/external/icu/icu4c/source/test/perf/perldriver/ |
D | Dataset.pm | 23 _mean => 0.0, 32 $self->{_mean} = $stats->mean(); 63 return $self->{_mean} * $self->{_scale}; 79 my $minratio = ($self->{_mean} - $self->{_error}) / 80 ($rhs->{_mean} + $rhs->{_error}); 81 my $maxratio = ($self->{_mean} + $self->{_error}) / 82 ($rhs->{_mean} - $rhs->{_error}); 85 $result->{_mean} = ($minratio + $maxratio) / 2; 86 $result->{_error} = $result->{_mean} - $minratio; 98 $result->{_mean} = $self->{_mean} - $rhs->{_mean}; [all …]
|
/external/icu/icu4j/perf-tests/perldriver/ |
D | Dataset.pm | 21 _mean => 0.0, 30 $self->{_mean} = $stats->mean(); 61 return $self->{_mean} * $self->{_scale}; 77 my $minratio = ($self->{_mean} - $self->{_error}) / 78 ($rhs->{_mean} + $rhs->{_error}); 79 my $maxratio = ($self->{_mean} + $self->{_error}) / 80 ($rhs->{_mean} - $rhs->{_error}); 83 $result->{_mean} = ($minratio + $maxratio) / 2; 84 $result->{_error} = $result->{_mean} - $minratio; 96 $result->{_mean} = $self->{_mean} - $rhs->{_mean}; [all …]
|
/external/icu/icu4j/perf-tests/ |
D | Dataset.pm | 20 _mean => 0.0, 29 $self->{_mean} = $stats->mean(); 60 return $self->{_mean} * $self->{_scale}; 76 my $minratio = ($self->{_mean} - $self->{_error}) / 77 ($rhs->{_mean} + $rhs->{_error}); 78 my $maxratio = ($self->{_mean} + $self->{_error}) / 79 ($rhs->{_mean} - $rhs->{_error}); 82 $result->{_mean} = ($minratio + $maxratio) / 2; 83 $result->{_error} = $result->{_mean} - $minratio;
|
/external/perfetto/ui/src/frontend/ |
D | perf.ts | 48 private _mean = 0; property in RunningStatistics 61 this._mean = (this._mean * this._count + value) / (this._count + 1); 66 return this._mean;
|
/external/tensorflow/tensorflow/python/ops/distributions/ |
D | laplace.py | 204 def _mean(self): member in Laplace 211 return self._mean() 214 return self._mean()
|
D | dirichlet_multinomial.py | 293 def _mean(self): member in DirichletMultinomial 316 x = self._variance_scale_term() * self._mean() 324 x = scale * self._mean()
|
D | dirichlet.py | 267 def _mean(self): member in Dirichlet 271 x = self._variance_scale_term() * self._mean() 279 x = scale * self._mean()
|
D | beta.py | 299 def _mean(self): member in Beta 303 return self._mean() * (1. - self._mean()) / (1. + self.total_concentration)
|
D | bernoulli.py | 158 def _mean(self): member in Bernoulli 162 return self._mean() * (1. - self.probs)
|
D | normal.py | 226 def _mean(self): member in Normal 236 return self._mean()
|
D | uniform.py | 201 def _mean(self): member in Uniform
|
D | multinomial.py | 291 def _mean(self): member in Multinomial
|
D | gamma.py | 253 def _mean(self): member in Gamma
|
D | distribution.py | 987 def _mean(self): member in Distribution 994 return self._mean()
|
D | student_t.py | 305 def _mean(self): member in StudentT
|
/external/ImageMagick/Magick++/lib/ |
D | Statistic.cpp | 286 _mean(0.0), in ChannelStatistics() 306 _mean(channelStatistics_._mean), in ChannelStatistics() 359 return(_mean); in mean() 410 _mean(channelStatistics_->mean), in ChannelStatistics()
|
/external/ImageMagick/Magick++/lib/Magick++/ |
D | Statistic.h | 207 double _mean; variable
|
/external/tensorflow/tensorflow/lite/micro/examples/hello_world/train/ |
D | train_hello_world_model.ipynb | 1521 … There are several ways to calculate loss, and the method we have used is _mean squared error_. Th… 1581 …model's performance we can plot some more data. This time, we'll plot the _mean absolute error_, w… 1633 …"This graph of _mean absolute error_ tells another story. We can see that training data shows cons…
|