/external/tensorflow/tensorflow/lite/kernels/ |
D | unidirectional_sequence_rnn_test.cc | 287 float* batch_start = rnn_input; in TEST() local 288 float* batch_end = batch_start + input_sequence_size; in TEST() 289 rnn.SetInput(0, batch_start, batch_end); in TEST() 290 rnn.SetInput(input_sequence_size, batch_start, batch_end); in TEST() 316 float* batch_start = rnn_input; in TEST_P() local 317 float* batch_end = batch_start + input_sequence_size; in TEST_P() 318 rnn.SetInput(0, batch_start, batch_end); in TEST_P() 319 rnn.SetInput(input_sequence_size, batch_start, batch_end); in TEST_P() 343 float* batch_start = rnn_input; in TEST_P() local 344 float* batch_end = batch_start + input_sequence_size; in TEST_P() [all …]
|
D | bidirectional_sequence_rnn_test.cc | 878 float* batch_start = rnn_input; in TEST_P() local 879 float* batch_end = batch_start + input_sequence_size; in TEST_P() 880 rnn.SetInput(0, batch_start, batch_end); in TEST_P() 881 rnn.SetInput(input_sequence_size, batch_start, batch_end); in TEST_P() 929 float* batch_start = rnn_input + i * rnn.input_size(); in TEST_P() local 930 float* batch_end = batch_start + rnn.input_size(); in TEST_P() 932 rnn.SetInput(2 * i * rnn.input_size(), batch_start, batch_end); in TEST_P() 933 rnn.SetInput((2 * i + 1) * rnn.input_size(), batch_start, batch_end); in TEST_P() 973 float* batch_start = rnn_input; in TEST_P() local 974 float* batch_end = batch_start + input_sequence_size; in TEST_P() [all …]
|
D | basic_rnn_test.cc | 269 float* batch_start = rnn_input + i * rnn.input_size(); in TEST() local 270 float* batch_end = batch_start + rnn.input_size(); in TEST() 271 rnn.SetInput(0, batch_start, batch_end); in TEST() 272 rnn.SetInput(rnn.input_size(), batch_start, batch_end); in TEST() 298 float* batch_start = rnn_input + i * rnn.input_size(); in TEST_P() local 299 float* batch_end = batch_start + rnn.input_size(); in TEST_P() 300 rnn.SetInput(0, batch_start, batch_end); in TEST_P() 301 rnn.SetInput(rnn.input_size(), batch_start, batch_end); in TEST_P() 326 float* batch_start = rnn_input + i * rnn.input_size(); in TEST_P() local 327 float* batch_end = batch_start + rnn.input_size(); in TEST_P() [all …]
|
D | svdf_test.cc | 247 float* batch_start = in VerifyGoldens() local 249 float* batch_end = batch_start + svdf_input_size * svdf_num_batches; in VerifyGoldens() 250 svdf->SetInput(0, batch_start, batch_end); in VerifyGoldens()
|
D | lstm_test.cc | 359 const float* batch_start = lstm_input_[i][b].data(); in VerifyGoldens() local 360 const float* batch_end = batch_start + num_inputs; in VerifyGoldens() 361 lstm->SetInput(b * num_inputs, batch_start, batch_end); in VerifyGoldens() 370 const float* batch_start = lstm_golden_output_[i][b].data(); in VerifyGoldens() local 371 const float* batch_end = batch_start + num_outputs; in VerifyGoldens() 372 expected.insert(expected.end(), batch_start, batch_end); in VerifyGoldens() 2400 const float* batch_start = input[b].data() + i * num_inputs; in VerifyGoldens() local 2401 const float* batch_end = batch_start + num_inputs; in VerifyGoldens() 2404 b * sparse_layer_norm_lstm->num_inputs(), batch_start, batch_end); in VerifyGoldens()
|
D | unidirectional_sequence_lstm_test.cc | 402 const float* batch_start = input[b].data() + i * num_inputs; in VerifyGoldens() local 403 const float* batch_end = batch_start + num_inputs; in VerifyGoldens() 405 lstm->SetInput(((i * num_batches) + b) * num_inputs, batch_start, in VerifyGoldens() 411 const float* batch_start = input[b].data(); in VerifyGoldens() local 412 const float* batch_end = batch_start + input_sequence_size * num_inputs; in VerifyGoldens() 414 lstm->SetInput(b * input_sequence_size * num_inputs, batch_start, in VerifyGoldens() 2524 const float* batch_start = input[b].data() + i * num_inputs; in VerifyGoldens() local 2525 const float* batch_end = batch_start + num_inputs; in VerifyGoldens() 2527 lstm->SetInput(((i * num_batches) + b) * num_inputs, batch_start, in VerifyGoldens()
|
D | fully_connected_test.cc | 1165 float* batch_start = fully_connected_input + i * m.input_size(); in TEST_P() local 1166 float* batch_end = batch_start + m.input_size(); in TEST_P() 1167 m.SetInput(0, batch_start, batch_end); in TEST_P() 1168 m.SetInput(m.input_size(), batch_start, batch_end); in TEST_P()
|
/external/tensorflow/tensorflow/python/keras/engine/ |
D | training_utils_v1_test.py | 265 …def wrapped(batch_element, batch_start, batch_end, is_finished): # pylint: disable=unused-argument argument 315 batch_start = 0 320 batch_end = batch_start + batch.shape[0] 321 aggregator.aggregate(batch, batch_start, batch_end) 322 batch_start = batch_end 341 batch_start = 0 346 batch_end = batch_start + batch[0].shape[0] 347 aggregator.aggregate(batch, batch_start, batch_end) 348 batch_start = batch_end
|
D | training_utils_v1.py | 105 def aggregate(self, batch_outs, batch_start=None, batch_end=None): argument 143 def aggregate(self, batch_outs, batch_start=None, batch_end=None): argument 148 self.results[0] += batch_outs[0] * (batch_end - batch_start) 286 def aggregate(self, batch_element, batch_start=None, batch_end=None): argument 377 def aggregate(self, batch_element, batch_start, batch_end): argument 383 if batch_end - batch_start == self.num_samples: 397 self.results[batch_start:batch_end] = batch_element 402 args=(batch_element, batch_start, batch_end, is_finished)) 405 def _slice_assign(self, batch_element, batch_start, batch_end, is_finished): argument 408 self.results[batch_start:batch_end] = batch_element [all …]
|
D | training_arrays_v1.py | 353 for batch_index, (batch_start, batch_end) in enumerate(batches): 354 batch_ids = index_array[batch_start:batch_end] 391 aggregator.aggregate(batch_outs, batch_start, batch_end)
|
D | training_generator_v1.py | 481 for (batch_start, batch_end) in batches: 482 batch_ids = index_array[batch_start:batch_end]
|
/external/tensorflow/tensorflow/lite/delegates/gpu/cl/kernels/ |
D | lstm_full_test.cc | 242 const float* batch_start = lstm_input_[i][b].data(); in VerifyGoldens() local 243 const float* batch_end = batch_start + num_inputs; in VerifyGoldens() 244 lstm->SetInput(b * num_inputs, batch_start, batch_end); in VerifyGoldens() 253 const float* batch_start = lstm_golden_output_[i][b].data(); in VerifyGoldens() local 254 const float* batch_end = batch_start + num_outputs; in VerifyGoldens() 255 expected.insert(expected.end(), batch_start, batch_end); in VerifyGoldens()
|
/external/rust/crates/plotters-backend/src/rasterizer/ |
D | line.rs | 94 let batch_start = (f64::from(from.1.min(size_limit.1 as i32 - 2).max(0) - from.1) / grad) in draw_line() localVariable 103 let mut y = f64::from(from.1) + f64::from(batch_start - from.0) * grad; in draw_line() 105 for x in batch_start..=batch_limit { in draw_line()
|
/external/tensorflow/tensorflow/lite/kernels/internal/optimized/integer_ops/ |
D | depthwise_conv_hybrid.h | 144 int batch_start = 0; in DepthwiseConvHybridGeneral() local 154 batch_start = thread_start; in DepthwiseConvHybridGeneral() 156 output_ptr_offset = batch_start * FlatSizeSkipDim(output_shape, 0); in DepthwiseConvHybridGeneral() 170 for (int b = batch_start; b < batch_end; ++b) { in DepthwiseConvHybridGeneral()
|
D | depthwise_conv_hybrid_3x3_filter.h | 3126 int batch_start = 0; 3135 batch_start = thread_start; 3146 for (int32 b = batch_start; b < batch_end; ++b) {
|
D | depthwise_conv_3x3_filter.h | 2968 int batch_start = 0; 2977 batch_start = thread_start; 2988 for (int32 b = batch_start; b < batch_end; ++b) {
|
/external/XNNPACK/src/xnnpack/ |
D | indirection.h | 75 size_t batch_start,
|
D | compute.h | 893 size_t batch_start, 914 size_t batch_start,
|
/external/libtextclassifier/native/annotator/ |
D | annotator.cc | 2987 for (int batch_start = span_of_interest.first; in ModelClickContextScoreChunks() local 2988 batch_start < span_of_interest.second; batch_start += max_batch_size) { in ModelClickContextScoreChunks() 2990 std::min(batch_start + max_batch_size, span_of_interest.second); in ModelClickContextScoreChunks() 2995 for (int click_pos = batch_start; click_pos < batch_end; ++click_pos) { in ModelClickContextScoreChunks() 3001 const int batch_size = batch_end - batch_start; in ModelClickContextScoreChunks() 3018 for (int click_pos = batch_start; click_pos < batch_end; ++click_pos) { in ModelClickContextScoreChunks() 3020 logits.data() + logits.dim(1) * (click_pos - batch_start), in ModelClickContextScoreChunks() 3096 for (int batch_start = 0; batch_start < candidate_spans.size(); in ModelBoundsSensitiveScoreChunks() local 3097 batch_start += max_batch_size) { in ModelBoundsSensitiveScoreChunks() 3098 const int batch_end = std::min(batch_start + max_batch_size, in ModelBoundsSensitiveScoreChunks() [all …]
|
/external/igt-gpu-tools/benchmarks/ |
D | gem_wsim.c | 1118 unsigned long batch_start = w->bb_sz; in terminate_bb() local 1124 batch_start -= sizeof(uint32_t); /* bbend */ in terminate_bb() 1126 batch_start -= 4 * sizeof(uint32_t); in terminate_bb() 1128 batch_start -= 12 * sizeof(uint32_t); in terminate_bb() 1131 batch_start -= 4 * sizeof(uint32_t); /* MI_ARB_CHK + MI_BATCH_BUFFER_START */ in terminate_bb() 1133 mmap_start = rounddown(batch_start, PAGE_SIZE); in terminate_bb() 1140 cs = (uint32_t *)((char *)ptr + batch_start - mmap_start); in terminate_bb() 1143 w->reloc[r++].offset = batch_start + 2 * sizeof(uint32_t); in terminate_bb() 1144 batch_start += 4 * sizeof(uint32_t); in terminate_bb() 1154 w->reloc[r++].offset = batch_start + sizeof(uint32_t); in terminate_bb() [all …]
|
/external/XNNPACK/src/ |
D | operator-run.c | 721 size_t batch_start, in xnn_compute_prelu() argument 726 const void* x = (const void*) ((uintptr_t) context->x + x_stride * batch_start); in xnn_compute_prelu() 727 void* y = (void*) ((uintptr_t) context->y + y_stride * batch_start); in xnn_compute_prelu() 880 size_t batch_start, in xnn_compute_vmulcaddc() argument 886 const void* x = (const void*) ((uintptr_t) context->x + x_stride * batch_start); in xnn_compute_vmulcaddc() 887 void* y = (void*) ((uintptr_t) context->y + y_stride * batch_start); in xnn_compute_vmulcaddc()
|
D | indirection.c | 524 size_t batch_start, in xnn_indirection_init_unpool2d() argument 540 for (size_t image = batch_start; image < batch_size; image++) { in xnn_indirection_init_unpool2d()
|
/external/tensorflow/tensorflow/lite/kernels/internal/optimized/ |
D | depthwiseconv_float.h | 1003 int batch_start = 0; 1014 batch_start = thread_start; 1016 output_ptr_offset = batch_start * FlatSizeSkipDim(output_shape, 0); 1032 for (int b = batch_start; b < batch_end; ++b) {
|
/external/tensorflow/tensorflow/lite/delegates/nnapi/ |
D | nnapi_delegate_test.cc | 2804 float* batch_start = rnn_input + i * rnn.input_size(); in TEST() local 2805 float* batch_end = batch_start + rnn.input_size(); in TEST() 2806 rnn.SetInput(0, batch_start, batch_end); in TEST() 2807 rnn.SetInput(rnn.input_size(), batch_start, batch_end); in TEST() 3007 float* batch_start = in VerifyGoldens() local 3009 float* batch_end = batch_start + svdf_input_size * svdf_num_batches; in VerifyGoldens() 3010 svdf->SetInput(0, batch_start, batch_end); in VerifyGoldens() 3384 const float* batch_start = input[b].data() + i * num_inputs; in VerifyGoldens() local 3385 const float* batch_end = batch_start + num_inputs; in VerifyGoldens() 3387 lstm->SetInput(b * lstm->num_inputs(), batch_start, batch_end); in VerifyGoldens()
|
/external/tensorflow/tensorflow/python/ops/numpy_ops/ |
D | np_array_ops.py | 1714 batch_start = dims[0] 1715 if batch_start < 0: 1716 batch_start += len(dims) - batch_size 1719 updates = moveaxis(updates, range_(batch_start, batch_size),
|