address must be equal to the mapped address.
2595 auto turnport =
2596 CreateTurnPort(kLocalAddr1, nat_socket_factory1(), PROTO_UDP, PROTO_UDP);
2597 turnport->PrepareAddress();
2598 ASSERT_EQ_WAIT(1U, turnport->Candidates().size(), kDefaultTimeout);
2599 EXPECT_EQ(kTurnUdpExtAddr.ipaddr(),
2600 turnport->Candidates()[0].address().ipaddr());
2601 EXPECT_EQ(kNatAddr1.ipaddr(),
2602 turnport->Candidates()[0].related_address().ipaddr());
2603 }
2604
2605 // Test priority value overflow handling when preference is set to 3.
TEST_F(PortTest,TestCandidatePriority)2606 TEST_F(PortTest, TestCandidatePriority) {
2607 cricket::Candidate cand1;
2608 cand1.set_priority(3);
2609 cricket::Candidate cand2;
2610 cand2.set_priority(1);
2611 EXPECT_TRUE(cand1.priority() > cand2.priority());
2612 }
2613
2614 // Test the Connection priority is calculated correctly.
TEST_F(PortTest,TestConnectionPriority)2615 TEST_F(PortTest, TestConnectionPriority) {
2616 auto lport = CreateTestPort(kLocalAddr1, "lfrag", "lpass");
2617 lport->set_type_preference(cricket::ICE_TYPE_PREFERENCE_HOST);
2618 auto rport = CreateTestPort(kLocalAddr2, "rfrag", "rpass");
2619 rport->set_type_preference(cricket::ICE_TYPE_PREFERENCE_RELAY_UDP);
2620 lport->set_component(123);
2621 lport->AddCandidateAddress(SocketAddress("192.168.1.4", 1234));
2622 rport->set_component(23);
2623 rport->AddCandidateAddress(SocketAddress("10.1.1.100", 1234));
2624
2625 EXPECT_EQ(0x7E001E85U, lport->Candidates()[0].priority());
2626 EXPECT_EQ(0x2001EE9U, rport->Candidates()[0].priority());
2627
2628 // RFC 5245
2629 // pair priority = 2^32*MIN(G,D) + 2*MAX(G,D) + (G>D?1:0)
2630 lport->SetIceRole(cricket::ICEROLE_CONTROLLING);
2631 rport->SetIceRole(cricket::ICEROLE_CONTROLLED);
2632 Connection* lconn =
2633 lport->CreateConnection(rport->Candidates()[0], Port::ORIGIN_MESSAGE);
2634 #if defined(WEBRTC_WIN)
2635 EXPECT_EQ(0x2001EE9FC003D0BU, lconn->priority());
2636 #else
2637 EXPECT_EQ(0x2001EE9FC003D0BLLU, lconn->priority());
2638 #endif
2639
2640 lport->SetIceRole(cricket::ICEROLE_CONTROLLED);
2641 rport->SetIceRole(cricket::ICEROLE_CONTROLLING);
2642 Connection* rconn =
2643 rport->CreateConnection(lport->Candidates()[0], Port::ORIGIN_MESSAGE);
2644 #if defined(WEBRTC_WIN)
2645 EXPECT_EQ(0x2001EE9FC003D0AU, rconn->priority());
2646 #else
2647 EXPECT_EQ(0x2001EE9FC003D0ALLU, rconn->priority());
2648 #endif
2649 }
2650
2651 // Note that UpdateState takes into account the estimated RTT, and the
2652 // correctness of using |kMaxExpectedSimulatedRtt| as an upper bound of RTT in
2653 // the following tests depends on the link rate and the delay distriubtion
2654 // configured in VirtualSocketServer::AddPacketToNetwork. The tests below use
2655 // the default setup where the RTT is deterministically one, which generates an
2656 // estimate given by |MINIMUM_RTT| = 100.
TEST_F(PortTest,TestWritableState)2657 TEST_F(PortTest, TestWritableState) {
2658 rtc::ScopedFakeClock clock;
2659 auto port1 = CreateUdpPort(kLocalAddr1);
2660 port1->SetIceRole(cricket::ICEROLE_CONTROLLING);
2661 auto port2 = CreateUdpPort(kLocalAddr2);
2662 port2->SetIceRole(cricket::ICEROLE_CONTROLLED);
2663
2664 // Set up channels.
2665 TestChannel ch1(std::move(port1));
2666 TestChannel ch2(std::move(port2));
2667
2668 // Acquire addresses.
2669 ch1.Start();
2670 ch2.Start();
2671 ASSERT_EQ_SIMULATED_WAIT(1, ch1.complete_count(), kDefaultTimeout, clock);
2672 ASSERT_EQ_SIMULATED_WAIT(1, ch2.complete_count(), kDefaultTimeout, clock);
2673
2674 // Send a ping from src to dst.
2675 ch1.CreateConnection(GetCandidate(ch2.port()));
2676 ASSERT_TRUE(ch1.conn() != NULL);
2677 EXPECT_EQ(Connection::STATE_WRITE_INIT, ch1.conn()->write_state());
2678 // for TCP connect
2679 EXPECT_TRUE_SIMULATED_WAIT(ch1.conn()->connected(), kDefaultTimeout, clock);
2680 ch1.Ping();
2681 SIMULATED_WAIT(!ch2.remote_address().IsNil(), kShortTimeout, clock);
2682
2683 // Data should be sendable before the connection is accepted.
2684 char data[] = "abcd";
2685 int data_size = arraysize(data);
2686 rtc::PacketOptions options;
2687 EXPECT_EQ(data_size, ch1.conn()->Send(data, data_size, options));
2688
2689 // Accept the connection to return the binding response, transition to
2690 // writable, and allow data to be sent.
2691 ch2.AcceptConnection(GetCandidate(ch1.port()));
2692 EXPECT_EQ_SIMULATED_WAIT(Connection::STATE_WRITABLE,
2693 ch1.conn()->write_state(), kDefaultTimeout, clock);
2694 EXPECT_EQ(data_size, ch1.conn()->Send(data, data_size, options));
2695
2696 // Ask the connection to update state as if enough time has passed to lose
2697 // full writability and 5 pings went unresponded to. We'll accomplish the
2698 // latter by sending pings but not pumping messages.
2699 for (uint32_t i = 1; i <= CONNECTION_WRITE_CONNECT_FAILURES; ++i) {
2700 ch1.Ping(i);
2701 }
2702 int unreliable_timeout_delay =
2703 CONNECTION_WRITE_CONNECT_TIMEOUT + kMaxExpectedSimulatedRtt;
2704 ch1.conn()->UpdateState(unreliable_timeout_delay);
2705 EXPECT_EQ(Connection::STATE_WRITE_UNRELIABLE, ch1.conn()->write_state());
2706
2707 // Data should be able to be sent in this state.
2708 EXPECT_EQ(data_size, ch1.conn()->Send(data, data_size, options));
2709
2710 // And now allow the other side to process the pings and send binding
2711 // responses.
2712 EXPECT_EQ_SIMULATED_WAIT(Connection::STATE_WRITABLE,
2713 ch1.conn()->write_state(), kDefaultTimeout, clock);
2714 // Wait long enough for a full timeout (past however long we've already
2715 // waited).
2716 for (uint32_t i = 1; i <= CONNECTION_WRITE_CONNECT_FAILURES; ++i) {
2717 ch1.Ping(unreliable_timeout_delay + i);
2718 }
2719 ch1.conn()->UpdateState(unreliable_timeout_delay + CONNECTION_WRITE_TIMEOUT +
2720 kMaxExpectedSimulatedRtt);
2721 EXPECT_EQ(Connection::STATE_WRITE_TIMEOUT, ch1.conn()->write_state());
2722
2723 // Even if the connection has timed out, the Connection shouldn't block
2724 // the sending of data.
2725 EXPECT_EQ(data_size, ch1.conn()->Send(data, data_size, options));
2726
2727 ch1.Stop();
2728 ch2.Stop();
2729 }
2730
2731 // Test writability states using the configured threshold value to replace
2732 // the default value given by |CONNECTION_WRITE_CONNECT_TIMEOUT| and
2733 // |CONNECTION_WRITE_CONNECT_FAILURES|.
TEST_F(PortTest,TestWritableStateWithConfiguredThreshold)2734 TEST_F(PortTest, TestWritableStateWithConfiguredThreshold) {
2735 rtc::ScopedFakeClock clock;
2736 auto port1 = CreateUdpPort(kLocalAddr1);
2737 port1->SetIceRole(cricket::ICEROLE_CONTROLLING);
2738 auto port2 = CreateUdpPort(kLocalAddr2);
2739 port2->SetIceRole(cricket::ICEROLE_CONTROLLED);
2740
2741 // Set up channels.
2742 TestChannel ch1(std::move(port1));
2743 TestChannel ch2(std::move(port2));
2744
2745 // Acquire addresses.
2746 ch1.Start();
2747 ch2.Start();
2748 ASSERT_EQ_SIMULATED_WAIT(1, ch1.complete_count(), kDefaultTimeout, clock);
2749 ASSERT_EQ_SIMULATED_WAIT(1, ch2.complete_count(), kDefaultTimeout, clock);
2750
2751 // Send a ping from src to dst.
2752 ch1.CreateConnection(GetCandidate(ch2.port()));
2753 ASSERT_TRUE(ch1.conn() != NULL);
2754 ch1.Ping();
2755 SIMULATED_WAIT(!ch2.remote_address().IsNil(), kShortTimeout, clock);
2756
2757 // Accept the connection to return the binding response, transition to
2758 // writable, and allow data to be sent.
2759 ch2.AcceptConnection(GetCandidate(ch1.port()));
2760 EXPECT_EQ_SIMULATED_WAIT(Connection::STATE_WRITABLE,
2761 ch1.conn()->write_state(), kDefaultTimeout, clock);
2762
2763 ch1.conn()->set_unwritable_timeout(1000);
2764 ch1.conn()->set_unwritable_min_checks(3);
2765 // Send two checks.
2766 ch1.Ping(1);
2767 ch1.Ping(2);
2768 // We have not reached the timeout nor have we sent the minimum number of
2769 // checks to change the state to Unreliable.
2770 ch1.conn()->UpdateState(999);
2771 EXPECT_EQ(Connection::STATE_WRITABLE, ch1.conn()->write_state());
2772 // We have not sent the minimum number of checks without responses.
2773 ch1.conn()->UpdateState(1000 + kMaxExpectedSimulatedRtt);
2774 EXPECT_EQ(Connection::STATE_WRITABLE, ch1.conn()->write_state());
2775 // Last ping after which the candidate pair should become Unreliable after
2776 // timeout.
2777 ch1.Ping(3);
2778 // We have not reached the timeout.
2779 ch1.conn()->UpdateState(999);
2780 EXPECT_EQ(Connection::STATE_WRITABLE, ch1.conn()->write_state());
2781 // We should be in the state Unreliable now.
2782 ch1.conn()->UpdateState(1000 + kMaxExpectedSimulatedRtt);
2783 EXPECT_EQ(Connection::STATE_WRITE_UNRELIABLE, ch1.conn()->write_state());
2784
2785 ch1.Stop();
2786 ch2.Stop();
2787 }
2788
TEST_F(PortTest,TestTimeoutForNeverWritable)2789 TEST_F(PortTest, TestTimeoutForNeverWritable) {
2790 auto port1 = CreateUdpPort(kLocalAddr1);
2791 port1->SetIceRole(cricket::ICEROLE_CONTROLLING);
2792 auto port2 = CreateUdpPort(kLocalAddr2);
2793 port2->SetIceRole(cricket::ICEROLE_CONTROLLED);
2794
2795 // Set up channels.
2796 TestChannel ch1(std::move(port1));
2797 TestChannel ch2(std::move(port2));
2798
2799 // Acquire addresses.
2800 ch1.Start();
2801 ch2.Start();
2802
2803 ch1.CreateConnection(GetCandidate(ch2.port()));
2804 ASSERT_TRUE(ch1.conn() != NULL);
2805 EXPECT_EQ(Connection::STATE_WRITE_INIT, ch1.conn()->write_state());
2806
2807 // Attempt to go directly to write timeout.
2808 for (uint32_t i = 1; i <= CONNECTION_WRITE_CONNECT_FAILURES; ++i) {
2809 ch1.Ping(i);
2810 }
2811 ch1.conn()->UpdateState(CONNECTION_WRITE_TIMEOUT + kMaxExpectedSimulatedRtt);
2812 EXPECT_EQ(Connection::STATE_WRITE_TIMEOUT, ch1.conn()->write_state());
2813 }
2814
2815 // This test verifies the connection setup between ICEMODE_FULL
2816 // and ICEMODE_LITE.
2817 // In this test |ch1| behaves like FULL mode client and we have created
2818 // port which responds to the ping message just like LITE client.
TEST_F(PortTest,TestIceLiteConnectivity)2819 TEST_F(PortTest, TestIceLiteConnectivity) {
2820 auto ice_full_port =
2821 CreateTestPort(kLocalAddr1, "lfrag", "lpass",
2822 cricket::ICEROLE_CONTROLLING, kTiebreaker1);
2823 auto* ice_full_port_ptr = ice_full_port.get();
2824
2825 auto ice_lite_port = CreateTestPort(
2826 kLocalAddr2, "rfrag", "rpass", cricket::ICEROLE_CONTROLLED, kTiebreaker2);
2827 // Setup TestChannel. This behaves like FULL mode client.
2828 TestChannel ch1(std::move(ice_full_port));
2829 ch1.SetIceMode(ICEMODE_FULL);
2830
2831 // Start gathering candidates.
2832 ch1.Start();
2833 ice_lite_port->PrepareAddress();
2834
2835 ASSERT_EQ_WAIT(1, ch1.complete_count(), kDefaultTimeout);
2836 ASSERT_FALSE(ice_lite_port->Candidates().empty());
2837
2838 ch1.CreateConnection(GetCandidate(ice_lite_port.get()));
2839 ASSERT_TRUE(ch1.conn() != NULL);
2840 EXPECT_EQ(Connection::STATE_WRITE_INIT, ch1.conn()->write_state());
2841
2842 // Send ping from full mode client.
2843 // This ping must not have USE_CANDIDATE_ATTR.
2844 ch1.Ping();
2845
2846 // Verify stun ping is without USE_CANDIDATE_ATTR. Getting message directly
2847 // from port.
2848 ASSERT_TRUE_WAIT(ice_full_port_ptr->last_stun_msg() != NULL, kDefaultTimeout);
2849 IceMessage* msg = ice_full_port_ptr->last_stun_msg();
2850 EXPECT_TRUE(msg->GetByteString(STUN_ATTR_USE_CANDIDATE) == NULL);
2851
2852 // Respond with a BINDING-RESPONSE from litemode client.
2853 // NOTE: Ideally we should't create connection at this stage from lite
2854 // port, as it should be done only after receiving ping with USE_CANDIDATE.
2855 // But we need a connection to send a response message.
2856 auto* con = ice_lite_port->CreateConnection(
2857 ice_full_port_ptr->Candidates()[0], cricket::Port::ORIGIN_MESSAGE);
2858 std::unique_ptr<IceMessage> request = CopyStunMessage(*msg);
2859 con->SendStunBindingResponse(request.get());
2860
2861 // Feeding the respone message from litemode to the full mode connection.
2862 ch1.conn()->OnReadPacket(ice_lite_port->last_stun_buf()->data<char>(),
2863 ice_lite_port->last_stun_buf()->size(),
2864 /* packet_time_us */ -1);
2865 // Verifying full mode connection becomes writable from the response.
2866 EXPECT_EQ_WAIT(Connection::STATE_WRITABLE, ch1.conn()->write_state(),
2867 kDefaultTimeout);
2868 EXPECT_TRUE_WAIT(ch1.nominated(), kDefaultTimeout);
2869
2870 // Clear existing stun messsages. Otherwise we will process old stun
2871 // message right after we send ping.
2872 ice_full_port_ptr->Reset();
2873 // Send ping. This must have USE_CANDIDATE_ATTR.
2874 ch1.Ping();
2875 ASSERT_TRUE_WAIT(ice_full_port_ptr->last_stun_msg() != NULL, kDefaultTimeout);
2876 msg = ice_full_port_ptr->last_stun_msg();
2877 EXPECT_TRUE(msg->GetByteString(STUN_ATTR_USE_CANDIDATE) != NULL);
2878 ch1.Stop();
2879 }
2880
2881 namespace {
2882
2883 // Utility function for testing goog ping.
GetSupportedGoogPingVersion(const StunMessage * msg)2884 absl::optional<int> GetSupportedGoogPingVersion(const StunMessage* msg) {
2885 auto goog_misc = msg->GetUInt16List(STUN_ATTR_GOOG_MISC_INFO);
2886 if (goog_misc == nullptr) {
2887 return absl::nullopt;
2888 }
2889
2890 if (msg->type() == STUN_BINDING_REQUEST) {
2891 if (goog_misc->Size() <
2892 static_cast<int>(cricket::IceGoogMiscInfoBindingRequestAttributeIndex::
2893 SUPPORT_GOOG_PING_VERSION)) {
2894 return absl::nullopt;
2895 }
2896
2897 return goog_misc->GetType(
2898 static_cast<int>(cricket::IceGoogMiscInfoBindingRequestAttributeIndex::
2899 SUPPORT_GOOG_PING_VERSION));
2900 }
2901
2902 if (msg->type() == STUN_BINDING_RESPONSE) {
2903 if (goog_misc->Size() <
2904 static_cast<int>(cricket::IceGoogMiscInfoBindingResponseAttributeIndex::
2905 SUPPORT_GOOG_PING_VERSION)) {
2906 return absl::nullopt;
2907 }
2908
2909 return goog_misc->GetType(
2910 static_cast<int>(cricket::IceGoogMiscInfoBindingResponseAttributeIndex::
2911 SUPPORT_GOOG_PING_VERSION));
2912 }
2913 return absl::nullopt;
2914 }
2915
2916 } // namespace
2917
2918 class GoogPingTest
2919 : public PortTest,
2920 public ::testing::WithParamInterface<std::pair<bool, bool>> {};
2921
2922 // This test verifies the announce/enable on/off behavior
TEST_P(GoogPingTest,TestGoogPingAnnounceEnable)2923 TEST_P(GoogPingTest, TestGoogPingAnnounceEnable) {
2924 IceFieldTrials trials;
2925 trials.announce_goog_ping = GetParam().first;
2926 trials.enable_goog_ping = GetParam().second;
2927 RTC_LOG(LS_INFO) << "Testing combination: "
2928 " announce: "
2929 << trials.announce_goog_ping
2930 << " enable:" << trials.enable_goog_ping;
2931
2932 auto port1_unique =
2933 CreateTestPort(kLocalAddr1, "lfrag", "lpass",
2934 cricket::ICEROLE_CONTROLLING, kTiebreaker1);
2935 auto* port1 = port1_unique.get();
2936 auto port2 = CreateTestPort(kLocalAddr2, "rfrag", "rpass",
2937 cricket::ICEROLE_CONTROLLED, kTiebreaker2);
2938
2939 TestChannel ch1(std::move(port1_unique));
2940 // Block usage of STUN_ATTR_USE_CANDIDATE so that
2941 // ch1.conn() will sent GOOG_PING_REQUEST directly.
2942 // This only makes test a bit shorter...
2943 ch1.SetIceMode(ICEMODE_LITE);
2944 // Start gathering candidates.
2945 ch1.Start();
2946 port2->PrepareAddress();
2947
2948 ASSERT_EQ_WAIT(1, ch1.complete_count(), kDefaultTimeout);
2949 ASSERT_FALSE(port2->Candidates().empty());
2950
2951 ch1.CreateConnection(GetCandidate(port2.get()));
2952 ASSERT_TRUE(ch1.conn() != NULL);
2953 EXPECT_EQ(Connection::STATE_WRITE_INIT, ch1.conn()->write_state());
2954 ch1.conn()->SetIceFieldTrials(&trials);
2955
2956 // Send ping.
2957 ch1.Ping();
2958
2959 ASSERT_TRUE_WAIT(port1->last_stun_msg() != NULL, kDefaultTimeout);
2960 const IceMessage* request1 = port1->last_stun_msg();
2961
2962 ASSERT_EQ(trials.enable_goog_ping,
2963 GetSupportedGoogPingVersion(request1) &&
2964 GetSupportedGoogPingVersion(request1) >= kGoogPingVersion);
2965
2966 auto* con = port2->CreateConnection(port1->Candidates()[0],
2967 cricket::Port::ORIGIN_MESSAGE);
2968 con->SetIceFieldTrials(&trials);
2969
2970 con->SendStunBindingResponse(request1);
2971
2972 // Then check the response matches the settings.
2973 const auto* response = port2->last_stun_msg();
2974 EXPECT_EQ(response->type(), STUN_BINDING_RESPONSE);
2975 EXPECT_EQ(trials.enable_goog_ping && trials.announce_goog_ping,
2976 GetSupportedGoogPingVersion(response) &&
2977 GetSupportedGoogPingVersion(response) >= kGoogPingVersion);
2978
2979 // Feeding the respone message back.
2980 ch1.conn()->OnReadPacket(port2->last_stun_buf()->data<char>(),
2981 port2->last_stun_buf()->size(),
2982 /* packet_time_us */ -1);
2983
2984 port1->Reset();
2985 port2->Reset();
2986
2987 ch1.Ping();
2988 ASSERT_TRUE_WAIT(port1->last_stun_msg() != NULL, kDefaultTimeout);
2989 const IceMessage* request2 = port1->last_stun_msg();
2990
2991 // It should be a GOOG_PING if both of these are TRUE
2992 if (trials.announce_goog_ping && trials.enable_goog_ping) {
2993 ASSERT_EQ(request2->type(), GOOG_PING_REQUEST);
2994 con->SendGoogPingResponse(request2);
2995 } else {
2996 ASSERT_EQ(request2->type(), STUN_BINDING_REQUEST);
2997 // If we sent a BINDING with enable, and we got a reply that
2998 // didn't contain announce, the next ping should not contain
2999 // the enable again.
3000 ASSERT_FALSE(GetSupportedGoogPingVersion(request2).has_value());
3001 con->SendStunBindingResponse(request2);
3002 }
3003
3004 const auto* response2 = port2->last_stun_msg();
3005 ASSERT_TRUE(response2 != nullptr);
3006
3007 // It should be a GOOG_PING_RESPONSE if both of these are TRUE
3008 if (trials.announce_goog_ping && trials.enable_goog_ping) {
3009 ASSERT_EQ(response2->type(), GOOG_PING_RESPONSE);
3010 } else {
3011 ASSERT_EQ(response2->type(), STUN_BINDING_RESPONSE);
3012 }
3013
3014 ch1.Stop();
3015 }
3016
3017 // This test if a someone send a STUN_BINDING with unsupported version
3018 // (kGoogPingVersion == 0)
TEST_F(PortTest,TestGoogPingUnsupportedVersionInStunBinding)3019 TEST_F(PortTest, TestGoogPingUnsupportedVersionInStunBinding) {
3020 IceFieldTrials trials;
3021 trials.announce_goog_ping = true;
3022 trials.enable_goog_ping = true;
3023
3024 auto port1_unique =
3025 CreateTestPort(kLocalAddr1, "lfrag", "lpass",
3026 cricket::ICEROLE_CONTROLLING, kTiebreaker1);
3027 auto* port1 = port1_unique.get();
3028 auto port2 = CreateTestPort(kLocalAddr2, "rfrag", "rpass",
3029 cricket::ICEROLE_CONTROLLED, kTiebreaker2);
3030
3031 TestChannel ch1(std::move(port1_unique));
3032 // Block usage of STUN_ATTR_USE_CANDIDATE so that
3033 // ch1.conn() will sent GOOG_PING_REQUEST directly.
3034 // This only makes test a bit shorter...
3035 ch1.SetIceMode(ICEMODE_LITE);
3036 // Start gathering candidates.
3037 ch1.Start();
3038 port2->PrepareAddress();
3039
3040 ASSERT_EQ_WAIT(1, ch1.complete_count(), kDefaultTimeout);
3041 ASSERT_FALSE(port2->Candidates().empty());
3042
3043 ch1.CreateConnection(GetCandidate(port2.get()));
3044 ASSERT_TRUE(ch1.conn() != NULL);
3045 EXPECT_EQ(Connection::STATE_WRITE_INIT, ch1.conn()->write_state());
3046 ch1.conn()->SetIceFieldTrials(&trials);
3047
3048 // Send ping.
3049 ch1.Ping();
3050
3051 ASSERT_TRUE_WAIT(port1->last_stun_msg() != NULL, kDefaultTimeout);
3052 const IceMessage* request1 = port1->last_stun_msg();
3053
3054 ASSERT_TRUE(GetSupportedGoogPingVersion(request1) &&
3055 GetSupportedGoogPingVersion(request1) >= kGoogPingVersion);
3056
3057 // Modify the STUN message request1 to send GetSupportedGoogPingVersion == 0
3058 auto modified_request1 = request1->Clone();
3059 ASSERT_TRUE(modified_request1->RemoveAttribute(STUN_ATTR_GOOG_MISC_INFO) !=
3060 nullptr);
3061 ASSERT_TRUE(modified_request1->RemoveAttribute(STUN_ATTR_MESSAGE_INTEGRITY) !=
3062 nullptr);
3063 {
3064 auto list =
3065 StunAttribute::CreateUInt16ListAttribute(STUN_ATTR_GOOG_MISC_INFO);
3066 list->AddTypeAtIndex(
3067 static_cast<uint16_t>(
3068 cricket::IceGoogMiscInfoBindingRequestAttributeIndex::
3069 SUPPORT_GOOG_PING_VERSION),
3070 /* version */ 0);
3071 modified_request1->AddAttribute(std::move(list));
3072 modified_request1->AddMessageIntegrity("rpass");
3073 }
3074 auto* con = port2->CreateConnection(port1->Candidates()[0],
3075 cricket::Port::ORIGIN_MESSAGE);
3076 con->SetIceFieldTrials(&trials);
3077
3078 con->SendStunBindingResponse(modified_request1.get());
3079
3080 // Then check the response matches the settings.
3081 const auto* response = port2->last_stun_msg();
3082 EXPECT_EQ(response->type(), STUN_BINDING_RESPONSE);
3083 EXPECT_FALSE(GetSupportedGoogPingVersion(response));
3084
3085 ch1.Stop();
3086 }
3087
3088 // This test if a someone send a STUN_BINDING_RESPONSE with unsupported version
3089 // (kGoogPingVersion == 0)
TEST_F(PortTest,TestGoogPingUnsupportedVersionInStunBindingResponse)3090 TEST_F(PortTest, TestGoogPingUnsupportedVersionInStunBindingResponse) {
3091 IceFieldTrials trials;
3092 trials.announce_goog_ping = true;
3093 trials.enable_goog_ping = true;
3094
3095 auto port1_unique =
3096 CreateTestPort(kLocalAddr1, "lfrag", "lpass",
3097 cricket::ICEROLE_CONTROLLING, kTiebreaker1);
3098 auto* port1 = port1_unique.get();
3099 auto port2 = CreateTestPort(kLocalAddr2, "rfrag", "rpass",
3100 cricket::ICEROLE_CONTROLLED, kTiebreaker2);
3101
3102 TestChannel ch1(std::move(port1_unique));
3103 // Block usage of STUN_ATTR_USE_CANDIDATE so that
3104 // ch1.conn() will sent GOOG_PING_REQUEST directly.
3105 // This only makes test a bit shorter...
3106 ch1.SetIceMode(ICEMODE_LITE);
3107 // Start gathering candidates.
3108 ch1.Start();
3109 port2->PrepareAddress();
3110
3111 ASSERT_EQ_WAIT(1, ch1.complete_count(), kDefaultTimeout);
3112 ASSERT_FALSE(port2->Candidates().empty());
3113
3114 ch1.CreateConnection(GetCandidate(port2.get()));
3115 ASSERT_TRUE(ch1.conn() != NULL);
3116 EXPECT_EQ(Connection::STATE_WRITE_INIT, ch1.conn()->write_state());
3117 ch1.conn()->SetIceFieldTrials(&trials);
3118
3119 // Send ping.
3120 ch1.Ping();
3121
3122 ASSERT_TRUE_WAIT(port1->last_stun_msg() != NULL, kDefaultTimeout);
3123 const IceMessage* request1 = port1->last_stun_msg();
3124
3125 ASSERT_TRUE(GetSupportedGoogPingVersion(request1) &&
3126 GetSupportedGoogPingVersion(request1) >= kGoogPingVersion);
3127
3128 auto* con = port2->CreateConnection(port1->Candidates()[0],
3129 cricket::Port::ORIGIN_MESSAGE);
3130 con->SetIceFieldTrials(&trials);
3131
3132 con->SendStunBindingResponse(request1);
3133
3134 // Then check the response matches the settings.
3135 const auto* response = port2->last_stun_msg();
3136 EXPECT_EQ(response->type(), STUN_BINDING_RESPONSE);
3137 EXPECT_TRUE(GetSupportedGoogPingVersion(response));
3138
3139 // Modify the STUN message response to contain GetSupportedGoogPingVersion ==
3140 // 0
3141 auto modified_response = response->Clone();
3142 ASSERT_TRUE(modified_response->RemoveAttribute(STUN_ATTR_GOOG_MISC_INFO) !=
3143 nullptr);
3144 ASSERT_TRUE(modified_response->RemoveAttribute(STUN_ATTR_MESSAGE_INTEGRITY) !=
3145 nullptr);
3146 ASSERT_TRUE(modified_response->RemoveAttribute(STUN_ATTR_FINGERPRINT) !=
3147 nullptr);
3148 {
3149 auto list =
3150 StunAttribute::CreateUInt16ListAttribute(STUN_ATTR_GOOG_MISC_INFO);
3151 list->AddTypeAtIndex(
3152 static_cast<uint16_t>(
3153 cricket::IceGoogMiscInfoBindingResponseAttributeIndex::
3154 SUPPORT_GOOG_PING_VERSION),
3155 /* version */ 0);
3156 modified_response->AddAttribute(std::move(list));
3157 modified_response->AddMessageIntegrity("rpass");
3158 modified_response->AddFingerprint();
3159 }
3160
3161 rtc::ByteBufferWriter buf;
3162 modified_response->Write(&buf);
3163
3164 // Feeding the modified respone message back.
3165 ch1.conn()->OnReadPacket(buf.Data(), buf.Length(), /* packet_time_us */ -1);
3166
3167 port1->Reset();
3168 port2->Reset();
3169
3170 ch1.Ping();
3171 ASSERT_TRUE_WAIT(port1->last_stun_msg() != NULL, kDefaultTimeout);
3172
3173 // This should now be a STUN_BINDING...without a kGoogPingVersion
3174 const IceMessage* request2 = port1->last_stun_msg();
3175 EXPECT_EQ(request2->type(), STUN_BINDING_REQUEST);
3176 EXPECT_FALSE(GetSupportedGoogPingVersion(request2));
3177
3178 ch1.Stop();
3179 }
3180
3181 INSTANTIATE_TEST_SUITE_P(GoogPingTest,
3182 GoogPingTest,
3183 // test all combinations of <announce, enable> pairs.
3184 ::testing::Values(std::make_pair(false, false),
3185 std::make_pair(true, false),
3186 std::make_pair(false, true),
3187 std::make_pair(true, true)));
3188
3189 // This test checks that a change in attributes falls back to STUN_BINDING
TEST_F(PortTest,TestChangeInAttributeMakesGoogPingFallsbackToStunBinding)3190 TEST_F(PortTest, TestChangeInAttributeMakesGoogPingFallsbackToStunBinding) {
3191 IceFieldTrials trials;
3192 trials.announce_goog_ping = true;
3193 trials.enable_goog_ping = true;
3194
3195 auto port1_unique =
3196 CreateTestPort(kLocalAddr1, "lfrag", "lpass",
3197 cricket::ICEROLE_CONTROLLING, kTiebreaker1);
3198 auto* port1 = port1_unique.get();
3199 auto port2 = CreateTestPort(kLocalAddr2, "rfrag", "rpass",
3200 cricket::ICEROLE_CONTROLLED, kTiebreaker2);
3201
3202 TestChannel ch1(std::move(port1_unique));
3203 // Block usage of STUN_ATTR_USE_CANDIDATE so that
3204 // ch1.conn() will sent GOOG_PING_REQUEST directly.
3205 // This only makes test a bit shorter...
3206 ch1.SetIceMode(ICEMODE_LITE);
3207 // Start gathering candidates.
3208 ch1.Start();
3209 port2->PrepareAddress();
3210
3211 ASSERT_EQ_WAIT(1, ch1.complete_count(), kDefaultTimeout);
3212 ASSERT_FALSE(port2->Candidates().empty());
3213
3214 ch1.CreateConnection(GetCandidate(port2.get()));
3215 ASSERT_TRUE(ch1.conn() != nullptr);
3216 EXPECT_EQ(Connection::STATE_WRITE_INIT, ch1.conn()->write_state());
3217 ch1.conn()->SetIceFieldTrials(&trials);
3218
3219 // Send ping.
3220 ch1.Ping();
3221
3222 ASSERT_TRUE_WAIT(port1->last_stun_msg() != NULL, kDefaultTimeout);
3223 const IceMessage* msg = port1->last_stun_msg();
3224 auto* con = port2->CreateConnection(port1->Candidates()[0],
3225 cricket::Port::ORIGIN_MESSAGE);
3226 con->SetIceFieldTrials(&trials);
3227
3228 // Feed the message into the connection.
3229 con->SendStunBindingResponse(msg);
3230
3231 // The check reply wrt to settings.
3232 const auto* response = port2->last_stun_msg();
3233 ASSERT_EQ(response->type(), STUN_BINDING_RESPONSE);
3234 ASSERT_TRUE(GetSupportedGoogPingVersion(response) >= kGoogPingVersion);
3235
3236 // Feeding the respone message back.
3237 ch1.conn()->OnReadPacket(port2->last_stun_buf()->data<char>(),
3238 port2->last_stun_buf()->size(),
3239 /* packet_time_us */ -1);
3240
3241 port1->Reset();
3242 port2->Reset();
3243
3244 ch1.Ping();
3245 ASSERT_TRUE_WAIT(port1->last_stun_msg() != NULL, kDefaultTimeout);
3246 const IceMessage* msg2 = port1->last_stun_msg();
3247
3248 // It should be a GOOG_PING if both of these are TRUE
3249 ASSERT_EQ(msg2->type(), GOOG_PING_REQUEST);
3250 con->SendGoogPingResponse(msg2);
3251
3252 const auto* response2 = port2->last_stun_msg();
3253 ASSERT_TRUE(response2 != nullptr);
3254
3255 // It should be a GOOG_PING_RESPONSE.
3256 ASSERT_EQ(response2->type(), GOOG_PING_RESPONSE);
3257
3258 // And now the third ping.
3259 port1->Reset();
3260 port2->Reset();
3261
3262 // Modify the message to be sent.
3263 ch1.conn()->set_use_candidate_attr(!ch1.conn()->use_candidate_attr());
3264
3265 ch1.Ping();
3266 ASSERT_TRUE_WAIT(port1->last_stun_msg() != NULL, kDefaultTimeout);
3267 const IceMessage* msg3 = port1->last_stun_msg();
3268
3269 // It should be a STUN_BINDING_REQUEST
3270 ASSERT_EQ(msg3->type(), STUN_BINDING_REQUEST);
3271
3272 ch1.Stop();
3273 }
3274
3275 // This test that an error response fall back to STUN_BINDING.
TEST_F(PortTest,TestErrorResponseMakesGoogPingFallBackToStunBinding)3276 TEST_F(PortTest, TestErrorResponseMakesGoogPingFallBackToStunBinding) {
3277 IceFieldTrials trials;
3278 trials.announce_goog_ping = true;
3279 trials.enable_goog_ping = true;
3280
3281 auto port1_unique =
3282 CreateTestPort(kLocalAddr1, "lfrag", "lpass",
3283 cricket::ICEROLE_CONTROLLING, kTiebreaker1);
3284 auto* port1 = port1_unique.get();
3285 auto port2 = CreateTestPort(kLocalAddr2, "rfrag", "rpass",
3286 cricket::ICEROLE_CONTROLLED, kTiebreaker2);
3287
3288 TestChannel ch1(std::move(port1_unique));
3289 // Block usage of STUN_ATTR_USE_CANDIDATE so that
3290 // ch1.conn() will sent GOOG_PING_REQUEST directly.
3291 // This only makes test a bit shorter...
3292 ch1.SetIceMode(ICEMODE_LITE);
3293 // Start gathering candidates.
3294 ch1.Start();
3295 port2->PrepareAddress();
3296
3297 ASSERT_EQ_WAIT(1, ch1.complete_count(), kDefaultTimeout);
3298 ASSERT_FALSE(port2->Candidates().empty());
3299
3300 ch1.CreateConnection(GetCandidate(port2.get()));
3301 ASSERT_TRUE(ch1.conn() != NULL);
3302 EXPECT_EQ(Connection::STATE_WRITE_INIT, ch1.conn()->write_state());
3303 ch1.conn()->SetIceFieldTrials(&trials);
3304
3305 // Send ping.
3306 ch1.Ping();
3307
3308 ASSERT_TRUE_WAIT(port1->last_stun_msg() != NULL, kDefaultTimeout);
3309 const IceMessage* msg = port1->last_stun_msg();
3310 auto* con = port2->CreateConnection(port1->Candidates()[0],
3311 cricket::Port::ORIGIN_MESSAGE);
3312 con->SetIceFieldTrials(&trials);
3313
3314 // Feed the message into the connection.
3315 con->SendStunBindingResponse(msg);
3316
3317 // The check reply wrt to settings.
3318 const auto* response = port2->last_stun_msg();
3319 ASSERT_EQ(response->type(), STUN_BINDING_RESPONSE);
3320 ASSERT_TRUE(GetSupportedGoogPingVersion(response) >= kGoogPingVersion);
3321
3322 // Feeding the respone message back.
3323 ch1.conn()->OnReadPacket(port2->last_stun_buf()->data<char>(),
3324 port2->last_stun_buf()->size(),
3325 /* packet_time_us */ -1);
3326
3327 port1->Reset();
3328 port2->Reset();
3329
3330 ch1.Ping();
3331 ASSERT_TRUE_WAIT(port1->last_stun_msg() != NULL, kDefaultTimeout);
3332 const IceMessage* msg2 = port1->last_stun_msg();
3333
3334 // It should be a GOOG_PING.
3335 ASSERT_EQ(msg2->type(), GOOG_PING_REQUEST);
3336 con->SendGoogPingResponse(msg2);
3337
3338 const auto* response2 = port2->last_stun_msg();
3339 ASSERT_TRUE(response2 != nullptr);
3340
3341 // It should be a GOOG_PING_RESPONSE.
3342 ASSERT_EQ(response2->type(), GOOG_PING_RESPONSE);
3343
3344 // But rather than the RESPONSE...feedback an error.
3345 StunMessage error_response;
3346 error_response.SetType(GOOG_PING_ERROR_RESPONSE);
3347 error_response.SetTransactionID(response2->transaction_id());
3348 error_response.AddMessageIntegrity32("rpass");
3349 rtc::ByteBufferWriter buf;
3350 error_response.Write(&buf);
3351
3352 ch1.conn()->OnReadPacket(buf.Data(), buf.Length(),
3353 /* packet_time_us */ -1);
3354
3355 // And now the third ping...this should be a binding.
3356 port1->Reset();
3357 port2->Reset();
3358
3359 ch1.Ping();
3360 ASSERT_TRUE_WAIT(port1->last_stun_msg() != NULL, kDefaultTimeout);
3361 const IceMessage* msg3 = port1->last_stun_msg();
3362
3363 // It should be a STUN_BINDING_REQUEST
3364 ASSERT_EQ(msg3->type(), STUN_BINDING_REQUEST);
3365
3366 ch1.Stop();
3367 }
3368
3369 // This test case verifies that both the controlling port and the controlled
3370 // port will time out after connectivity is lost, if they are not marked as
3371 // "keep alive until pruned."
TEST_F(PortTest,TestPortTimeoutIfNotKeptAlive)3372 TEST_F(PortTest, TestPortTimeoutIfNotKeptAlive) {
3373 rtc::ScopedFakeClock clock;
3374 int timeout_delay = 100;
3375 auto port1 = CreateUdpPort(kLocalAddr1);
3376 ConnectToSignalDestroyed(port1.get());
3377 port1->set_timeout_delay(timeout_delay); // milliseconds
3378 port1->SetIceRole(cricket::ICEROLE_CONTROLLING);
3379 port1->SetIceTiebreaker(kTiebreaker1);
3380
3381 auto port2 = CreateUdpPort(kLocalAddr2);
3382 ConnectToSignalDestroyed(port2.get());
3383 port2->set_timeout_delay(timeout_delay); // milliseconds
3384 port2->SetIceRole(cricket::ICEROLE_CONTROLLED);
3385 port2->SetIceTiebreaker(kTiebreaker2);
3386
3387 // Set up channels and ensure both ports will be deleted.
3388 TestChannel ch1(std::move(port1));
3389 TestChannel ch2(std::move(port2));
3390
3391 // Simulate a connection that succeeds, and then is destroyed.
3392 StartConnectAndStopChannels(&ch1, &ch2);
3393 // After the connection is destroyed, the port will be destroyed because
3394 // none of them is marked as "keep alive until pruned.
3395 EXPECT_EQ_SIMULATED_WAIT(2, ports_destroyed(), 110, clock);
3396 }
3397
3398 // Test that if after all connection are destroyed, new connections are created
3399 // and destroyed again, ports won't be destroyed until a timeout period passes
3400 // after the last set of connections are all destroyed.
TEST_F(PortTest,TestPortTimeoutAfterNewConnectionCreatedAndDestroyed)3401 TEST_F(PortTest, TestPortTimeoutAfterNewConnectionCreatedAndDestroyed) {
3402 rtc::ScopedFakeClock clock;
3403 int timeout_delay = 100;
3404 auto port1 = CreateUdpPort(kLocalAddr1);
3405 ConnectToSignalDestroyed(port1.get());
3406 port1->set_timeout_delay(timeout_delay); // milliseconds
3407 port1->SetIceRole(cricket::ICEROLE_CONTROLLING);
3408 port1->SetIceTiebreaker(kTiebreaker1);
3409
3410 auto port2 = CreateUdpPort(kLocalAddr2);
3411 ConnectToSignalDestroyed(port2.get());
3412 port2->set_timeout_delay(timeout_delay); // milliseconds
3413
3414 port2->SetIceRole(cricket::ICEROLE_CONTROLLED);
3415 port2->SetIceTiebreaker(kTiebreaker2);
3416
3417 // Set up channels and ensure both ports will be deleted.
3418 TestChannel ch1(std::move(port1));
3419 TestChannel ch2(std::move(port2));
3420
3421 // Simulate a connection that succeeds, and then is destroyed.
3422 StartConnectAndStopChannels(&ch1, &ch2);
3423 SIMULATED_WAIT(ports_destroyed() > 0, 80, clock);
3424 EXPECT_EQ(0, ports_destroyed());
3425
3426 // Start the second set of connection and destroy them.
3427 ch1.CreateConnection(GetCandidate(ch2.port()));
3428 ch2.CreateConnection(GetCandidate(ch1.port()));
3429 ch1.Stop();
3430 ch2.Stop();
3431
3432 SIMULATED_WAIT(ports_destroyed() > 0, 80, clock);
3433 EXPECT_EQ(0, ports_destroyed());
3434
3435 // The ports on both sides should be destroyed after timeout.
3436 EXPECT_TRUE_SIMULATED_WAIT(ports_destroyed() == 2, 30, clock);
3437 }
3438
3439 // This test case verifies that neither the controlling port nor the controlled
3440 // port will time out after connectivity is lost if they are marked as "keep
3441 // alive until pruned". They will time out after they are pruned.
TEST_F(PortTest,TestPortNotTimeoutUntilPruned)3442 TEST_F(PortTest, TestPortNotTimeoutUntilPruned) {
3443 rtc::ScopedFakeClock clock;
3444 int timeout_delay = 100;
3445 auto port1 = CreateUdpPort(kLocalAddr1);
3446 ConnectToSignalDestroyed(port1.get());
3447 port1->set_timeout_delay(timeout_delay); // milliseconds
3448 port1->SetIceRole(cricket::ICEROLE_CONTROLLING);
3449 port1->SetIceTiebreaker(kTiebreaker1);
3450
3451 auto port2 = CreateUdpPort(kLocalAddr2);
3452 ConnectToSignalDestroyed(port2.get());
3453 port2->set_timeout_delay(timeout_delay); // milliseconds
3454 port2->SetIceRole(cricket::ICEROLE_CONTROLLED);
3455 port2->SetIceTiebreaker(kTiebreaker2);
3456 // The connection must not be destroyed before a connection is attempted.
3457 EXPECT_EQ(0, ports_destroyed());
3458
3459 port1->set_component(cricket::ICE_CANDIDATE_COMPONENT_DEFAULT);
3460 port2->set_component(cricket::ICE_CANDIDATE_COMPONENT_DEFAULT);
3461
3462 // Set up channels and keep the port alive.
3463 TestChannel ch1(std::move(port1));
3464 TestChannel ch2(std::move(port2));
3465 // Simulate a connection that succeeds, and then is destroyed. But ports
3466 // are kept alive. Ports won't be destroyed.
3467 StartConnectAndStopChannels(&ch1, &ch2);
3468 ch1.port()->KeepAliveUntilPruned();
3469 ch2.port()->KeepAliveUntilPruned();
3470 SIMULATED_WAIT(ports_destroyed() > 0, 150, clock);
3471 EXPECT_EQ(0, ports_destroyed());
3472
3473 // If they are pruned now, they will be destroyed right away.
3474 ch1.port()->Prune();
3475 ch2.port()->Prune();
3476 // The ports on both sides should be destroyed after timeout.
3477 EXPECT_TRUE_SIMULATED_WAIT(ports_destroyed() == 2, 1, clock);
3478 }
3479
TEST_F(PortTest,TestSupportsProtocol)3480 TEST_F(PortTest, TestSupportsProtocol) {
3481 auto udp_port = CreateUdpPort(kLocalAddr1);
3482 EXPECT_TRUE(udp_port->SupportsProtocol(UDP_PROTOCOL_NAME));
3483 EXPECT_FALSE(udp_port->SupportsProtocol(TCP_PROTOCOL_NAME));
3484
3485 auto stun_port = CreateStunPort(kLocalAddr1, nat_socket_factory1());
3486 EXPECT_TRUE(stun_port->SupportsProtocol(UDP_PROTOCOL_NAME));
3487 EXPECT_FALSE(stun_port->SupportsProtocol(TCP_PROTOCOL_NAME));
3488
3489 auto tcp_port = CreateTcpPort(kLocalAddr1);
3490 EXPECT_TRUE(tcp_port->SupportsProtocol(TCP_PROTOCOL_NAME));
3491 EXPECT_TRUE(tcp_port->SupportsProtocol(SSLTCP_PROTOCOL_NAME));
3492 EXPECT_FALSE(tcp_port->SupportsProtocol(UDP_PROTOCOL_NAME));
3493
3494 auto turn_port =
3495 CreateTurnPort(kLocalAddr1, nat_socket_factory1(), PROTO_UDP, PROTO_UDP);
3496 EXPECT_TRUE(turn_port->SupportsProtocol(UDP_PROTOCOL_NAME));
3497 EXPECT_FALSE(turn_port->SupportsProtocol(TCP_PROTOCOL_NAME));
3498 }
3499
3500 // Test that SetIceParameters updates the component, ufrag and password
3501 // on both the port itself and its candidates.
TEST_F(PortTest,TestSetIceParameters)3502 TEST_F(PortTest, TestSetIceParameters) {
3503 auto port = CreateTestPort(kLocalAddr1, "ufrag1", "password1");
3504 port->PrepareAddress();
3505 EXPECT_EQ(1UL, port->Candidates().size());
3506 port->SetIceParameters(1, "ufrag2", "password2");
3507 EXPECT_EQ(1, port->component());
3508 EXPECT_EQ("ufrag2", port->username_fragment());
3509 EXPECT_EQ("password2", port->password());
3510 const Candidate& candidate = port->Candidates()[0];
3511 EXPECT_EQ(1, candidate.component());
3512 EXPECT_EQ("ufrag2", candidate.username());
3513 EXPECT_EQ("password2", candidate.password());
3514 }
3515
TEST_F(PortTest,TestAddConnectionWithSameAddress)3516 TEST_F(PortTest, TestAddConnectionWithSameAddress) {
3517 auto port = CreateTestPort(kLocalAddr1, "ufrag1", "password1");
3518 port->PrepareAddress();
3519 EXPECT_EQ(1u, port->Candidates().size());
3520 rtc::SocketAddress address("1.1.1.1", 5000);
3521 cricket::Candidate candidate(1, "udp", address, 0, "", "", "relay", 0, "");
3522 cricket::Connection* conn1 =
3523 port->CreateConnection(candidate, Port::ORIGIN_MESSAGE);
3524 cricket::Connection* conn_in_use = port->GetConnection(address);
3525 EXPECT_EQ(conn1, conn_in_use);
3526 EXPECT_EQ(0u, conn_in_use->remote_candidate().generation());
3527
3528 // Creating with a candidate with the same address again will get us a
3529 // different connection with the new candidate.
3530 candidate.set_generation(2);
3531 cricket::Connection* conn2 =
3532 port->CreateConnection(candidate, Port::ORIGIN_MESSAGE);
3533 EXPECT_NE(conn1, conn2);
3534 conn_in_use = port->GetConnection(address);
3535 EXPECT_EQ(conn2, conn_in_use);
3536 EXPECT_EQ(2u, conn_in_use->remote_candidate().generation());
3537
3538 // Make sure the new connection was not deleted.
3539 rtc::Thread::Current()->ProcessMessages(300);
3540 EXPECT_TRUE(port->GetConnection(address) != nullptr);
3541 }
3542
3543 // TODO(webrtc:11463) : Move Connection tests into separate unit test
3544 // splitting out shared test code as needed.
3545
3546 class ConnectionTest : public PortTest {
3547 public:
ConnectionTest()3548 ConnectionTest() {
3549 lport_ = CreateTestPort(kLocalAddr1, "lfrag", "lpass");
3550 rport_ = CreateTestPort(kLocalAddr2, "rfrag", "rpass");
3551 lport_->SetIceRole(cricket::ICEROLE_CONTROLLING);
3552 lport_->SetIceTiebreaker(kTiebreaker1);
3553 rport_->SetIceRole(cricket::ICEROLE_CONTROLLED);
3554 rport_->SetIceTiebreaker(kTiebreaker2);
3555
3556 lport_->PrepareAddress();
3557 rport_->PrepareAddress();
3558 }
3559
3560 rtc::ScopedFakeClock clock_;
3561 int num_state_changes_ = 0;
3562
CreateConnection(IceRole role)3563 Connection* CreateConnection(IceRole role) {
3564 Connection* conn;
3565 if (role == cricket::ICEROLE_CONTROLLING) {
3566 conn = lport_->CreateConnection(rport_->Candidates()[0],
3567 Port::ORIGIN_MESSAGE);
3568 } else {
3569 conn = rport_->CreateConnection(lport_->Candidates()[0],
3570 Port::ORIGIN_MESSAGE);
3571 }
3572 conn->SignalStateChange.connect(this,
3573 &ConnectionTest::OnConnectionStateChange);
3574 return conn;
3575 }
3576
SendPingAndCaptureReply(Connection * lconn,Connection * rconn,int64_t ms,rtc::BufferT<uint8_t> * reply)3577 void SendPingAndCaptureReply(Connection* lconn,
3578 Connection* rconn,
3579 int64_t ms,
3580 rtc::BufferT<uint8_t>* reply) {
3581 TestPort* lport =
3582 lconn->PortForTest() == lport_.get() ? lport_.get() : rport_.get();
3583 TestPort* rport =
3584 rconn->PortForTest() == rport_.get() ? rport_.get() : lport_.get();
3585 lconn->Ping(rtc::TimeMillis());
3586 ASSERT_TRUE_WAIT(lport->last_stun_msg(), kDefaultTimeout);
3587 ASSERT_TRUE(lport->last_stun_buf());
3588 rconn->OnReadPacket(lport->last_stun_buf()->data<char>(),
3589 lport->last_stun_buf()->size(),
3590 /* packet_time_us */ -1);
3591 clock_.AdvanceTime(webrtc::TimeDelta::Millis(ms));
3592 ASSERT_TRUE_WAIT(rport->last_stun_msg(), kDefaultTimeout);
3593 ASSERT_TRUE(rport->last_stun_buf());
3594 *reply = std::move(*rport->last_stun_buf());
3595 }
3596
SendPingAndReceiveResponse(Connection * lconn,Connection * rconn,int64_t ms)3597 void SendPingAndReceiveResponse(Connection* lconn,
3598 Connection* rconn,
3599 int64_t ms) {
3600 rtc::BufferT<uint8_t> reply;
3601 SendPingAndCaptureReply(lconn, rconn, ms, &reply);
3602 lconn->OnReadPacket(reply.data<char>(), reply.size(),
3603 /* packet_time_us */ -1);
3604 }
3605
OnConnectionStateChange(Connection * connection)3606 void OnConnectionStateChange(Connection* connection) { num_state_changes_++; }
3607
3608 private:
3609 std::unique_ptr<TestPort> lport_;
3610 std::unique_ptr<TestPort> rport_;
3611 };
3612
TEST_F(ConnectionTest,ConnectionForgetLearnedState)3613 TEST_F(ConnectionTest, ConnectionForgetLearnedState) {
3614 Connection* lconn = CreateConnection(ICEROLE_CONTROLLING);
3615 Connection* rconn = CreateConnection(ICEROLE_CONTROLLED);
3616
3617 EXPECT_FALSE(lconn->writable());
3618 EXPECT_FALSE(lconn->receiving());
3619 EXPECT_TRUE(std::isnan(lconn->GetRttEstimate().GetAverage()));
3620 EXPECT_EQ(lconn->GetRttEstimate().GetVariance(),
3621 std::numeric_limits<double>::infinity());
3622
3623 SendPingAndReceiveResponse(lconn, rconn, 10);
3624
3625 EXPECT_TRUE(lconn->writable());
3626 EXPECT_TRUE(lconn->receiving());
3627 EXPECT_EQ(lconn->GetRttEstimate().GetAverage(), 10);
3628 EXPECT_EQ(lconn->GetRttEstimate().GetVariance(),
3629 std::numeric_limits<double>::infinity());
3630
3631 SendPingAndReceiveResponse(lconn, rconn, 11);
3632
3633 EXPECT_TRUE(lconn->writable());
3634 EXPECT_TRUE(lconn->receiving());
3635 EXPECT_NEAR(lconn->GetRttEstimate().GetAverage(), 10, 0.5);
3636 EXPECT_LT(lconn->GetRttEstimate().GetVariance(),
3637 std::numeric_limits<double>::infinity());
3638
3639 lconn->ForgetLearnedState();
3640
3641 EXPECT_FALSE(lconn->writable());
3642 EXPECT_FALSE(lconn->receiving());
3643 EXPECT_TRUE(std::isnan(lconn->GetRttEstimate().GetAverage()));
3644 EXPECT_EQ(lconn->GetRttEstimate().GetVariance(),
3645 std::numeric_limits<double>::infinity());
3646 }
3647
TEST_F(ConnectionTest,ConnectionForgetLearnedStateDiscardsPendingPings)3648 TEST_F(ConnectionTest, ConnectionForgetLearnedStateDiscardsPendingPings) {
3649 Connection* lconn = CreateConnection(ICEROLE_CONTROLLING);
3650 Connection* rconn = CreateConnection(ICEROLE_CONTROLLED);
3651
3652 SendPingAndReceiveResponse(lconn, rconn, 10);
3653
3654 EXPECT_TRUE(lconn->writable());
3655 EXPECT_TRUE(lconn->receiving());
3656
3657 rtc::BufferT<uint8_t> reply;
3658 SendPingAndCaptureReply(lconn, rconn, 10, &reply);
3659
3660 lconn->ForgetLearnedState();
3661
3662 EXPECT_FALSE(lconn->writable());
3663 EXPECT_FALSE(lconn->receiving());
3664
3665 lconn->OnReadPacket(reply.data<char>(), reply.size(),
3666 /* packet_time_us */ -1);
3667
3668 // That reply was discarded due to the ForgetLearnedState() while it was
3669 // outstanding.
3670 EXPECT_FALSE(lconn->writable());
3671 EXPECT_FALSE(lconn->receiving());
3672
3673 // But sending a new ping and getting a reply works.
3674 SendPingAndReceiveResponse(lconn, rconn, 11);
3675 EXPECT_TRUE(lconn->writable());
3676 EXPECT_TRUE(lconn->receiving());
3677 }
3678
TEST_F(ConnectionTest,ConnectionForgetLearnedStateDoesNotTriggerStateChange)3679 TEST_F(ConnectionTest, ConnectionForgetLearnedStateDoesNotTriggerStateChange) {
3680 Connection* lconn = CreateConnection(ICEROLE_CONTROLLING);
3681 Connection* rconn = CreateConnection(ICEROLE_CONTROLLED);
3682
3683 EXPECT_EQ(num_state_changes_, 0);
3684 SendPingAndReceiveResponse(lconn, rconn, 10);
3685
3686 EXPECT_TRUE(lconn->writable());
3687 EXPECT_TRUE(lconn->receiving());
3688 EXPECT_EQ(num_state_changes_, 2);
3689
3690 lconn->ForgetLearnedState();
3691
3692 EXPECT_FALSE(lconn->writable());
3693 EXPECT_FALSE(lconn->receiving());
3694 EXPECT_EQ(num_state_changes_, 2);
3695 }
3696
3697 } // namespace cricket
3698