1 //===- BuildTree.cpp ------------------------------------------*- C++ -*-=====//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 #include "clang/Tooling/Syntax/BuildTree.h"
9 #include "clang/AST/ASTFwd.h"
10 #include "clang/AST/Decl.h"
11 #include "clang/AST/DeclBase.h"
12 #include "clang/AST/DeclCXX.h"
13 #include "clang/AST/DeclarationName.h"
14 #include "clang/AST/Expr.h"
15 #include "clang/AST/ExprCXX.h"
16 #include "clang/AST/IgnoreExpr.h"
17 #include "clang/AST/OperationKinds.h"
18 #include "clang/AST/RecursiveASTVisitor.h"
19 #include "clang/AST/Stmt.h"
20 #include "clang/AST/TypeLoc.h"
21 #include "clang/AST/TypeLocVisitor.h"
22 #include "clang/Basic/LLVM.h"
23 #include "clang/Basic/SourceLocation.h"
24 #include "clang/Basic/SourceManager.h"
25 #include "clang/Basic/Specifiers.h"
26 #include "clang/Basic/TokenKinds.h"
27 #include "clang/Lex/Lexer.h"
28 #include "clang/Lex/LiteralSupport.h"
29 #include "clang/Tooling/Syntax/Nodes.h"
30 #include "clang/Tooling/Syntax/Tokens.h"
31 #include "clang/Tooling/Syntax/Tree.h"
32 #include "llvm/ADT/ArrayRef.h"
33 #include "llvm/ADT/DenseMap.h"
34 #include "llvm/ADT/PointerUnion.h"
35 #include "llvm/ADT/STLExtras.h"
36 #include "llvm/ADT/ScopeExit.h"
37 #include "llvm/ADT/SmallVector.h"
38 #include "llvm/Support/Allocator.h"
39 #include "llvm/Support/Casting.h"
40 #include "llvm/Support/Compiler.h"
41 #include "llvm/Support/FormatVariadic.h"
42 #include "llvm/Support/MemoryBuffer.h"
43 #include "llvm/Support/raw_ostream.h"
44 #include <cstddef>
45 #include <map>
46
47 using namespace clang;
48
49 // Ignores the implicit `CXXConstructExpr` for copy/move constructor calls
50 // generated by the compiler, as well as in implicit conversions like the one
51 // wrapping `1` in `X x = 1;`.
IgnoreImplicitConstructorSingleStep(Expr * E)52 static Expr *IgnoreImplicitConstructorSingleStep(Expr *E) {
53 if (auto *C = dyn_cast<CXXConstructExpr>(E)) {
54 auto NumArgs = C->getNumArgs();
55 if (NumArgs == 1 || (NumArgs > 1 && isa<CXXDefaultArgExpr>(C->getArg(1)))) {
56 Expr *A = C->getArg(0);
57 if (C->getParenOrBraceRange().isInvalid())
58 return A;
59 }
60 }
61 return E;
62 }
63
64 // In:
65 // struct X {
66 // X(int)
67 // };
68 // X x = X(1);
69 // Ignores the implicit `CXXFunctionalCastExpr` that wraps
70 // `CXXConstructExpr X(1)`.
IgnoreCXXFunctionalCastExprWrappingConstructor(Expr * E)71 static Expr *IgnoreCXXFunctionalCastExprWrappingConstructor(Expr *E) {
72 if (auto *F = dyn_cast<CXXFunctionalCastExpr>(E)) {
73 if (F->getCastKind() == CK_ConstructorConversion)
74 return F->getSubExpr();
75 }
76 return E;
77 }
78
IgnoreImplicit(Expr * E)79 static Expr *IgnoreImplicit(Expr *E) {
80 return IgnoreExprNodes(E, IgnoreImplicitSingleStep,
81 IgnoreImplicitConstructorSingleStep,
82 IgnoreCXXFunctionalCastExprWrappingConstructor);
83 }
84
85 LLVM_ATTRIBUTE_UNUSED
isImplicitExpr(Expr * E)86 static bool isImplicitExpr(Expr *E) { return IgnoreImplicit(E) != E; }
87
88 namespace {
89 /// Get start location of the Declarator from the TypeLoc.
90 /// E.g.:
91 /// loc of `(` in `int (a)`
92 /// loc of `*` in `int *(a)`
93 /// loc of the first `(` in `int (*a)(int)`
94 /// loc of the `*` in `int *(a)(int)`
95 /// loc of the first `*` in `const int *const *volatile a;`
96 ///
97 /// It is non-trivial to get the start location because TypeLocs are stored
98 /// inside out. In the example above `*volatile` is the TypeLoc returned
99 /// by `Decl.getTypeSourceInfo()`, and `*const` is what `.getPointeeLoc()`
100 /// returns.
101 struct GetStartLoc : TypeLocVisitor<GetStartLoc, SourceLocation> {
VisitParenTypeLoc__anond1b8a9b20111::GetStartLoc102 SourceLocation VisitParenTypeLoc(ParenTypeLoc T) {
103 auto L = Visit(T.getInnerLoc());
104 if (L.isValid())
105 return L;
106 return T.getLParenLoc();
107 }
108
109 // Types spelled in the prefix part of the declarator.
VisitPointerTypeLoc__anond1b8a9b20111::GetStartLoc110 SourceLocation VisitPointerTypeLoc(PointerTypeLoc T) {
111 return HandlePointer(T);
112 }
113
VisitMemberPointerTypeLoc__anond1b8a9b20111::GetStartLoc114 SourceLocation VisitMemberPointerTypeLoc(MemberPointerTypeLoc T) {
115 return HandlePointer(T);
116 }
117
VisitBlockPointerTypeLoc__anond1b8a9b20111::GetStartLoc118 SourceLocation VisitBlockPointerTypeLoc(BlockPointerTypeLoc T) {
119 return HandlePointer(T);
120 }
121
VisitReferenceTypeLoc__anond1b8a9b20111::GetStartLoc122 SourceLocation VisitReferenceTypeLoc(ReferenceTypeLoc T) {
123 return HandlePointer(T);
124 }
125
VisitObjCObjectPointerTypeLoc__anond1b8a9b20111::GetStartLoc126 SourceLocation VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc T) {
127 return HandlePointer(T);
128 }
129
130 // All other cases are not important, as they are either part of declaration
131 // specifiers (e.g. inheritors of TypeSpecTypeLoc) or introduce modifiers on
132 // existing declarators (e.g. QualifiedTypeLoc). They cannot start the
133 // declarator themselves, but their underlying type can.
VisitTypeLoc__anond1b8a9b20111::GetStartLoc134 SourceLocation VisitTypeLoc(TypeLoc T) {
135 auto N = T.getNextTypeLoc();
136 if (!N)
137 return SourceLocation();
138 return Visit(N);
139 }
140
VisitFunctionProtoTypeLoc__anond1b8a9b20111::GetStartLoc141 SourceLocation VisitFunctionProtoTypeLoc(FunctionProtoTypeLoc T) {
142 if (T.getTypePtr()->hasTrailingReturn())
143 return SourceLocation(); // avoid recursing into the suffix of declarator.
144 return VisitTypeLoc(T);
145 }
146
147 private:
HandlePointer__anond1b8a9b20111::GetStartLoc148 template <class PtrLoc> SourceLocation HandlePointer(PtrLoc T) {
149 auto L = Visit(T.getPointeeLoc());
150 if (L.isValid())
151 return L;
152 return T.getLocalSourceRange().getBegin();
153 }
154 };
155 } // namespace
156
dropDefaultArgs(CallExpr::arg_range Args)157 static CallExpr::arg_range dropDefaultArgs(CallExpr::arg_range Args) {
158 auto FirstDefaultArg = std::find_if(Args.begin(), Args.end(), [](auto It) {
159 return isa<CXXDefaultArgExpr>(It);
160 });
161 return llvm::make_range(Args.begin(), FirstDefaultArg);
162 }
163
getOperatorNodeKind(const CXXOperatorCallExpr & E)164 static syntax::NodeKind getOperatorNodeKind(const CXXOperatorCallExpr &E) {
165 switch (E.getOperator()) {
166 // Comparison
167 case OO_EqualEqual:
168 case OO_ExclaimEqual:
169 case OO_Greater:
170 case OO_GreaterEqual:
171 case OO_Less:
172 case OO_LessEqual:
173 case OO_Spaceship:
174 // Assignment
175 case OO_Equal:
176 case OO_SlashEqual:
177 case OO_PercentEqual:
178 case OO_CaretEqual:
179 case OO_PipeEqual:
180 case OO_LessLessEqual:
181 case OO_GreaterGreaterEqual:
182 case OO_PlusEqual:
183 case OO_MinusEqual:
184 case OO_StarEqual:
185 case OO_AmpEqual:
186 // Binary computation
187 case OO_Slash:
188 case OO_Percent:
189 case OO_Caret:
190 case OO_Pipe:
191 case OO_LessLess:
192 case OO_GreaterGreater:
193 case OO_AmpAmp:
194 case OO_PipePipe:
195 case OO_ArrowStar:
196 case OO_Comma:
197 return syntax::NodeKind::BinaryOperatorExpression;
198 case OO_Tilde:
199 case OO_Exclaim:
200 return syntax::NodeKind::PrefixUnaryOperatorExpression;
201 // Prefix/Postfix increment/decrement
202 case OO_PlusPlus:
203 case OO_MinusMinus:
204 switch (E.getNumArgs()) {
205 case 1:
206 return syntax::NodeKind::PrefixUnaryOperatorExpression;
207 case 2:
208 return syntax::NodeKind::PostfixUnaryOperatorExpression;
209 default:
210 llvm_unreachable("Invalid number of arguments for operator");
211 }
212 // Operators that can be unary or binary
213 case OO_Plus:
214 case OO_Minus:
215 case OO_Star:
216 case OO_Amp:
217 switch (E.getNumArgs()) {
218 case 1:
219 return syntax::NodeKind::PrefixUnaryOperatorExpression;
220 case 2:
221 return syntax::NodeKind::BinaryOperatorExpression;
222 default:
223 llvm_unreachable("Invalid number of arguments for operator");
224 }
225 return syntax::NodeKind::BinaryOperatorExpression;
226 // Not yet supported by SyntaxTree
227 case OO_New:
228 case OO_Delete:
229 case OO_Array_New:
230 case OO_Array_Delete:
231 case OO_Coawait:
232 case OO_Subscript:
233 case OO_Arrow:
234 return syntax::NodeKind::UnknownExpression;
235 case OO_Call:
236 return syntax::NodeKind::CallExpression;
237 case OO_Conditional: // not overloadable
238 case NUM_OVERLOADED_OPERATORS:
239 case OO_None:
240 llvm_unreachable("Not an overloadable operator");
241 }
242 llvm_unreachable("Unknown OverloadedOperatorKind enum");
243 }
244
245 /// Get the start of the qualified name. In the examples below it gives the
246 /// location of the `^`:
247 /// `int ^a;`
248 /// `int *^a;`
249 /// `int ^a::S::f(){}`
getQualifiedNameStart(NamedDecl * D)250 static SourceLocation getQualifiedNameStart(NamedDecl *D) {
251 assert((isa<DeclaratorDecl, TypedefNameDecl>(D)) &&
252 "only DeclaratorDecl and TypedefNameDecl are supported.");
253
254 auto DN = D->getDeclName();
255 bool IsAnonymous = DN.isIdentifier() && !DN.getAsIdentifierInfo();
256 if (IsAnonymous)
257 return SourceLocation();
258
259 if (const auto *DD = dyn_cast<DeclaratorDecl>(D)) {
260 if (DD->getQualifierLoc()) {
261 return DD->getQualifierLoc().getBeginLoc();
262 }
263 }
264
265 return D->getLocation();
266 }
267
268 /// Gets the range of the initializer inside an init-declarator C++ [dcl.decl].
269 /// `int a;` -> range of ``,
270 /// `int *a = nullptr` -> range of `= nullptr`.
271 /// `int a{}` -> range of `{}`.
272 /// `int a()` -> range of `()`.
getInitializerRange(Decl * D)273 static SourceRange getInitializerRange(Decl *D) {
274 if (auto *V = dyn_cast<VarDecl>(D)) {
275 auto *I = V->getInit();
276 // Initializers in range-based-for are not part of the declarator
277 if (I && !V->isCXXForRangeDecl())
278 return I->getSourceRange();
279 }
280
281 return SourceRange();
282 }
283
284 /// Gets the range of declarator as defined by the C++ grammar. E.g.
285 /// `int a;` -> range of `a`,
286 /// `int *a;` -> range of `*a`,
287 /// `int a[10];` -> range of `a[10]`,
288 /// `int a[1][2][3];` -> range of `a[1][2][3]`,
289 /// `int *a = nullptr` -> range of `*a = nullptr`.
290 /// `int S::f(){}` -> range of `S::f()`.
291 /// FIXME: \p Name must be a source range.
getDeclaratorRange(const SourceManager & SM,TypeLoc T,SourceLocation Name,SourceRange Initializer)292 static SourceRange getDeclaratorRange(const SourceManager &SM, TypeLoc T,
293 SourceLocation Name,
294 SourceRange Initializer) {
295 SourceLocation Start = GetStartLoc().Visit(T);
296 SourceLocation End = T.getEndLoc();
297 assert(End.isValid());
298 if (Name.isValid()) {
299 if (Start.isInvalid())
300 Start = Name;
301 if (SM.isBeforeInTranslationUnit(End, Name))
302 End = Name;
303 }
304 if (Initializer.isValid()) {
305 auto InitializerEnd = Initializer.getEnd();
306 assert(SM.isBeforeInTranslationUnit(End, InitializerEnd) ||
307 End == InitializerEnd);
308 End = InitializerEnd;
309 }
310 return SourceRange(Start, End);
311 }
312
313 namespace {
314 /// All AST hierarchy roots that can be represented as pointers.
315 using ASTPtr = llvm::PointerUnion<Stmt *, Decl *>;
316 /// Maintains a mapping from AST to syntax tree nodes. This class will get more
317 /// complicated as we support more kinds of AST nodes, e.g. TypeLocs.
318 /// FIXME: expose this as public API.
319 class ASTToSyntaxMapping {
320 public:
add(ASTPtr From,syntax::Tree * To)321 void add(ASTPtr From, syntax::Tree *To) {
322 assert(To != nullptr);
323 assert(!From.isNull());
324
325 bool Added = Nodes.insert({From, To}).second;
326 (void)Added;
327 assert(Added && "mapping added twice");
328 }
329
add(NestedNameSpecifierLoc From,syntax::Tree * To)330 void add(NestedNameSpecifierLoc From, syntax::Tree *To) {
331 assert(To != nullptr);
332 assert(From.hasQualifier());
333
334 bool Added = NNSNodes.insert({From, To}).second;
335 (void)Added;
336 assert(Added && "mapping added twice");
337 }
338
find(ASTPtr P) const339 syntax::Tree *find(ASTPtr P) const { return Nodes.lookup(P); }
340
find(NestedNameSpecifierLoc P) const341 syntax::Tree *find(NestedNameSpecifierLoc P) const {
342 return NNSNodes.lookup(P);
343 }
344
345 private:
346 llvm::DenseMap<ASTPtr, syntax::Tree *> Nodes;
347 llvm::DenseMap<NestedNameSpecifierLoc, syntax::Tree *> NNSNodes;
348 };
349 } // namespace
350
351 /// A helper class for constructing the syntax tree while traversing a clang
352 /// AST.
353 ///
354 /// At each point of the traversal we maintain a list of pending nodes.
355 /// Initially all tokens are added as pending nodes. When processing a clang AST
356 /// node, the clients need to:
357 /// - create a corresponding syntax node,
358 /// - assign roles to all pending child nodes with 'markChild' and
359 /// 'markChildToken',
360 /// - replace the child nodes with the new syntax node in the pending list
361 /// with 'foldNode'.
362 ///
363 /// Note that all children are expected to be processed when building a node.
364 ///
365 /// Call finalize() to finish building the tree and consume the root node.
366 class syntax::TreeBuilder {
367 public:
TreeBuilder(syntax::Arena & Arena)368 TreeBuilder(syntax::Arena &Arena) : Arena(Arena), Pending(Arena) {
369 for (const auto &T : Arena.getTokenBuffer().expandedTokens())
370 LocationToToken.insert({T.location(), &T});
371 }
372
allocator()373 llvm::BumpPtrAllocator &allocator() { return Arena.getAllocator(); }
sourceManager() const374 const SourceManager &sourceManager() const {
375 return Arena.getSourceManager();
376 }
377
378 /// Populate children for \p New node, assuming it covers tokens from \p
379 /// Range.
foldNode(ArrayRef<syntax::Token> Range,syntax::Tree * New,ASTPtr From)380 void foldNode(ArrayRef<syntax::Token> Range, syntax::Tree *New, ASTPtr From) {
381 assert(New);
382 Pending.foldChildren(Arena, Range, New);
383 if (From)
384 Mapping.add(From, New);
385 }
386
foldNode(ArrayRef<syntax::Token> Range,syntax::Tree * New,TypeLoc L)387 void foldNode(ArrayRef<syntax::Token> Range, syntax::Tree *New, TypeLoc L) {
388 // FIXME: add mapping for TypeLocs
389 foldNode(Range, New, nullptr);
390 }
391
foldNode(llvm::ArrayRef<syntax::Token> Range,syntax::Tree * New,NestedNameSpecifierLoc From)392 void foldNode(llvm::ArrayRef<syntax::Token> Range, syntax::Tree *New,
393 NestedNameSpecifierLoc From) {
394 assert(New);
395 Pending.foldChildren(Arena, Range, New);
396 if (From)
397 Mapping.add(From, New);
398 }
399
400 /// Populate children for \p New list, assuming it covers tokens from a
401 /// subrange of \p SuperRange.
foldList(ArrayRef<syntax::Token> SuperRange,syntax::List * New,ASTPtr From)402 void foldList(ArrayRef<syntax::Token> SuperRange, syntax::List *New,
403 ASTPtr From) {
404 assert(New);
405 auto ListRange = Pending.shrinkToFitList(SuperRange);
406 Pending.foldChildren(Arena, ListRange, New);
407 if (From)
408 Mapping.add(From, New);
409 }
410
411 /// Notifies that we should not consume trailing semicolon when computing
412 /// token range of \p D.
413 void noticeDeclWithoutSemicolon(Decl *D);
414
415 /// Mark the \p Child node with a corresponding \p Role. All marked children
416 /// should be consumed by foldNode.
417 /// When called on expressions (clang::Expr is derived from clang::Stmt),
418 /// wraps expressions into expression statement.
419 void markStmtChild(Stmt *Child, NodeRole Role);
420 /// Should be called for expressions in non-statement position to avoid
421 /// wrapping into expression statement.
422 void markExprChild(Expr *Child, NodeRole Role);
423 /// Set role for a token starting at \p Loc.
424 void markChildToken(SourceLocation Loc, NodeRole R);
425 /// Set role for \p T.
426 void markChildToken(const syntax::Token *T, NodeRole R);
427
428 /// Set role for \p N.
429 void markChild(syntax::Node *N, NodeRole R);
430 /// Set role for the syntax node matching \p N.
431 void markChild(ASTPtr N, NodeRole R);
432 /// Set role for the syntax node matching \p N.
433 void markChild(NestedNameSpecifierLoc N, NodeRole R);
434
435 /// Finish building the tree and consume the root node.
finalize()436 syntax::TranslationUnit *finalize() && {
437 auto Tokens = Arena.getTokenBuffer().expandedTokens();
438 assert(!Tokens.empty());
439 assert(Tokens.back().kind() == tok::eof);
440
441 // Build the root of the tree, consuming all the children.
442 Pending.foldChildren(Arena, Tokens.drop_back(),
443 new (Arena.getAllocator()) syntax::TranslationUnit);
444
445 auto *TU = cast<syntax::TranslationUnit>(std::move(Pending).finalize());
446 TU->assertInvariantsRecursive();
447 return TU;
448 }
449
450 /// Finds a token starting at \p L. The token must exist if \p L is valid.
451 const syntax::Token *findToken(SourceLocation L) const;
452
453 /// Finds the syntax tokens corresponding to the \p SourceRange.
getRange(SourceRange Range) const454 ArrayRef<syntax::Token> getRange(SourceRange Range) const {
455 assert(Range.isValid());
456 return getRange(Range.getBegin(), Range.getEnd());
457 }
458
459 /// Finds the syntax tokens corresponding to the passed source locations.
460 /// \p First is the start position of the first token and \p Last is the start
461 /// position of the last token.
getRange(SourceLocation First,SourceLocation Last) const462 ArrayRef<syntax::Token> getRange(SourceLocation First,
463 SourceLocation Last) const {
464 assert(First.isValid());
465 assert(Last.isValid());
466 assert(First == Last ||
467 Arena.getSourceManager().isBeforeInTranslationUnit(First, Last));
468 return llvm::makeArrayRef(findToken(First), std::next(findToken(Last)));
469 }
470
471 ArrayRef<syntax::Token>
getTemplateRange(const ClassTemplateSpecializationDecl * D) const472 getTemplateRange(const ClassTemplateSpecializationDecl *D) const {
473 auto Tokens = getRange(D->getSourceRange());
474 return maybeAppendSemicolon(Tokens, D);
475 }
476
477 /// Returns true if \p D is the last declarator in a chain and is thus
478 /// reponsible for creating SimpleDeclaration for the whole chain.
isResponsibleForCreatingDeclaration(const Decl * D) const479 bool isResponsibleForCreatingDeclaration(const Decl *D) const {
480 assert((isa<DeclaratorDecl, TypedefNameDecl>(D)) &&
481 "only DeclaratorDecl and TypedefNameDecl are supported.");
482
483 const Decl *Next = D->getNextDeclInContext();
484
485 // There's no next sibling, this one is responsible.
486 if (Next == nullptr) {
487 return true;
488 }
489
490 // Next sibling is not the same type, this one is responsible.
491 if (D->getKind() != Next->getKind()) {
492 return true;
493 }
494 // Next sibling doesn't begin at the same loc, it must be a different
495 // declaration, so this declarator is responsible.
496 if (Next->getBeginLoc() != D->getBeginLoc()) {
497 return true;
498 }
499
500 // NextT is a member of the same declaration, and we need the last member to
501 // create declaration. This one is not responsible.
502 return false;
503 }
504
getDeclarationRange(Decl * D)505 ArrayRef<syntax::Token> getDeclarationRange(Decl *D) {
506 ArrayRef<syntax::Token> Tokens;
507 // We want to drop the template parameters for specializations.
508 if (const auto *S = dyn_cast<TagDecl>(D))
509 Tokens = getRange(S->TypeDecl::getBeginLoc(), S->getEndLoc());
510 else
511 Tokens = getRange(D->getSourceRange());
512 return maybeAppendSemicolon(Tokens, D);
513 }
514
getExprRange(const Expr * E) const515 ArrayRef<syntax::Token> getExprRange(const Expr *E) const {
516 return getRange(E->getSourceRange());
517 }
518
519 /// Find the adjusted range for the statement, consuming the trailing
520 /// semicolon when needed.
getStmtRange(const Stmt * S) const521 ArrayRef<syntax::Token> getStmtRange(const Stmt *S) const {
522 auto Tokens = getRange(S->getSourceRange());
523 if (isa<CompoundStmt>(S))
524 return Tokens;
525
526 // Some statements miss a trailing semicolon, e.g. 'return', 'continue' and
527 // all statements that end with those. Consume this semicolon here.
528 if (Tokens.back().kind() == tok::semi)
529 return Tokens;
530 return withTrailingSemicolon(Tokens);
531 }
532
533 private:
maybeAppendSemicolon(ArrayRef<syntax::Token> Tokens,const Decl * D) const534 ArrayRef<syntax::Token> maybeAppendSemicolon(ArrayRef<syntax::Token> Tokens,
535 const Decl *D) const {
536 if (isa<NamespaceDecl>(D))
537 return Tokens;
538 if (DeclsWithoutSemicolons.count(D))
539 return Tokens;
540 // FIXME: do not consume trailing semicolon on function definitions.
541 // Most declarations own a semicolon in syntax trees, but not in clang AST.
542 return withTrailingSemicolon(Tokens);
543 }
544
545 ArrayRef<syntax::Token>
withTrailingSemicolon(ArrayRef<syntax::Token> Tokens) const546 withTrailingSemicolon(ArrayRef<syntax::Token> Tokens) const {
547 assert(!Tokens.empty());
548 assert(Tokens.back().kind() != tok::eof);
549 // We never consume 'eof', so looking at the next token is ok.
550 if (Tokens.back().kind() != tok::semi && Tokens.end()->kind() == tok::semi)
551 return llvm::makeArrayRef(Tokens.begin(), Tokens.end() + 1);
552 return Tokens;
553 }
554
setRole(syntax::Node * N,NodeRole R)555 void setRole(syntax::Node *N, NodeRole R) {
556 assert(N->getRole() == NodeRole::Detached);
557 N->setRole(R);
558 }
559
560 /// A collection of trees covering the input tokens.
561 /// When created, each tree corresponds to a single token in the file.
562 /// Clients call 'foldChildren' to attach one or more subtrees to a parent
563 /// node and update the list of trees accordingly.
564 ///
565 /// Ensures that added nodes properly nest and cover the whole token stream.
566 struct Forest {
Forestsyntax::TreeBuilder::Forest567 Forest(syntax::Arena &A) {
568 assert(!A.getTokenBuffer().expandedTokens().empty());
569 assert(A.getTokenBuffer().expandedTokens().back().kind() == tok::eof);
570 // Create all leaf nodes.
571 // Note that we do not have 'eof' in the tree.
572 for (const auto &T : A.getTokenBuffer().expandedTokens().drop_back()) {
573 auto *L = new (A.getAllocator()) syntax::Leaf(&T);
574 L->Original = true;
575 L->CanModify = A.getTokenBuffer().spelledForExpanded(T).hasValue();
576 Trees.insert(Trees.end(), {&T, L});
577 }
578 }
579
assignRolesyntax::TreeBuilder::Forest580 void assignRole(ArrayRef<syntax::Token> Range, syntax::NodeRole Role) {
581 assert(!Range.empty());
582 auto It = Trees.lower_bound(Range.begin());
583 assert(It != Trees.end() && "no node found");
584 assert(It->first == Range.begin() && "no child with the specified range");
585 assert((std::next(It) == Trees.end() ||
586 std::next(It)->first == Range.end()) &&
587 "no child with the specified range");
588 assert(It->second->getRole() == NodeRole::Detached &&
589 "re-assigning role for a child");
590 It->second->setRole(Role);
591 }
592
593 /// Shrink \p Range to a subrange that only contains tokens of a list.
594 /// List elements and delimiters should already have correct roles.
shrinkToFitListsyntax::TreeBuilder::Forest595 ArrayRef<syntax::Token> shrinkToFitList(ArrayRef<syntax::Token> Range) {
596 auto BeginChildren = Trees.lower_bound(Range.begin());
597 assert((BeginChildren == Trees.end() ||
598 BeginChildren->first == Range.begin()) &&
599 "Range crosses boundaries of existing subtrees");
600
601 auto EndChildren = Trees.lower_bound(Range.end());
602 assert(
603 (EndChildren == Trees.end() || EndChildren->first == Range.end()) &&
604 "Range crosses boundaries of existing subtrees");
605
606 auto BelongsToList = [](decltype(Trees)::value_type KV) {
607 auto Role = KV.second->getRole();
608 return Role == syntax::NodeRole::ListElement ||
609 Role == syntax::NodeRole::ListDelimiter;
610 };
611
612 auto BeginListChildren =
613 std::find_if(BeginChildren, EndChildren, BelongsToList);
614
615 auto EndListChildren =
616 std::find_if_not(BeginListChildren, EndChildren, BelongsToList);
617
618 return ArrayRef<syntax::Token>(BeginListChildren->first,
619 EndListChildren->first);
620 }
621
622 /// Add \p Node to the forest and attach child nodes based on \p Tokens.
foldChildrensyntax::TreeBuilder::Forest623 void foldChildren(const syntax::Arena &A, ArrayRef<syntax::Token> Tokens,
624 syntax::Tree *Node) {
625 // Attach children to `Node`.
626 assert(Node->getFirstChild() == nullptr && "node already has children");
627
628 auto *FirstToken = Tokens.begin();
629 auto BeginChildren = Trees.lower_bound(FirstToken);
630
631 assert((BeginChildren == Trees.end() ||
632 BeginChildren->first == FirstToken) &&
633 "fold crosses boundaries of existing subtrees");
634 auto EndChildren = Trees.lower_bound(Tokens.end());
635 assert(
636 (EndChildren == Trees.end() || EndChildren->first == Tokens.end()) &&
637 "fold crosses boundaries of existing subtrees");
638
639 for (auto It = BeginChildren; It != EndChildren; ++It) {
640 auto *C = It->second;
641 if (C->getRole() == NodeRole::Detached)
642 C->setRole(NodeRole::Unknown);
643 Node->appendChildLowLevel(C);
644 }
645
646 // Mark that this node came from the AST and is backed by the source code.
647 Node->Original = true;
648 Node->CanModify =
649 A.getTokenBuffer().spelledForExpanded(Tokens).hasValue();
650
651 Trees.erase(BeginChildren, EndChildren);
652 Trees.insert({FirstToken, Node});
653 }
654
655 // EXPECTS: all tokens were consumed and are owned by a single root node.
finalizesyntax::TreeBuilder::Forest656 syntax::Node *finalize() && {
657 assert(Trees.size() == 1);
658 auto *Root = Trees.begin()->second;
659 Trees = {};
660 return Root;
661 }
662
strsyntax::TreeBuilder::Forest663 std::string str(const syntax::Arena &A) const {
664 std::string R;
665 for (auto It = Trees.begin(); It != Trees.end(); ++It) {
666 unsigned CoveredTokens =
667 It != Trees.end()
668 ? (std::next(It)->first - It->first)
669 : A.getTokenBuffer().expandedTokens().end() - It->first;
670
671 R += std::string(
672 formatv("- '{0}' covers '{1}'+{2} tokens\n", It->second->getKind(),
673 It->first->text(A.getSourceManager()), CoveredTokens));
674 R += It->second->dump(A.getSourceManager());
675 }
676 return R;
677 }
678
679 private:
680 /// Maps from the start token to a subtree starting at that token.
681 /// Keys in the map are pointers into the array of expanded tokens, so
682 /// pointer order corresponds to the order of preprocessor tokens.
683 std::map<const syntax::Token *, syntax::Node *> Trees;
684 };
685
686 /// For debugging purposes.
str()687 std::string str() { return Pending.str(Arena); }
688
689 syntax::Arena &Arena;
690 /// To quickly find tokens by their start location.
691 llvm::DenseMap<SourceLocation, const syntax::Token *> LocationToToken;
692 Forest Pending;
693 llvm::DenseSet<Decl *> DeclsWithoutSemicolons;
694 ASTToSyntaxMapping Mapping;
695 };
696
697 namespace {
698 class BuildTreeVisitor : public RecursiveASTVisitor<BuildTreeVisitor> {
699 public:
BuildTreeVisitor(ASTContext & Context,syntax::TreeBuilder & Builder)700 explicit BuildTreeVisitor(ASTContext &Context, syntax::TreeBuilder &Builder)
701 : Builder(Builder), Context(Context) {}
702
shouldTraversePostOrder() const703 bool shouldTraversePostOrder() const { return true; }
704
WalkUpFromDeclaratorDecl(DeclaratorDecl * DD)705 bool WalkUpFromDeclaratorDecl(DeclaratorDecl *DD) {
706 return processDeclaratorAndDeclaration(DD);
707 }
708
WalkUpFromTypedefNameDecl(TypedefNameDecl * TD)709 bool WalkUpFromTypedefNameDecl(TypedefNameDecl *TD) {
710 return processDeclaratorAndDeclaration(TD);
711 }
712
VisitDecl(Decl * D)713 bool VisitDecl(Decl *D) {
714 assert(!D->isImplicit());
715 Builder.foldNode(Builder.getDeclarationRange(D),
716 new (allocator()) syntax::UnknownDeclaration(), D);
717 return true;
718 }
719
720 // RAV does not call WalkUpFrom* on explicit instantiations, so we have to
721 // override Traverse.
722 // FIXME: make RAV call WalkUpFrom* instead.
723 bool
TraverseClassTemplateSpecializationDecl(ClassTemplateSpecializationDecl * C)724 TraverseClassTemplateSpecializationDecl(ClassTemplateSpecializationDecl *C) {
725 if (!RecursiveASTVisitor::TraverseClassTemplateSpecializationDecl(C))
726 return false;
727 if (C->isExplicitSpecialization())
728 return true; // we are only interested in explicit instantiations.
729 auto *Declaration =
730 cast<syntax::SimpleDeclaration>(handleFreeStandingTagDecl(C));
731 foldExplicitTemplateInstantiation(
732 Builder.getTemplateRange(C), Builder.findToken(C->getExternLoc()),
733 Builder.findToken(C->getTemplateKeywordLoc()), Declaration, C);
734 return true;
735 }
736
WalkUpFromTemplateDecl(TemplateDecl * S)737 bool WalkUpFromTemplateDecl(TemplateDecl *S) {
738 foldTemplateDeclaration(
739 Builder.getDeclarationRange(S),
740 Builder.findToken(S->getTemplateParameters()->getTemplateLoc()),
741 Builder.getDeclarationRange(S->getTemplatedDecl()), S);
742 return true;
743 }
744
WalkUpFromTagDecl(TagDecl * C)745 bool WalkUpFromTagDecl(TagDecl *C) {
746 // FIXME: build the ClassSpecifier node.
747 if (!C->isFreeStanding()) {
748 assert(C->getNumTemplateParameterLists() == 0);
749 return true;
750 }
751 handleFreeStandingTagDecl(C);
752 return true;
753 }
754
handleFreeStandingTagDecl(TagDecl * C)755 syntax::Declaration *handleFreeStandingTagDecl(TagDecl *C) {
756 assert(C->isFreeStanding());
757 // Class is a declaration specifier and needs a spanning declaration node.
758 auto DeclarationRange = Builder.getDeclarationRange(C);
759 syntax::Declaration *Result = new (allocator()) syntax::SimpleDeclaration;
760 Builder.foldNode(DeclarationRange, Result, nullptr);
761
762 // Build TemplateDeclaration nodes if we had template parameters.
763 auto ConsumeTemplateParameters = [&](const TemplateParameterList &L) {
764 const auto *TemplateKW = Builder.findToken(L.getTemplateLoc());
765 auto R = llvm::makeArrayRef(TemplateKW, DeclarationRange.end());
766 Result =
767 foldTemplateDeclaration(R, TemplateKW, DeclarationRange, nullptr);
768 DeclarationRange = R;
769 };
770 if (auto *S = dyn_cast<ClassTemplatePartialSpecializationDecl>(C))
771 ConsumeTemplateParameters(*S->getTemplateParameters());
772 for (unsigned I = C->getNumTemplateParameterLists(); 0 < I; --I)
773 ConsumeTemplateParameters(*C->getTemplateParameterList(I - 1));
774 return Result;
775 }
776
WalkUpFromTranslationUnitDecl(TranslationUnitDecl * TU)777 bool WalkUpFromTranslationUnitDecl(TranslationUnitDecl *TU) {
778 // We do not want to call VisitDecl(), the declaration for translation
779 // unit is built by finalize().
780 return true;
781 }
782
WalkUpFromCompoundStmt(CompoundStmt * S)783 bool WalkUpFromCompoundStmt(CompoundStmt *S) {
784 using NodeRole = syntax::NodeRole;
785
786 Builder.markChildToken(S->getLBracLoc(), NodeRole::OpenParen);
787 for (auto *Child : S->body())
788 Builder.markStmtChild(Child, NodeRole::Statement);
789 Builder.markChildToken(S->getRBracLoc(), NodeRole::CloseParen);
790
791 Builder.foldNode(Builder.getStmtRange(S),
792 new (allocator()) syntax::CompoundStatement, S);
793 return true;
794 }
795
796 // Some statements are not yet handled by syntax trees.
WalkUpFromStmt(Stmt * S)797 bool WalkUpFromStmt(Stmt *S) {
798 Builder.foldNode(Builder.getStmtRange(S),
799 new (allocator()) syntax::UnknownStatement, S);
800 return true;
801 }
802
TraverseCXXForRangeStmt(CXXForRangeStmt * S)803 bool TraverseCXXForRangeStmt(CXXForRangeStmt *S) {
804 // We override to traverse range initializer as VarDecl.
805 // RAV traverses it as a statement, we produce invalid node kinds in that
806 // case.
807 // FIXME: should do this in RAV instead?
808 bool Result = [&, this]() {
809 if (S->getInit() && !TraverseStmt(S->getInit()))
810 return false;
811 if (S->getLoopVariable() && !TraverseDecl(S->getLoopVariable()))
812 return false;
813 if (S->getRangeInit() && !TraverseStmt(S->getRangeInit()))
814 return false;
815 if (S->getBody() && !TraverseStmt(S->getBody()))
816 return false;
817 return true;
818 }();
819 WalkUpFromCXXForRangeStmt(S);
820 return Result;
821 }
822
TraverseStmt(Stmt * S)823 bool TraverseStmt(Stmt *S) {
824 if (auto *DS = dyn_cast_or_null<DeclStmt>(S)) {
825 // We want to consume the semicolon, make sure SimpleDeclaration does not.
826 for (auto *D : DS->decls())
827 Builder.noticeDeclWithoutSemicolon(D);
828 } else if (auto *E = dyn_cast_or_null<Expr>(S)) {
829 return RecursiveASTVisitor::TraverseStmt(IgnoreImplicit(E));
830 }
831 return RecursiveASTVisitor::TraverseStmt(S);
832 }
833
834 // Some expressions are not yet handled by syntax trees.
WalkUpFromExpr(Expr * E)835 bool WalkUpFromExpr(Expr *E) {
836 assert(!isImplicitExpr(E) && "should be handled by TraverseStmt");
837 Builder.foldNode(Builder.getExprRange(E),
838 new (allocator()) syntax::UnknownExpression, E);
839 return true;
840 }
841
TraverseUserDefinedLiteral(UserDefinedLiteral * S)842 bool TraverseUserDefinedLiteral(UserDefinedLiteral *S) {
843 // The semantic AST node `UserDefinedLiteral` (UDL) may have one child node
844 // referencing the location of the UDL suffix (`_w` in `1.2_w`). The
845 // UDL suffix location does not point to the beginning of a token, so we
846 // can't represent the UDL suffix as a separate syntax tree node.
847
848 return WalkUpFromUserDefinedLiteral(S);
849 }
850
851 syntax::UserDefinedLiteralExpression *
buildUserDefinedLiteral(UserDefinedLiteral * S)852 buildUserDefinedLiteral(UserDefinedLiteral *S) {
853 switch (S->getLiteralOperatorKind()) {
854 case UserDefinedLiteral::LOK_Integer:
855 return new (allocator()) syntax::IntegerUserDefinedLiteralExpression;
856 case UserDefinedLiteral::LOK_Floating:
857 return new (allocator()) syntax::FloatUserDefinedLiteralExpression;
858 case UserDefinedLiteral::LOK_Character:
859 return new (allocator()) syntax::CharUserDefinedLiteralExpression;
860 case UserDefinedLiteral::LOK_String:
861 return new (allocator()) syntax::StringUserDefinedLiteralExpression;
862 case UserDefinedLiteral::LOK_Raw:
863 case UserDefinedLiteral::LOK_Template:
864 // For raw literal operator and numeric literal operator template we
865 // cannot get the type of the operand in the semantic AST. We get this
866 // information from the token. As integer and floating point have the same
867 // token kind, we run `NumericLiteralParser` again to distinguish them.
868 auto TokLoc = S->getBeginLoc();
869 auto TokSpelling =
870 Builder.findToken(TokLoc)->text(Context.getSourceManager());
871 auto Literal =
872 NumericLiteralParser(TokSpelling, TokLoc, Context.getSourceManager(),
873 Context.getLangOpts(), Context.getTargetInfo(),
874 Context.getDiagnostics());
875 if (Literal.isIntegerLiteral())
876 return new (allocator()) syntax::IntegerUserDefinedLiteralExpression;
877 else {
878 assert(Literal.isFloatingLiteral());
879 return new (allocator()) syntax::FloatUserDefinedLiteralExpression;
880 }
881 }
882 llvm_unreachable("Unknown literal operator kind.");
883 }
884
WalkUpFromUserDefinedLiteral(UserDefinedLiteral * S)885 bool WalkUpFromUserDefinedLiteral(UserDefinedLiteral *S) {
886 Builder.markChildToken(S->getBeginLoc(), syntax::NodeRole::LiteralToken);
887 Builder.foldNode(Builder.getExprRange(S), buildUserDefinedLiteral(S), S);
888 return true;
889 }
890
891 // FIXME: Fix `NestedNameSpecifierLoc::getLocalSourceRange` for the
892 // `DependentTemplateSpecializationType` case.
893 /// Given a nested-name-specifier return the range for the last name
894 /// specifier.
895 ///
896 /// e.g. `std::T::template X<U>::` => `template X<U>::`
getLocalSourceRange(const NestedNameSpecifierLoc & NNSLoc)897 SourceRange getLocalSourceRange(const NestedNameSpecifierLoc &NNSLoc) {
898 auto SR = NNSLoc.getLocalSourceRange();
899
900 // The method `NestedNameSpecifierLoc::getLocalSourceRange` *should*
901 // return the desired `SourceRange`, but there is a corner case. For a
902 // `DependentTemplateSpecializationType` this method returns its
903 // qualifiers as well, in other words in the example above this method
904 // returns `T::template X<U>::` instead of only `template X<U>::`
905 if (auto TL = NNSLoc.getTypeLoc()) {
906 if (auto DependentTL =
907 TL.getAs<DependentTemplateSpecializationTypeLoc>()) {
908 // The 'template' keyword is always present in dependent template
909 // specializations. Except in the case of incorrect code
910 // TODO: Treat the case of incorrect code.
911 SR.setBegin(DependentTL.getTemplateKeywordLoc());
912 }
913 }
914
915 return SR;
916 }
917
getNameSpecifierKind(const NestedNameSpecifier & NNS)918 syntax::NodeKind getNameSpecifierKind(const NestedNameSpecifier &NNS) {
919 switch (NNS.getKind()) {
920 case NestedNameSpecifier::Global:
921 return syntax::NodeKind::GlobalNameSpecifier;
922 case NestedNameSpecifier::Namespace:
923 case NestedNameSpecifier::NamespaceAlias:
924 case NestedNameSpecifier::Identifier:
925 return syntax::NodeKind::IdentifierNameSpecifier;
926 case NestedNameSpecifier::TypeSpecWithTemplate:
927 return syntax::NodeKind::SimpleTemplateNameSpecifier;
928 case NestedNameSpecifier::TypeSpec: {
929 const auto *NNSType = NNS.getAsType();
930 assert(NNSType);
931 if (isa<DecltypeType>(NNSType))
932 return syntax::NodeKind::DecltypeNameSpecifier;
933 if (isa<TemplateSpecializationType, DependentTemplateSpecializationType>(
934 NNSType))
935 return syntax::NodeKind::SimpleTemplateNameSpecifier;
936 return syntax::NodeKind::IdentifierNameSpecifier;
937 }
938 default:
939 // FIXME: Support Microsoft's __super
940 llvm::report_fatal_error("We don't yet support the __super specifier",
941 true);
942 }
943 }
944
945 syntax::NameSpecifier *
buildNameSpecifier(const NestedNameSpecifierLoc & NNSLoc)946 buildNameSpecifier(const NestedNameSpecifierLoc &NNSLoc) {
947 assert(NNSLoc.hasQualifier());
948 auto NameSpecifierTokens =
949 Builder.getRange(getLocalSourceRange(NNSLoc)).drop_back();
950 switch (getNameSpecifierKind(*NNSLoc.getNestedNameSpecifier())) {
951 case syntax::NodeKind::GlobalNameSpecifier:
952 return new (allocator()) syntax::GlobalNameSpecifier;
953 case syntax::NodeKind::IdentifierNameSpecifier: {
954 assert(NameSpecifierTokens.size() == 1);
955 Builder.markChildToken(NameSpecifierTokens.begin(),
956 syntax::NodeRole::Unknown);
957 auto *NS = new (allocator()) syntax::IdentifierNameSpecifier;
958 Builder.foldNode(NameSpecifierTokens, NS, nullptr);
959 return NS;
960 }
961 case syntax::NodeKind::SimpleTemplateNameSpecifier: {
962 // TODO: Build `SimpleTemplateNameSpecifier` children and implement
963 // accessors to them.
964 // Be aware, we cannot do that simply by calling `TraverseTypeLoc`,
965 // some `TypeLoc`s have inside them the previous name specifier and
966 // we want to treat them independently.
967 auto *NS = new (allocator()) syntax::SimpleTemplateNameSpecifier;
968 Builder.foldNode(NameSpecifierTokens, NS, nullptr);
969 return NS;
970 }
971 case syntax::NodeKind::DecltypeNameSpecifier: {
972 const auto TL = NNSLoc.getTypeLoc().castAs<DecltypeTypeLoc>();
973 if (!RecursiveASTVisitor::TraverseDecltypeTypeLoc(TL))
974 return nullptr;
975 auto *NS = new (allocator()) syntax::DecltypeNameSpecifier;
976 // TODO: Implement accessor to `DecltypeNameSpecifier` inner
977 // `DecltypeTypeLoc`.
978 // For that add mapping from `TypeLoc` to `syntax::Node*` then:
979 // Builder.markChild(TypeLoc, syntax::NodeRole);
980 Builder.foldNode(NameSpecifierTokens, NS, nullptr);
981 return NS;
982 }
983 default:
984 llvm_unreachable("getChildKind() does not return this value");
985 }
986 }
987
988 // To build syntax tree nodes for NestedNameSpecifierLoc we override
989 // Traverse instead of WalkUpFrom because we want to traverse the children
990 // ourselves and build a list instead of a nested tree of name specifier
991 // prefixes.
TraverseNestedNameSpecifierLoc(NestedNameSpecifierLoc QualifierLoc)992 bool TraverseNestedNameSpecifierLoc(NestedNameSpecifierLoc QualifierLoc) {
993 if (!QualifierLoc)
994 return true;
995 for (auto It = QualifierLoc; It; It = It.getPrefix()) {
996 auto *NS = buildNameSpecifier(It);
997 if (!NS)
998 return false;
999 Builder.markChild(NS, syntax::NodeRole::ListElement);
1000 Builder.markChildToken(It.getEndLoc(), syntax::NodeRole::ListDelimiter);
1001 }
1002 Builder.foldNode(Builder.getRange(QualifierLoc.getSourceRange()),
1003 new (allocator()) syntax::NestedNameSpecifier,
1004 QualifierLoc);
1005 return true;
1006 }
1007
buildIdExpression(NestedNameSpecifierLoc QualifierLoc,SourceLocation TemplateKeywordLoc,SourceRange UnqualifiedIdLoc,ASTPtr From)1008 syntax::IdExpression *buildIdExpression(NestedNameSpecifierLoc QualifierLoc,
1009 SourceLocation TemplateKeywordLoc,
1010 SourceRange UnqualifiedIdLoc,
1011 ASTPtr From) {
1012 if (QualifierLoc) {
1013 Builder.markChild(QualifierLoc, syntax::NodeRole::Qualifier);
1014 if (TemplateKeywordLoc.isValid())
1015 Builder.markChildToken(TemplateKeywordLoc,
1016 syntax::NodeRole::TemplateKeyword);
1017 }
1018
1019 auto *TheUnqualifiedId = new (allocator()) syntax::UnqualifiedId;
1020 Builder.foldNode(Builder.getRange(UnqualifiedIdLoc), TheUnqualifiedId,
1021 nullptr);
1022 Builder.markChild(TheUnqualifiedId, syntax::NodeRole::UnqualifiedId);
1023
1024 auto IdExpressionBeginLoc =
1025 QualifierLoc ? QualifierLoc.getBeginLoc() : UnqualifiedIdLoc.getBegin();
1026
1027 auto *TheIdExpression = new (allocator()) syntax::IdExpression;
1028 Builder.foldNode(
1029 Builder.getRange(IdExpressionBeginLoc, UnqualifiedIdLoc.getEnd()),
1030 TheIdExpression, From);
1031
1032 return TheIdExpression;
1033 }
1034
WalkUpFromMemberExpr(MemberExpr * S)1035 bool WalkUpFromMemberExpr(MemberExpr *S) {
1036 // For `MemberExpr` with implicit `this->` we generate a simple
1037 // `id-expression` syntax node, beacuse an implicit `member-expression` is
1038 // syntactically undistinguishable from an `id-expression`
1039 if (S->isImplicitAccess()) {
1040 buildIdExpression(S->getQualifierLoc(), S->getTemplateKeywordLoc(),
1041 SourceRange(S->getMemberLoc(), S->getEndLoc()), S);
1042 return true;
1043 }
1044
1045 auto *TheIdExpression = buildIdExpression(
1046 S->getQualifierLoc(), S->getTemplateKeywordLoc(),
1047 SourceRange(S->getMemberLoc(), S->getEndLoc()), nullptr);
1048
1049 Builder.markChild(TheIdExpression, syntax::NodeRole::Member);
1050
1051 Builder.markExprChild(S->getBase(), syntax::NodeRole::Object);
1052 Builder.markChildToken(S->getOperatorLoc(), syntax::NodeRole::AccessToken);
1053
1054 Builder.foldNode(Builder.getExprRange(S),
1055 new (allocator()) syntax::MemberExpression, S);
1056 return true;
1057 }
1058
WalkUpFromDeclRefExpr(DeclRefExpr * S)1059 bool WalkUpFromDeclRefExpr(DeclRefExpr *S) {
1060 buildIdExpression(S->getQualifierLoc(), S->getTemplateKeywordLoc(),
1061 SourceRange(S->getLocation(), S->getEndLoc()), S);
1062
1063 return true;
1064 }
1065
1066 // Same logic as DeclRefExpr.
WalkUpFromDependentScopeDeclRefExpr(DependentScopeDeclRefExpr * S)1067 bool WalkUpFromDependentScopeDeclRefExpr(DependentScopeDeclRefExpr *S) {
1068 buildIdExpression(S->getQualifierLoc(), S->getTemplateKeywordLoc(),
1069 SourceRange(S->getLocation(), S->getEndLoc()), S);
1070
1071 return true;
1072 }
1073
WalkUpFromCXXThisExpr(CXXThisExpr * S)1074 bool WalkUpFromCXXThisExpr(CXXThisExpr *S) {
1075 if (!S->isImplicit()) {
1076 Builder.markChildToken(S->getLocation(),
1077 syntax::NodeRole::IntroducerKeyword);
1078 Builder.foldNode(Builder.getExprRange(S),
1079 new (allocator()) syntax::ThisExpression, S);
1080 }
1081 return true;
1082 }
1083
WalkUpFromParenExpr(ParenExpr * S)1084 bool WalkUpFromParenExpr(ParenExpr *S) {
1085 Builder.markChildToken(S->getLParen(), syntax::NodeRole::OpenParen);
1086 Builder.markExprChild(S->getSubExpr(), syntax::NodeRole::SubExpression);
1087 Builder.markChildToken(S->getRParen(), syntax::NodeRole::CloseParen);
1088 Builder.foldNode(Builder.getExprRange(S),
1089 new (allocator()) syntax::ParenExpression, S);
1090 return true;
1091 }
1092
WalkUpFromIntegerLiteral(IntegerLiteral * S)1093 bool WalkUpFromIntegerLiteral(IntegerLiteral *S) {
1094 Builder.markChildToken(S->getLocation(), syntax::NodeRole::LiteralToken);
1095 Builder.foldNode(Builder.getExprRange(S),
1096 new (allocator()) syntax::IntegerLiteralExpression, S);
1097 return true;
1098 }
1099
WalkUpFromCharacterLiteral(CharacterLiteral * S)1100 bool WalkUpFromCharacterLiteral(CharacterLiteral *S) {
1101 Builder.markChildToken(S->getLocation(), syntax::NodeRole::LiteralToken);
1102 Builder.foldNode(Builder.getExprRange(S),
1103 new (allocator()) syntax::CharacterLiteralExpression, S);
1104 return true;
1105 }
1106
WalkUpFromFloatingLiteral(FloatingLiteral * S)1107 bool WalkUpFromFloatingLiteral(FloatingLiteral *S) {
1108 Builder.markChildToken(S->getLocation(), syntax::NodeRole::LiteralToken);
1109 Builder.foldNode(Builder.getExprRange(S),
1110 new (allocator()) syntax::FloatingLiteralExpression, S);
1111 return true;
1112 }
1113
WalkUpFromStringLiteral(StringLiteral * S)1114 bool WalkUpFromStringLiteral(StringLiteral *S) {
1115 Builder.markChildToken(S->getBeginLoc(), syntax::NodeRole::LiteralToken);
1116 Builder.foldNode(Builder.getExprRange(S),
1117 new (allocator()) syntax::StringLiteralExpression, S);
1118 return true;
1119 }
1120
WalkUpFromCXXBoolLiteralExpr(CXXBoolLiteralExpr * S)1121 bool WalkUpFromCXXBoolLiteralExpr(CXXBoolLiteralExpr *S) {
1122 Builder.markChildToken(S->getLocation(), syntax::NodeRole::LiteralToken);
1123 Builder.foldNode(Builder.getExprRange(S),
1124 new (allocator()) syntax::BoolLiteralExpression, S);
1125 return true;
1126 }
1127
WalkUpFromCXXNullPtrLiteralExpr(CXXNullPtrLiteralExpr * S)1128 bool WalkUpFromCXXNullPtrLiteralExpr(CXXNullPtrLiteralExpr *S) {
1129 Builder.markChildToken(S->getLocation(), syntax::NodeRole::LiteralToken);
1130 Builder.foldNode(Builder.getExprRange(S),
1131 new (allocator()) syntax::CxxNullPtrExpression, S);
1132 return true;
1133 }
1134
WalkUpFromUnaryOperator(UnaryOperator * S)1135 bool WalkUpFromUnaryOperator(UnaryOperator *S) {
1136 Builder.markChildToken(S->getOperatorLoc(),
1137 syntax::NodeRole::OperatorToken);
1138 Builder.markExprChild(S->getSubExpr(), syntax::NodeRole::Operand);
1139
1140 if (S->isPostfix())
1141 Builder.foldNode(Builder.getExprRange(S),
1142 new (allocator()) syntax::PostfixUnaryOperatorExpression,
1143 S);
1144 else
1145 Builder.foldNode(Builder.getExprRange(S),
1146 new (allocator()) syntax::PrefixUnaryOperatorExpression,
1147 S);
1148
1149 return true;
1150 }
1151
WalkUpFromBinaryOperator(BinaryOperator * S)1152 bool WalkUpFromBinaryOperator(BinaryOperator *S) {
1153 Builder.markExprChild(S->getLHS(), syntax::NodeRole::LeftHandSide);
1154 Builder.markChildToken(S->getOperatorLoc(),
1155 syntax::NodeRole::OperatorToken);
1156 Builder.markExprChild(S->getRHS(), syntax::NodeRole::RightHandSide);
1157 Builder.foldNode(Builder.getExprRange(S),
1158 new (allocator()) syntax::BinaryOperatorExpression, S);
1159 return true;
1160 }
1161
1162 /// Builds `CallArguments` syntax node from arguments that appear in source
1163 /// code, i.e. not default arguments.
1164 syntax::CallArguments *
buildCallArguments(CallExpr::arg_range ArgsAndDefaultArgs)1165 buildCallArguments(CallExpr::arg_range ArgsAndDefaultArgs) {
1166 auto Args = dropDefaultArgs(ArgsAndDefaultArgs);
1167 for (auto *Arg : Args) {
1168 Builder.markExprChild(Arg, syntax::NodeRole::ListElement);
1169 const auto *DelimiterToken =
1170 std::next(Builder.findToken(Arg->getEndLoc()));
1171 if (DelimiterToken->kind() == clang::tok::TokenKind::comma)
1172 Builder.markChildToken(DelimiterToken, syntax::NodeRole::ListDelimiter);
1173 }
1174
1175 auto *Arguments = new (allocator()) syntax::CallArguments;
1176 if (!Args.empty())
1177 Builder.foldNode(Builder.getRange((*Args.begin())->getBeginLoc(),
1178 (*(Args.end() - 1))->getEndLoc()),
1179 Arguments, nullptr);
1180
1181 return Arguments;
1182 }
1183
WalkUpFromCallExpr(CallExpr * S)1184 bool WalkUpFromCallExpr(CallExpr *S) {
1185 Builder.markExprChild(S->getCallee(), syntax::NodeRole::Callee);
1186
1187 const auto *LParenToken =
1188 std::next(Builder.findToken(S->getCallee()->getEndLoc()));
1189 // FIXME: Assert that `LParenToken` is indeed a `l_paren` once we have fixed
1190 // the test on decltype desctructors.
1191 if (LParenToken->kind() == clang::tok::l_paren)
1192 Builder.markChildToken(LParenToken, syntax::NodeRole::OpenParen);
1193
1194 Builder.markChild(buildCallArguments(S->arguments()),
1195 syntax::NodeRole::Arguments);
1196
1197 Builder.markChildToken(S->getRParenLoc(), syntax::NodeRole::CloseParen);
1198
1199 Builder.foldNode(Builder.getRange(S->getSourceRange()),
1200 new (allocator()) syntax::CallExpression, S);
1201 return true;
1202 }
1203
WalkUpFromCXXConstructExpr(CXXConstructExpr * S)1204 bool WalkUpFromCXXConstructExpr(CXXConstructExpr *S) {
1205 // Ignore the implicit calls to default constructors.
1206 if ((S->getNumArgs() == 0 || isa<CXXDefaultArgExpr>(S->getArg(0))) &&
1207 S->getParenOrBraceRange().isInvalid())
1208 return true;
1209 return RecursiveASTVisitor::WalkUpFromCXXConstructExpr(S);
1210 }
1211
TraverseCXXOperatorCallExpr(CXXOperatorCallExpr * S)1212 bool TraverseCXXOperatorCallExpr(CXXOperatorCallExpr *S) {
1213 // To construct a syntax tree of the same shape for calls to built-in and
1214 // user-defined operators, ignore the `DeclRefExpr` that refers to the
1215 // operator and treat it as a simple token. Do that by traversing
1216 // arguments instead of children.
1217 for (auto *child : S->arguments()) {
1218 // A postfix unary operator is declared as taking two operands. The
1219 // second operand is used to distinguish from its prefix counterpart. In
1220 // the semantic AST this "phantom" operand is represented as a
1221 // `IntegerLiteral` with invalid `SourceLocation`. We skip visiting this
1222 // operand because it does not correspond to anything written in source
1223 // code.
1224 if (child->getSourceRange().isInvalid()) {
1225 assert(getOperatorNodeKind(*S) ==
1226 syntax::NodeKind::PostfixUnaryOperatorExpression);
1227 continue;
1228 }
1229 if (!TraverseStmt(child))
1230 return false;
1231 }
1232 return WalkUpFromCXXOperatorCallExpr(S);
1233 }
1234
WalkUpFromCXXOperatorCallExpr(CXXOperatorCallExpr * S)1235 bool WalkUpFromCXXOperatorCallExpr(CXXOperatorCallExpr *S) {
1236 switch (getOperatorNodeKind(*S)) {
1237 case syntax::NodeKind::BinaryOperatorExpression:
1238 Builder.markExprChild(S->getArg(0), syntax::NodeRole::LeftHandSide);
1239 Builder.markChildToken(S->getOperatorLoc(),
1240 syntax::NodeRole::OperatorToken);
1241 Builder.markExprChild(S->getArg(1), syntax::NodeRole::RightHandSide);
1242 Builder.foldNode(Builder.getExprRange(S),
1243 new (allocator()) syntax::BinaryOperatorExpression, S);
1244 return true;
1245 case syntax::NodeKind::PrefixUnaryOperatorExpression:
1246 Builder.markChildToken(S->getOperatorLoc(),
1247 syntax::NodeRole::OperatorToken);
1248 Builder.markExprChild(S->getArg(0), syntax::NodeRole::Operand);
1249 Builder.foldNode(Builder.getExprRange(S),
1250 new (allocator()) syntax::PrefixUnaryOperatorExpression,
1251 S);
1252 return true;
1253 case syntax::NodeKind::PostfixUnaryOperatorExpression:
1254 Builder.markChildToken(S->getOperatorLoc(),
1255 syntax::NodeRole::OperatorToken);
1256 Builder.markExprChild(S->getArg(0), syntax::NodeRole::Operand);
1257 Builder.foldNode(Builder.getExprRange(S),
1258 new (allocator()) syntax::PostfixUnaryOperatorExpression,
1259 S);
1260 return true;
1261 case syntax::NodeKind::CallExpression: {
1262 Builder.markExprChild(S->getArg(0), syntax::NodeRole::Callee);
1263
1264 const auto *LParenToken =
1265 std::next(Builder.findToken(S->getArg(0)->getEndLoc()));
1266 // FIXME: Assert that `LParenToken` is indeed a `l_paren` once we have
1267 // fixed the test on decltype desctructors.
1268 if (LParenToken->kind() == clang::tok::l_paren)
1269 Builder.markChildToken(LParenToken, syntax::NodeRole::OpenParen);
1270
1271 Builder.markChild(buildCallArguments(CallExpr::arg_range(
1272 S->arg_begin() + 1, S->arg_end())),
1273 syntax::NodeRole::Arguments);
1274
1275 Builder.markChildToken(S->getRParenLoc(), syntax::NodeRole::CloseParen);
1276
1277 Builder.foldNode(Builder.getRange(S->getSourceRange()),
1278 new (allocator()) syntax::CallExpression, S);
1279 return true;
1280 }
1281 case syntax::NodeKind::UnknownExpression:
1282 return WalkUpFromExpr(S);
1283 default:
1284 llvm_unreachable("getOperatorNodeKind() does not return this value");
1285 }
1286 }
1287
WalkUpFromCXXDefaultArgExpr(CXXDefaultArgExpr * S)1288 bool WalkUpFromCXXDefaultArgExpr(CXXDefaultArgExpr *S) { return true; }
1289
WalkUpFromNamespaceDecl(NamespaceDecl * S)1290 bool WalkUpFromNamespaceDecl(NamespaceDecl *S) {
1291 auto Tokens = Builder.getDeclarationRange(S);
1292 if (Tokens.front().kind() == tok::coloncolon) {
1293 // Handle nested namespace definitions. Those start at '::' token, e.g.
1294 // namespace a^::b {}
1295 // FIXME: build corresponding nodes for the name of this namespace.
1296 return true;
1297 }
1298 Builder.foldNode(Tokens, new (allocator()) syntax::NamespaceDefinition, S);
1299 return true;
1300 }
1301
1302 // FIXME: Deleting the `TraverseParenTypeLoc` override doesn't change test
1303 // results. Find test coverage or remove it.
TraverseParenTypeLoc(ParenTypeLoc L)1304 bool TraverseParenTypeLoc(ParenTypeLoc L) {
1305 // We reverse order of traversal to get the proper syntax structure.
1306 if (!WalkUpFromParenTypeLoc(L))
1307 return false;
1308 return TraverseTypeLoc(L.getInnerLoc());
1309 }
1310
WalkUpFromParenTypeLoc(ParenTypeLoc L)1311 bool WalkUpFromParenTypeLoc(ParenTypeLoc L) {
1312 Builder.markChildToken(L.getLParenLoc(), syntax::NodeRole::OpenParen);
1313 Builder.markChildToken(L.getRParenLoc(), syntax::NodeRole::CloseParen);
1314 Builder.foldNode(Builder.getRange(L.getLParenLoc(), L.getRParenLoc()),
1315 new (allocator()) syntax::ParenDeclarator, L);
1316 return true;
1317 }
1318
1319 // Declarator chunks, they are produced by type locs and some clang::Decls.
WalkUpFromArrayTypeLoc(ArrayTypeLoc L)1320 bool WalkUpFromArrayTypeLoc(ArrayTypeLoc L) {
1321 Builder.markChildToken(L.getLBracketLoc(), syntax::NodeRole::OpenParen);
1322 Builder.markExprChild(L.getSizeExpr(), syntax::NodeRole::Size);
1323 Builder.markChildToken(L.getRBracketLoc(), syntax::NodeRole::CloseParen);
1324 Builder.foldNode(Builder.getRange(L.getLBracketLoc(), L.getRBracketLoc()),
1325 new (allocator()) syntax::ArraySubscript, L);
1326 return true;
1327 }
1328
1329 syntax::ParameterDeclarationList *
buildParameterDeclarationList(ArrayRef<ParmVarDecl * > Params)1330 buildParameterDeclarationList(ArrayRef<ParmVarDecl *> Params) {
1331 for (auto *P : Params) {
1332 Builder.markChild(P, syntax::NodeRole::ListElement);
1333 const auto *DelimiterToken = std::next(Builder.findToken(P->getEndLoc()));
1334 if (DelimiterToken->kind() == clang::tok::TokenKind::comma)
1335 Builder.markChildToken(DelimiterToken, syntax::NodeRole::ListDelimiter);
1336 }
1337 auto *Parameters = new (allocator()) syntax::ParameterDeclarationList;
1338 if (!Params.empty())
1339 Builder.foldNode(Builder.getRange(Params.front()->getBeginLoc(),
1340 Params.back()->getEndLoc()),
1341 Parameters, nullptr);
1342 return Parameters;
1343 }
1344
WalkUpFromFunctionTypeLoc(FunctionTypeLoc L)1345 bool WalkUpFromFunctionTypeLoc(FunctionTypeLoc L) {
1346 Builder.markChildToken(L.getLParenLoc(), syntax::NodeRole::OpenParen);
1347
1348 Builder.markChild(buildParameterDeclarationList(L.getParams()),
1349 syntax::NodeRole::Parameters);
1350
1351 Builder.markChildToken(L.getRParenLoc(), syntax::NodeRole::CloseParen);
1352 Builder.foldNode(Builder.getRange(L.getLParenLoc(), L.getEndLoc()),
1353 new (allocator()) syntax::ParametersAndQualifiers, L);
1354 return true;
1355 }
1356
WalkUpFromFunctionProtoTypeLoc(FunctionProtoTypeLoc L)1357 bool WalkUpFromFunctionProtoTypeLoc(FunctionProtoTypeLoc L) {
1358 if (!L.getTypePtr()->hasTrailingReturn())
1359 return WalkUpFromFunctionTypeLoc(L);
1360
1361 auto *TrailingReturnTokens = buildTrailingReturn(L);
1362 // Finish building the node for parameters.
1363 Builder.markChild(TrailingReturnTokens, syntax::NodeRole::TrailingReturn);
1364 return WalkUpFromFunctionTypeLoc(L);
1365 }
1366
TraverseMemberPointerTypeLoc(MemberPointerTypeLoc L)1367 bool TraverseMemberPointerTypeLoc(MemberPointerTypeLoc L) {
1368 // In the source code "void (Y::*mp)()" `MemberPointerTypeLoc` corresponds
1369 // to "Y::*" but it points to a `ParenTypeLoc` that corresponds to
1370 // "(Y::*mp)" We thus reverse the order of traversal to get the proper
1371 // syntax structure.
1372 if (!WalkUpFromMemberPointerTypeLoc(L))
1373 return false;
1374 return TraverseTypeLoc(L.getPointeeLoc());
1375 }
1376
WalkUpFromMemberPointerTypeLoc(MemberPointerTypeLoc L)1377 bool WalkUpFromMemberPointerTypeLoc(MemberPointerTypeLoc L) {
1378 auto SR = L.getLocalSourceRange();
1379 Builder.foldNode(Builder.getRange(SR),
1380 new (allocator()) syntax::MemberPointer, L);
1381 return true;
1382 }
1383
1384 // The code below is very regular, it could even be generated with some
1385 // preprocessor magic. We merely assign roles to the corresponding children
1386 // and fold resulting nodes.
WalkUpFromDeclStmt(DeclStmt * S)1387 bool WalkUpFromDeclStmt(DeclStmt *S) {
1388 Builder.foldNode(Builder.getStmtRange(S),
1389 new (allocator()) syntax::DeclarationStatement, S);
1390 return true;
1391 }
1392
WalkUpFromNullStmt(NullStmt * S)1393 bool WalkUpFromNullStmt(NullStmt *S) {
1394 Builder.foldNode(Builder.getStmtRange(S),
1395 new (allocator()) syntax::EmptyStatement, S);
1396 return true;
1397 }
1398
WalkUpFromSwitchStmt(SwitchStmt * S)1399 bool WalkUpFromSwitchStmt(SwitchStmt *S) {
1400 Builder.markChildToken(S->getSwitchLoc(),
1401 syntax::NodeRole::IntroducerKeyword);
1402 Builder.markStmtChild(S->getBody(), syntax::NodeRole::BodyStatement);
1403 Builder.foldNode(Builder.getStmtRange(S),
1404 new (allocator()) syntax::SwitchStatement, S);
1405 return true;
1406 }
1407
WalkUpFromCaseStmt(CaseStmt * S)1408 bool WalkUpFromCaseStmt(CaseStmt *S) {
1409 Builder.markChildToken(S->getKeywordLoc(),
1410 syntax::NodeRole::IntroducerKeyword);
1411 Builder.markExprChild(S->getLHS(), syntax::NodeRole::CaseValue);
1412 Builder.markStmtChild(S->getSubStmt(), syntax::NodeRole::BodyStatement);
1413 Builder.foldNode(Builder.getStmtRange(S),
1414 new (allocator()) syntax::CaseStatement, S);
1415 return true;
1416 }
1417
WalkUpFromDefaultStmt(DefaultStmt * S)1418 bool WalkUpFromDefaultStmt(DefaultStmt *S) {
1419 Builder.markChildToken(S->getKeywordLoc(),
1420 syntax::NodeRole::IntroducerKeyword);
1421 Builder.markStmtChild(S->getSubStmt(), syntax::NodeRole::BodyStatement);
1422 Builder.foldNode(Builder.getStmtRange(S),
1423 new (allocator()) syntax::DefaultStatement, S);
1424 return true;
1425 }
1426
WalkUpFromIfStmt(IfStmt * S)1427 bool WalkUpFromIfStmt(IfStmt *S) {
1428 Builder.markChildToken(S->getIfLoc(), syntax::NodeRole::IntroducerKeyword);
1429 Builder.markStmtChild(S->getThen(), syntax::NodeRole::ThenStatement);
1430 Builder.markChildToken(S->getElseLoc(), syntax::NodeRole::ElseKeyword);
1431 Builder.markStmtChild(S->getElse(), syntax::NodeRole::ElseStatement);
1432 Builder.foldNode(Builder.getStmtRange(S),
1433 new (allocator()) syntax::IfStatement, S);
1434 return true;
1435 }
1436
WalkUpFromForStmt(ForStmt * S)1437 bool WalkUpFromForStmt(ForStmt *S) {
1438 Builder.markChildToken(S->getForLoc(), syntax::NodeRole::IntroducerKeyword);
1439 Builder.markStmtChild(S->getBody(), syntax::NodeRole::BodyStatement);
1440 Builder.foldNode(Builder.getStmtRange(S),
1441 new (allocator()) syntax::ForStatement, S);
1442 return true;
1443 }
1444
WalkUpFromWhileStmt(WhileStmt * S)1445 bool WalkUpFromWhileStmt(WhileStmt *S) {
1446 Builder.markChildToken(S->getWhileLoc(),
1447 syntax::NodeRole::IntroducerKeyword);
1448 Builder.markStmtChild(S->getBody(), syntax::NodeRole::BodyStatement);
1449 Builder.foldNode(Builder.getStmtRange(S),
1450 new (allocator()) syntax::WhileStatement, S);
1451 return true;
1452 }
1453
WalkUpFromContinueStmt(ContinueStmt * S)1454 bool WalkUpFromContinueStmt(ContinueStmt *S) {
1455 Builder.markChildToken(S->getContinueLoc(),
1456 syntax::NodeRole::IntroducerKeyword);
1457 Builder.foldNode(Builder.getStmtRange(S),
1458 new (allocator()) syntax::ContinueStatement, S);
1459 return true;
1460 }
1461
WalkUpFromBreakStmt(BreakStmt * S)1462 bool WalkUpFromBreakStmt(BreakStmt *S) {
1463 Builder.markChildToken(S->getBreakLoc(),
1464 syntax::NodeRole::IntroducerKeyword);
1465 Builder.foldNode(Builder.getStmtRange(S),
1466 new (allocator()) syntax::BreakStatement, S);
1467 return true;
1468 }
1469
WalkUpFromReturnStmt(ReturnStmt * S)1470 bool WalkUpFromReturnStmt(ReturnStmt *S) {
1471 Builder.markChildToken(S->getReturnLoc(),
1472 syntax::NodeRole::IntroducerKeyword);
1473 Builder.markExprChild(S->getRetValue(), syntax::NodeRole::ReturnValue);
1474 Builder.foldNode(Builder.getStmtRange(S),
1475 new (allocator()) syntax::ReturnStatement, S);
1476 return true;
1477 }
1478
WalkUpFromCXXForRangeStmt(CXXForRangeStmt * S)1479 bool WalkUpFromCXXForRangeStmt(CXXForRangeStmt *S) {
1480 Builder.markChildToken(S->getForLoc(), syntax::NodeRole::IntroducerKeyword);
1481 Builder.markStmtChild(S->getBody(), syntax::NodeRole::BodyStatement);
1482 Builder.foldNode(Builder.getStmtRange(S),
1483 new (allocator()) syntax::RangeBasedForStatement, S);
1484 return true;
1485 }
1486
WalkUpFromEmptyDecl(EmptyDecl * S)1487 bool WalkUpFromEmptyDecl(EmptyDecl *S) {
1488 Builder.foldNode(Builder.getDeclarationRange(S),
1489 new (allocator()) syntax::EmptyDeclaration, S);
1490 return true;
1491 }
1492
WalkUpFromStaticAssertDecl(StaticAssertDecl * S)1493 bool WalkUpFromStaticAssertDecl(StaticAssertDecl *S) {
1494 Builder.markExprChild(S->getAssertExpr(), syntax::NodeRole::Condition);
1495 Builder.markExprChild(S->getMessage(), syntax::NodeRole::Message);
1496 Builder.foldNode(Builder.getDeclarationRange(S),
1497 new (allocator()) syntax::StaticAssertDeclaration, S);
1498 return true;
1499 }
1500
WalkUpFromLinkageSpecDecl(LinkageSpecDecl * S)1501 bool WalkUpFromLinkageSpecDecl(LinkageSpecDecl *S) {
1502 Builder.foldNode(Builder.getDeclarationRange(S),
1503 new (allocator()) syntax::LinkageSpecificationDeclaration,
1504 S);
1505 return true;
1506 }
1507
WalkUpFromNamespaceAliasDecl(NamespaceAliasDecl * S)1508 bool WalkUpFromNamespaceAliasDecl(NamespaceAliasDecl *S) {
1509 Builder.foldNode(Builder.getDeclarationRange(S),
1510 new (allocator()) syntax::NamespaceAliasDefinition, S);
1511 return true;
1512 }
1513
WalkUpFromUsingDirectiveDecl(UsingDirectiveDecl * S)1514 bool WalkUpFromUsingDirectiveDecl(UsingDirectiveDecl *S) {
1515 Builder.foldNode(Builder.getDeclarationRange(S),
1516 new (allocator()) syntax::UsingNamespaceDirective, S);
1517 return true;
1518 }
1519
WalkUpFromUsingDecl(UsingDecl * S)1520 bool WalkUpFromUsingDecl(UsingDecl *S) {
1521 Builder.foldNode(Builder.getDeclarationRange(S),
1522 new (allocator()) syntax::UsingDeclaration, S);
1523 return true;
1524 }
1525
WalkUpFromUnresolvedUsingValueDecl(UnresolvedUsingValueDecl * S)1526 bool WalkUpFromUnresolvedUsingValueDecl(UnresolvedUsingValueDecl *S) {
1527 Builder.foldNode(Builder.getDeclarationRange(S),
1528 new (allocator()) syntax::UsingDeclaration, S);
1529 return true;
1530 }
1531
WalkUpFromUnresolvedUsingTypenameDecl(UnresolvedUsingTypenameDecl * S)1532 bool WalkUpFromUnresolvedUsingTypenameDecl(UnresolvedUsingTypenameDecl *S) {
1533 Builder.foldNode(Builder.getDeclarationRange(S),
1534 new (allocator()) syntax::UsingDeclaration, S);
1535 return true;
1536 }
1537
WalkUpFromTypeAliasDecl(TypeAliasDecl * S)1538 bool WalkUpFromTypeAliasDecl(TypeAliasDecl *S) {
1539 Builder.foldNode(Builder.getDeclarationRange(S),
1540 new (allocator()) syntax::TypeAliasDeclaration, S);
1541 return true;
1542 }
1543
1544 private:
1545 /// Folds SimpleDeclarator node (if present) and in case this is the last
1546 /// declarator in the chain it also folds SimpleDeclaration node.
processDeclaratorAndDeclaration(T * D)1547 template <class T> bool processDeclaratorAndDeclaration(T *D) {
1548 auto Range = getDeclaratorRange(
1549 Builder.sourceManager(), D->getTypeSourceInfo()->getTypeLoc(),
1550 getQualifiedNameStart(D), getInitializerRange(D));
1551
1552 // There doesn't have to be a declarator (e.g. `void foo(int)` only has
1553 // declaration, but no declarator).
1554 if (!Range.getBegin().isValid()) {
1555 Builder.markChild(new (allocator()) syntax::DeclaratorList,
1556 syntax::NodeRole::Declarators);
1557 Builder.foldNode(Builder.getDeclarationRange(D),
1558 new (allocator()) syntax::SimpleDeclaration, D);
1559 return true;
1560 }
1561
1562 auto *N = new (allocator()) syntax::SimpleDeclarator;
1563 Builder.foldNode(Builder.getRange(Range), N, nullptr);
1564 Builder.markChild(N, syntax::NodeRole::ListElement);
1565
1566 if (!Builder.isResponsibleForCreatingDeclaration(D)) {
1567 // If this is not the last declarator in the declaration we expect a
1568 // delimiter after it.
1569 const auto *DelimiterToken = std::next(Builder.findToken(Range.getEnd()));
1570 if (DelimiterToken->kind() == clang::tok::TokenKind::comma)
1571 Builder.markChildToken(DelimiterToken, syntax::NodeRole::ListDelimiter);
1572 } else {
1573 auto *DL = new (allocator()) syntax::DeclaratorList;
1574 auto DeclarationRange = Builder.getDeclarationRange(D);
1575 Builder.foldList(DeclarationRange, DL, nullptr);
1576
1577 Builder.markChild(DL, syntax::NodeRole::Declarators);
1578 Builder.foldNode(DeclarationRange,
1579 new (allocator()) syntax::SimpleDeclaration, D);
1580 }
1581 return true;
1582 }
1583
1584 /// Returns the range of the built node.
buildTrailingReturn(FunctionProtoTypeLoc L)1585 syntax::TrailingReturnType *buildTrailingReturn(FunctionProtoTypeLoc L) {
1586 assert(L.getTypePtr()->hasTrailingReturn());
1587
1588 auto ReturnedType = L.getReturnLoc();
1589 // Build node for the declarator, if any.
1590 auto ReturnDeclaratorRange = SourceRange(GetStartLoc().Visit(ReturnedType),
1591 ReturnedType.getEndLoc());
1592 syntax::SimpleDeclarator *ReturnDeclarator = nullptr;
1593 if (ReturnDeclaratorRange.isValid()) {
1594 ReturnDeclarator = new (allocator()) syntax::SimpleDeclarator;
1595 Builder.foldNode(Builder.getRange(ReturnDeclaratorRange),
1596 ReturnDeclarator, nullptr);
1597 }
1598
1599 // Build node for trailing return type.
1600 auto Return = Builder.getRange(ReturnedType.getSourceRange());
1601 const auto *Arrow = Return.begin() - 1;
1602 assert(Arrow->kind() == tok::arrow);
1603 auto Tokens = llvm::makeArrayRef(Arrow, Return.end());
1604 Builder.markChildToken(Arrow, syntax::NodeRole::ArrowToken);
1605 if (ReturnDeclarator)
1606 Builder.markChild(ReturnDeclarator, syntax::NodeRole::Declarator);
1607 auto *R = new (allocator()) syntax::TrailingReturnType;
1608 Builder.foldNode(Tokens, R, L);
1609 return R;
1610 }
1611
foldExplicitTemplateInstantiation(ArrayRef<syntax::Token> Range,const syntax::Token * ExternKW,const syntax::Token * TemplateKW,syntax::SimpleDeclaration * InnerDeclaration,Decl * From)1612 void foldExplicitTemplateInstantiation(
1613 ArrayRef<syntax::Token> Range, const syntax::Token *ExternKW,
1614 const syntax::Token *TemplateKW,
1615 syntax::SimpleDeclaration *InnerDeclaration, Decl *From) {
1616 assert(!ExternKW || ExternKW->kind() == tok::kw_extern);
1617 assert(TemplateKW && TemplateKW->kind() == tok::kw_template);
1618 Builder.markChildToken(ExternKW, syntax::NodeRole::ExternKeyword);
1619 Builder.markChildToken(TemplateKW, syntax::NodeRole::IntroducerKeyword);
1620 Builder.markChild(InnerDeclaration, syntax::NodeRole::Declaration);
1621 Builder.foldNode(
1622 Range, new (allocator()) syntax::ExplicitTemplateInstantiation, From);
1623 }
1624
foldTemplateDeclaration(ArrayRef<syntax::Token> Range,const syntax::Token * TemplateKW,ArrayRef<syntax::Token> TemplatedDeclaration,Decl * From)1625 syntax::TemplateDeclaration *foldTemplateDeclaration(
1626 ArrayRef<syntax::Token> Range, const syntax::Token *TemplateKW,
1627 ArrayRef<syntax::Token> TemplatedDeclaration, Decl *From) {
1628 assert(TemplateKW && TemplateKW->kind() == tok::kw_template);
1629 Builder.markChildToken(TemplateKW, syntax::NodeRole::IntroducerKeyword);
1630
1631 auto *N = new (allocator()) syntax::TemplateDeclaration;
1632 Builder.foldNode(Range, N, From);
1633 Builder.markChild(N, syntax::NodeRole::Declaration);
1634 return N;
1635 }
1636
1637 /// A small helper to save some typing.
allocator()1638 llvm::BumpPtrAllocator &allocator() { return Builder.allocator(); }
1639
1640 syntax::TreeBuilder &Builder;
1641 const ASTContext &Context;
1642 };
1643 } // namespace
1644
noticeDeclWithoutSemicolon(Decl * D)1645 void syntax::TreeBuilder::noticeDeclWithoutSemicolon(Decl *D) {
1646 DeclsWithoutSemicolons.insert(D);
1647 }
1648
markChildToken(SourceLocation Loc,NodeRole Role)1649 void syntax::TreeBuilder::markChildToken(SourceLocation Loc, NodeRole Role) {
1650 if (Loc.isInvalid())
1651 return;
1652 Pending.assignRole(*findToken(Loc), Role);
1653 }
1654
markChildToken(const syntax::Token * T,NodeRole R)1655 void syntax::TreeBuilder::markChildToken(const syntax::Token *T, NodeRole R) {
1656 if (!T)
1657 return;
1658 Pending.assignRole(*T, R);
1659 }
1660
markChild(syntax::Node * N,NodeRole R)1661 void syntax::TreeBuilder::markChild(syntax::Node *N, NodeRole R) {
1662 assert(N);
1663 setRole(N, R);
1664 }
1665
markChild(ASTPtr N,NodeRole R)1666 void syntax::TreeBuilder::markChild(ASTPtr N, NodeRole R) {
1667 auto *SN = Mapping.find(N);
1668 assert(SN != nullptr);
1669 setRole(SN, R);
1670 }
markChild(NestedNameSpecifierLoc NNSLoc,NodeRole R)1671 void syntax::TreeBuilder::markChild(NestedNameSpecifierLoc NNSLoc, NodeRole R) {
1672 auto *SN = Mapping.find(NNSLoc);
1673 assert(SN != nullptr);
1674 setRole(SN, R);
1675 }
1676
markStmtChild(Stmt * Child,NodeRole Role)1677 void syntax::TreeBuilder::markStmtChild(Stmt *Child, NodeRole Role) {
1678 if (!Child)
1679 return;
1680
1681 syntax::Tree *ChildNode;
1682 if (Expr *ChildExpr = dyn_cast<Expr>(Child)) {
1683 // This is an expression in a statement position, consume the trailing
1684 // semicolon and form an 'ExpressionStatement' node.
1685 markExprChild(ChildExpr, NodeRole::Expression);
1686 ChildNode = new (allocator()) syntax::ExpressionStatement;
1687 // (!) 'getStmtRange()' ensures this covers a trailing semicolon.
1688 Pending.foldChildren(Arena, getStmtRange(Child), ChildNode);
1689 } else {
1690 ChildNode = Mapping.find(Child);
1691 }
1692 assert(ChildNode != nullptr);
1693 setRole(ChildNode, Role);
1694 }
1695
markExprChild(Expr * Child,NodeRole Role)1696 void syntax::TreeBuilder::markExprChild(Expr *Child, NodeRole Role) {
1697 if (!Child)
1698 return;
1699 Child = IgnoreImplicit(Child);
1700
1701 syntax::Tree *ChildNode = Mapping.find(Child);
1702 assert(ChildNode != nullptr);
1703 setRole(ChildNode, Role);
1704 }
1705
findToken(SourceLocation L) const1706 const syntax::Token *syntax::TreeBuilder::findToken(SourceLocation L) const {
1707 if (L.isInvalid())
1708 return nullptr;
1709 auto It = LocationToToken.find(L);
1710 assert(It != LocationToToken.end());
1711 return It->second;
1712 }
1713
buildSyntaxTree(Arena & A,ASTContext & Context)1714 syntax::TranslationUnit *syntax::buildSyntaxTree(Arena &A,
1715 ASTContext &Context) {
1716 TreeBuilder Builder(A);
1717 BuildTreeVisitor(Context, Builder).TraverseAST(Context);
1718 return std::move(Builder).finalize();
1719 }
1720