/external/tensorflow/tensorflow/lite/delegates/nnapi/ |
D | quant_lstm_sup.cc | 130 void DecomposeBiasTensor(const int32_t* biases, int bias_size, in DecomposeBiasTensor() argument 136 std::copy(biases, biases + bias_size, input_bias->begin()); in DecomposeBiasTensor() 139 std::copy(biases + bias_size, biases + 2 * bias_size, cell_bias->begin()); in DecomposeBiasTensor() 142 std::copy(biases + 2 * bias_size, biases + 3 * bias_size, in DecomposeBiasTensor() 146 std::copy(biases + 3 * bias_size, biases + 4 * bias_size, in DecomposeBiasTensor()
|
D | quant_lstm_sup_test.cc | 248 std::vector<int32_t> biases in TEST() local 263 DecomposeBiasTensor(biases.data(), 4, &input_bias, &cell_bias, &forget_bias, in TEST() 271 std::vector<int32_t> biases in TEST() local 286 DecomposeBiasTensor(biases.data(), 4, &input_bias, &cell_bias, &forget_bias, in TEST() 294 std::vector<int32_t> biases in TEST() local 309 DecomposeBiasTensor(biases.data(), 4, &input_bias, &cell_bias, &forget_bias, in TEST() 317 std::vector<int32_t> biases in TEST() local 332 DecomposeBiasTensor(biases.data(), 4, &input_bias, &cell_bias, &forget_bias, in TEST()
|
/external/tensorflow/tensorflow/lite/delegates/gpu/common/transformations/ |
D | add_bias.cc | 37 tflite::gpu::Tensor<Linear, DataType::FLOAT32>* biases) { in FillBias() argument 38 if (biases->data.empty()) { in FillBias() 39 *biases = in FillBias() 43 if (biases->shape.v != output_channels) { in FillBias() 44 float last_value = biases->data.back(); in FillBias() 45 biases->shape.v = output_channels; in FillBias() 46 biases->data.resize(output_channels, last_value); in FillBias()
|
/external/tensorflow/tensorflow/lite/delegates/gpu/common/tasks/ |
D | winograd_test_util.cc | 103 ::tflite::gpu::Tensor<Linear, DataType::FLOAT32> biases; in Winograd36To4x4Tile4x1Test() 104 biases.shape = Linear(1); in Winograd36To4x4Tile4x1Test() 105 biases.data.resize(biases.shape.DimensionsProduct()); in Winograd36To4x4Tile4x1Test() 106 for (int i = 0; i < biases.data.size(); ++i) { in Winograd36To4x4Tile4x1Test() 107 biases.data[i] = 0.0f; in Winograd36To4x4Tile4x1Test() 153 CreateWinograd36To4x4Tile4x1(env->GetGpuInfo(), op_def, biases); in Winograd36To4x4Tile4x1Test() 237 ::tflite::gpu::Tensor<Linear, DataType::FLOAT32> biases; in Winograd36To4x4Test() 238 biases.shape = Linear(1); in Winograd36To4x4Test() 239 biases.data.resize(biases.shape.DimensionsProduct()); in Winograd36To4x4Test() 240 for (int i = 0; i < biases.data.size(); ++i) { in Winograd36To4x4Test() [all …]
|
D | depthwise_conv_3x3_stride_h2.h | 60 const tflite::gpu::Tensor<Linear, T>& biases, 65 const tflite::gpu::Tensor<Linear, S>& biases, absl::Span<T> dst); 73 const tflite::gpu::Tensor<Linear, T>& biases, bool weights_are_buffer) { in UploadWeightsAndBiases() argument 84 RearrangeWeightsAndBiasesData(weights, biases, in UploadWeightsAndBiases() 88 RearrangeWeightsAndBiasesData(weights, biases, in UploadWeightsAndBiases() 113 const tflite::gpu::Tensor<Linear, S>& biases, absl::Span<T> dst) { in RearrangeWeightsAndBiasesData() argument 137 bias_val[i] = dst_ch >= biases.shape.v ? 0.0f : biases.data[dst_ch]; in RearrangeWeightsAndBiasesData()
|
D | depthwise_conv_3x3.h | 57 const tflite::gpu::Tensor<Linear, T>& biases, 67 const tflite::gpu::Tensor<Linear, S>& biases, absl::Span<T> dst); 79 const tflite::gpu::Tensor<Linear, T>& biases, bool weights_are_buffer) { in UploadWeightsAndBiases() argument 90 RearrangeWeightsAndBiasesData(weights, biases, in UploadWeightsAndBiases() 94 RearrangeWeightsAndBiasesData(weights, biases, in UploadWeightsAndBiases() 119 const tflite::gpu::Tensor<Linear, S>& biases, absl::Span<T> dst) { in RearrangeWeightsAndBiasesData() argument 143 bias_val[i] = dst_ch >= biases.shape.v ? 0.0f : biases.data[dst_ch]; in RearrangeWeightsAndBiasesData()
|
D | conv_buffer_1x1.h | 88 const tflite::gpu::Tensor<Linear, T>& biases); 97 void UploadBiases(const tflite::gpu::Tensor<Linear, T>& biases); 108 const tflite::gpu::Tensor<Linear, T>& biases) { in UploadData() argument 110 UploadBiases(biases); in UploadData() 159 void ConvBuffer1x1::UploadBiases(const tflite::gpu::Tensor<Linear, T>& biases) { in UploadBiases() argument 163 int depth = AlignByN(biases.shape.v, 4 * conv_params_.block_size.z) / 4; in UploadBiases() 164 desc.UploadLinearData(biases, depth); in UploadBiases()
|
D | winograd.h | 120 const tflite::gpu::Tensor<Linear, DataType::FLOAT32>& biases); 125 const tflite::gpu::Tensor<Linear, DataType::FLOAT32>& biases); 149 const tflite::gpu::Tensor<Linear, DataType::FLOAT32>& biases); 161 const tflite::gpu::Tensor<Linear, DataType::FLOAT32>& biases);
|
D | convolution_transposed_thin.h | 56 const tflite::gpu::Tensor<Linear, T>& biases); 69 const tflite::gpu::Tensor<Linear, T>& biases) { in UploadData() argument 89 bias_value[i] = biases.data[i]; in UploadData() 97 bias_value[i] = biases.data[i]; in UploadData()
|
D | conv_powervr.h | 128 const tflite::gpu::Tensor<Linear, T>& biases); 207 const tflite::gpu::Tensor<Linear, T>& biases) { in UploadData() argument 209 UploadBias(biases); in UploadData() 218 tflite::gpu::Tensor<Linear, DataType::FLOAT32> biases; in UploadDataForWinograd4x4To6x6() local 219 biases.shape = Linear(weights.shape.o); in UploadDataForWinograd4x4To6x6() 220 biases.data.resize(weights.shape.o, 0.0f); in UploadDataForWinograd4x4To6x6() 221 UploadBias(biases); in UploadDataForWinograd4x4To6x6()
|
/external/tensorflow/tensorflow/lite/kernels/ |
D | bidirectional_sequence_rnn_test.cc | 640 const std::initializer_list<float> biases = { variable 872 rnn.SetFwBias(biases); in TEST_P() 873 rnn.SetBwBias(biases); in TEST_P() 920 rnn.SetFwBias(biases); in TEST_P() 921 rnn.SetBwBias(biases); in TEST_P() 967 rnn.SetFwBias(biases); in TEST_P() 968 rnn.SetBwBias(biases); in TEST_P() 1008 rnn.SetFwBias(biases); in TEST() 1009 rnn.SetBwBias(biases); in TEST() 1054 rnn.SetFwBias(biases); in TEST() [all …]
|
/external/skqp/src/gpu/gradients/ |
D | GrUnrolledBinaryGradientColorizer.fp | 137 // The raster implementation also uses scales and biases, but since they must be calculated 140 SkPMColor4f biases[kMaxIntervals]; 169 bias.store(biases + intervalCount); 177 biases[i] = SK_PMColor4fTRANSPARENT; 183 scales[6], scales[7], biases[0], biases[1], biases[2], biases[3], biases[4], 184 biases[5], biases[6], biases[7],
|
D | GrUnrolledBinaryGradientColorizer.cpp | 333 SkPMColor4f biases[kMaxIntervals]; in Make() local 362 bias.store(biases + intervalCount); in Make() 370 biases[i] = SK_PMColor4fTRANSPARENT; in Make() 376 scales[6], scales[7], biases[0], biases[1], biases[2], biases[3], biases[4], biases[5], in Make() 377 biases[6], biases[7], in Make()
|
/external/skia/src/gpu/gradients/ |
D | GrUnrolledBinaryGradientColorizer.fp | 137 // The raster implementation also uses scales and biases, but since they must be calculated 140 SkPMColor4f biases[kMaxIntervals]; 169 bias.store(biases + intervalCount); 177 biases[i] = SK_PMColor4fTRANSPARENT; 183 scales[6], scales[7], biases[0], biases[1], biases[2], biases[3], biases[4], 184 biases[5], biases[6], biases[7],
|
/external/tensorflow/tensorflow/compiler/mlir/tfr/examples/mnist/ |
D | mnist_train.py | 81 self.biases = { 98 conv1 = gen_mnist_ops.new_conv2d(x, self.weights['f1'], self.biases['b1'], 108 self.biases['b2'], 1, 1, 1, 1, 'SAME', 121 self.biases['b3'], 'RELU') 124 self.biases['b4'])
|
/external/skia/src/gpu/gradients/generated/ |
D | GrUnrolledBinaryGradientColorizer.cpp | 460 SkPMColor4f biases[kMaxIntervals]; in Make() local 489 bias.store(biases + intervalCount); in Make() 497 biases[i] = SK_PMColor4fTRANSPARENT; in Make() 511 biases[0], in Make() 512 biases[1], in Make() 513 biases[2], in Make() 514 biases[3], in Make() 515 biases[4], in Make() 516 biases[5], in Make() 517 biases[6], in Make() [all …]
|
/external/tensorflow/tensorflow/python/ops/ |
D | nn_impl.py | 490 def relu_layer(x, weights, biases, name=None): argument 504 with ops.name_scope(name, "relu_layer", [x, weights, biases]) as name: 507 biases = ops.convert_to_tensor(biases, name="biases") 508 xw_plus_b = nn_ops.bias_add(math_ops.matmul(x, weights), biases) 1810 biases, argument 1875 weights + [biases, inputs, labels]): 1926 biases, all_ids, partition_strategy=partition_strategy) 1997 biases, argument 2087 biases, 2102 biases, argument [all …]
|
D | nn_test.py | 583 biases = np.random.randn(num_classes).astype(np.float32) 590 sampled_w, sampled_b = weights[sampled], biases[sampled] 591 true_w, true_b = weights[labels], biases[labels] 609 return weights, biases, hidden_acts, sampled_vals, exp_logits, exp_labels 611 def _ShardTestEmbeddings(self, weights, biases, num_shards): argument 631 initializer=constant_op.constant(biases)) 644 (weights, biases, hidden_acts, sampled_vals, exp_logits, 655 biases=constant_op.constant(biases), 680 (weights, biases, hidden_acts, sampled_vals, exp_logits, 691 biases=constant_op.constant(biases), [all …]
|
/external/tensorflow/tensorflow/python/keras/distribute/ |
D | minimize_loss_test.py | 115 weights, biases = [], [] 119 biases.append(self.evaluate(layer.bias)) 121 error = abs(numpy.add(numpy.squeeze(weights), numpy.squeeze(biases)) - 1) 153 weights, biases = [], [] 158 biases.append(self.evaluate(layer.bias)) 160 error = abs(numpy.add(numpy.squeeze(weights), numpy.squeeze(biases)) - 1) 510 weights, biases, losses = [], [], [] 515 biases.append(self.evaluate(layer.bias)) 521 numpy.add(numpy.squeeze(weights), numpy.squeeze(biases)) - 1)
|
/external/tensorflow/tensorflow/core/api_def/base_api/ |
D | api_def_CudnnRNNCanonicalToParamsV2.pbtxt | 10 biases. 18 biases: the canonical form of biases that can be used for saving
|
D | api_def_CudnnRNNParamsToCanonicalV2.pbtxt | 10 biases. 20 biases: the canonical form of biases that can be used for saving
|
D | api_def_CudnnRNNCanonicalToParams.pbtxt | 10 biases. 18 biases: the canonical form of biases that can be used for saving
|
D | api_def_CudnnRNNParamsToCanonical.pbtxt | 10 biases. 21 biases: the canonical form of biases that can be used for saving
|
/external/tensorflow/tensorflow/compiler/mlir/lite/transforms/ |
D | default_quant_params.cc | 64 auto biases = TFL::GetOpQuantSpec(use.getOwner())->biases_params; in UsedAsBias() local 65 if (biases.find(use.getOperandNumber()) != biases.end()) return true; in UsedAsBias()
|
/external/tensorflow/tensorflow/core/profiler/g3doc/ |
D | command_line.md | 229 pool_logit/biases (10, 10/10 params) 250 pool_logit/biases (10, 10/20 params) 251 pool_logit/biases/Momentum (10, 10/10 params) 289 entry.name = 'pool_logit/biases' 311 pool_logit/biases (10, 10/10 params) 335 pool_logit/biases (10, 10/20 params)
|