1 /* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
2 #ifndef _BTRFS_CTREE_H_
3 #define _BTRFS_CTREE_H_
4
5 #include <linux/btrfs.h>
6 #include <linux/types.h>
7 #ifdef __KERNEL__
8 #include <linux/stddef.h>
9 #else
10 #include <stddef.h>
11 #endif
12
13 /*
14 * This header contains the structure definitions and constants used
15 * by file system objects that can be retrieved using
16 * the BTRFS_IOC_SEARCH_TREE ioctl. That means basically anything that
17 * is needed to describe a leaf node's key or item contents.
18 */
19
20 /* holds pointers to all of the tree roots */
21 #define BTRFS_ROOT_TREE_OBJECTID 1ULL
22
23 /* stores information about which extents are in use, and reference counts */
24 #define BTRFS_EXTENT_TREE_OBJECTID 2ULL
25
26 /*
27 * chunk tree stores translations from logical -> physical block numbering
28 * the super block points to the chunk tree
29 */
30 #define BTRFS_CHUNK_TREE_OBJECTID 3ULL
31
32 /*
33 * stores information about which areas of a given device are in use.
34 * one per device. The tree of tree roots points to the device tree
35 */
36 #define BTRFS_DEV_TREE_OBJECTID 4ULL
37
38 /* one per subvolume, storing files and directories */
39 #define BTRFS_FS_TREE_OBJECTID 5ULL
40
41 /* directory objectid inside the root tree */
42 #define BTRFS_ROOT_TREE_DIR_OBJECTID 6ULL
43
44 /* holds checksums of all the data extents */
45 #define BTRFS_CSUM_TREE_OBJECTID 7ULL
46
47 /* holds quota configuration and tracking */
48 #define BTRFS_QUOTA_TREE_OBJECTID 8ULL
49
50 /* for storing items that use the BTRFS_UUID_KEY* types */
51 #define BTRFS_UUID_TREE_OBJECTID 9ULL
52
53 /* tracks free space in block groups. */
54 #define BTRFS_FREE_SPACE_TREE_OBJECTID 10ULL
55
56 /* device stats in the device tree */
57 #define BTRFS_DEV_STATS_OBJECTID 0ULL
58
59 /* for storing balance parameters in the root tree */
60 #define BTRFS_BALANCE_OBJECTID -4ULL
61
62 /* orhpan objectid for tracking unlinked/truncated files */
63 #define BTRFS_ORPHAN_OBJECTID -5ULL
64
65 /* does write ahead logging to speed up fsyncs */
66 #define BTRFS_TREE_LOG_OBJECTID -6ULL
67 #define BTRFS_TREE_LOG_FIXUP_OBJECTID -7ULL
68
69 /* for space balancing */
70 #define BTRFS_TREE_RELOC_OBJECTID -8ULL
71 #define BTRFS_DATA_RELOC_TREE_OBJECTID -9ULL
72
73 /*
74 * extent checksums all have this objectid
75 * this allows them to share the logging tree
76 * for fsyncs
77 */
78 #define BTRFS_EXTENT_CSUM_OBJECTID -10ULL
79
80 /* For storing free space cache */
81 #define BTRFS_FREE_SPACE_OBJECTID -11ULL
82
83 /*
84 * The inode number assigned to the special inode for storing
85 * free ino cache
86 */
87 #define BTRFS_FREE_INO_OBJECTID -12ULL
88
89 /* dummy objectid represents multiple objectids */
90 #define BTRFS_MULTIPLE_OBJECTIDS -255ULL
91
92 /*
93 * All files have objectids in this range.
94 */
95 #define BTRFS_FIRST_FREE_OBJECTID 256ULL
96 #define BTRFS_LAST_FREE_OBJECTID -256ULL
97 #define BTRFS_FIRST_CHUNK_TREE_OBJECTID 256ULL
98
99
100 /*
101 * the device items go into the chunk tree. The key is in the form
102 * [ 1 BTRFS_DEV_ITEM_KEY device_id ]
103 */
104 #define BTRFS_DEV_ITEMS_OBJECTID 1ULL
105
106 #define BTRFS_BTREE_INODE_OBJECTID 1
107
108 #define BTRFS_EMPTY_SUBVOL_DIR_OBJECTID 2
109
110 #define BTRFS_DEV_REPLACE_DEVID 0ULL
111
112 /*
113 * inode items have the data typically returned from stat and store other
114 * info about object characteristics. There is one for every file and dir in
115 * the FS
116 */
117 #define BTRFS_INODE_ITEM_KEY 1
118 #define BTRFS_INODE_REF_KEY 12
119 #define BTRFS_INODE_EXTREF_KEY 13
120 #define BTRFS_XATTR_ITEM_KEY 24
121 #define BTRFS_ORPHAN_ITEM_KEY 48
122 /* reserve 2-15 close to the inode for later flexibility */
123
124 /*
125 * dir items are the name -> inode pointers in a directory. There is one
126 * for every name in a directory.
127 */
128 #define BTRFS_DIR_LOG_ITEM_KEY 60
129 #define BTRFS_DIR_LOG_INDEX_KEY 72
130 #define BTRFS_DIR_ITEM_KEY 84
131 #define BTRFS_DIR_INDEX_KEY 96
132 /*
133 * extent data is for file data
134 */
135 #define BTRFS_EXTENT_DATA_KEY 108
136
137 /*
138 * extent csums are stored in a separate tree and hold csums for
139 * an entire extent on disk.
140 */
141 #define BTRFS_EXTENT_CSUM_KEY 128
142
143 /*
144 * root items point to tree roots. They are typically in the root
145 * tree used by the super block to find all the other trees
146 */
147 #define BTRFS_ROOT_ITEM_KEY 132
148
149 /*
150 * root backrefs tie subvols and snapshots to the directory entries that
151 * reference them
152 */
153 #define BTRFS_ROOT_BACKREF_KEY 144
154
155 /*
156 * root refs make a fast index for listing all of the snapshots and
157 * subvolumes referenced by a given root. They point directly to the
158 * directory item in the root that references the subvol
159 */
160 #define BTRFS_ROOT_REF_KEY 156
161
162 /*
163 * extent items are in the extent map tree. These record which blocks
164 * are used, and how many references there are to each block
165 */
166 #define BTRFS_EXTENT_ITEM_KEY 168
167
168 /*
169 * The same as the BTRFS_EXTENT_ITEM_KEY, except it's metadata we already know
170 * the length, so we save the level in key->offset instead of the length.
171 */
172 #define BTRFS_METADATA_ITEM_KEY 169
173
174 #define BTRFS_TREE_BLOCK_REF_KEY 176
175
176 #define BTRFS_EXTENT_DATA_REF_KEY 178
177
178 #define BTRFS_EXTENT_REF_V0_KEY 180
179
180 #define BTRFS_SHARED_BLOCK_REF_KEY 182
181
182 #define BTRFS_SHARED_DATA_REF_KEY 184
183
184 /*
185 * block groups give us hints into the extent allocation trees. Which
186 * blocks are free etc etc
187 */
188 #define BTRFS_BLOCK_GROUP_ITEM_KEY 192
189
190 /*
191 * Every block group is represented in the free space tree by a free space info
192 * item, which stores some accounting information. It is keyed on
193 * (block_group_start, FREE_SPACE_INFO, block_group_length).
194 */
195 #define BTRFS_FREE_SPACE_INFO_KEY 198
196
197 /*
198 * A free space extent tracks an extent of space that is free in a block group.
199 * It is keyed on (start, FREE_SPACE_EXTENT, length).
200 */
201 #define BTRFS_FREE_SPACE_EXTENT_KEY 199
202
203 /*
204 * When a block group becomes very fragmented, we convert it to use bitmaps
205 * instead of extents. A free space bitmap is keyed on
206 * (start, FREE_SPACE_BITMAP, length); the corresponding item is a bitmap with
207 * (length / sectorsize) bits.
208 */
209 #define BTRFS_FREE_SPACE_BITMAP_KEY 200
210
211 #define BTRFS_DEV_EXTENT_KEY 204
212 #define BTRFS_DEV_ITEM_KEY 216
213 #define BTRFS_CHUNK_ITEM_KEY 228
214
215 /*
216 * Records the overall state of the qgroups.
217 * There's only one instance of this key present,
218 * (0, BTRFS_QGROUP_STATUS_KEY, 0)
219 */
220 #define BTRFS_QGROUP_STATUS_KEY 240
221 /*
222 * Records the currently used space of the qgroup.
223 * One key per qgroup, (0, BTRFS_QGROUP_INFO_KEY, qgroupid).
224 */
225 #define BTRFS_QGROUP_INFO_KEY 242
226 /*
227 * Contains the user configured limits for the qgroup.
228 * One key per qgroup, (0, BTRFS_QGROUP_LIMIT_KEY, qgroupid).
229 */
230 #define BTRFS_QGROUP_LIMIT_KEY 244
231 /*
232 * Records the child-parent relationship of qgroups. For
233 * each relation, 2 keys are present:
234 * (childid, BTRFS_QGROUP_RELATION_KEY, parentid)
235 * (parentid, BTRFS_QGROUP_RELATION_KEY, childid)
236 */
237 #define BTRFS_QGROUP_RELATION_KEY 246
238
239 /*
240 * Obsolete name, see BTRFS_TEMPORARY_ITEM_KEY.
241 */
242 #define BTRFS_BALANCE_ITEM_KEY 248
243
244 /*
245 * The key type for tree items that are stored persistently, but do not need to
246 * exist for extended period of time. The items can exist in any tree.
247 *
248 * [subtype, BTRFS_TEMPORARY_ITEM_KEY, data]
249 *
250 * Existing items:
251 *
252 * - balance status item
253 * (BTRFS_BALANCE_OBJECTID, BTRFS_TEMPORARY_ITEM_KEY, 0)
254 */
255 #define BTRFS_TEMPORARY_ITEM_KEY 248
256
257 /*
258 * Obsolete name, see BTRFS_PERSISTENT_ITEM_KEY
259 */
260 #define BTRFS_DEV_STATS_KEY 249
261
262 /*
263 * The key type for tree items that are stored persistently and usually exist
264 * for a long period, eg. filesystem lifetime. The item kinds can be status
265 * information, stats or preference values. The item can exist in any tree.
266 *
267 * [subtype, BTRFS_PERSISTENT_ITEM_KEY, data]
268 *
269 * Existing items:
270 *
271 * - device statistics, store IO stats in the device tree, one key for all
272 * stats
273 * (BTRFS_DEV_STATS_OBJECTID, BTRFS_DEV_STATS_KEY, 0)
274 */
275 #define BTRFS_PERSISTENT_ITEM_KEY 249
276
277 /*
278 * Persistantly stores the device replace state in the device tree.
279 * The key is built like this: (0, BTRFS_DEV_REPLACE_KEY, 0).
280 */
281 #define BTRFS_DEV_REPLACE_KEY 250
282
283 /*
284 * Stores items that allow to quickly map UUIDs to something else.
285 * These items are part of the filesystem UUID tree.
286 * The key is built like this:
287 * (UUID_upper_64_bits, BTRFS_UUID_KEY*, UUID_lower_64_bits).
288 */
289 #if BTRFS_UUID_SIZE != 16
290 #error "UUID items require BTRFS_UUID_SIZE == 16!"
291 #endif
292 #define BTRFS_UUID_KEY_SUBVOL 251 /* for UUIDs assigned to subvols */
293 #define BTRFS_UUID_KEY_RECEIVED_SUBVOL 252 /* for UUIDs assigned to
294 * received subvols */
295
296 /*
297 * string items are for debugging. They just store a short string of
298 * data in the FS
299 */
300 #define BTRFS_STRING_ITEM_KEY 253
301
302 /* Maximum metadata block size (nodesize) */
303 #define BTRFS_MAX_METADATA_BLOCKSIZE 65536
304
305 /* 32 bytes in various csum fields */
306 #define BTRFS_CSUM_SIZE 32
307
308 /* csum types */
309 enum btrfs_csum_type {
310 BTRFS_CSUM_TYPE_CRC32 = 0,
311 BTRFS_CSUM_TYPE_XXHASH = 1,
312 BTRFS_CSUM_TYPE_SHA256 = 2,
313 BTRFS_CSUM_TYPE_BLAKE2 = 3,
314 };
315
316 /*
317 * flags definitions for directory entry item type
318 *
319 * Used by:
320 * struct btrfs_dir_item.type
321 *
322 * Values 0..7 must match common file type values in fs_types.h.
323 */
324 #define BTRFS_FT_UNKNOWN 0
325 #define BTRFS_FT_REG_FILE 1
326 #define BTRFS_FT_DIR 2
327 #define BTRFS_FT_CHRDEV 3
328 #define BTRFS_FT_BLKDEV 4
329 #define BTRFS_FT_FIFO 5
330 #define BTRFS_FT_SOCK 6
331 #define BTRFS_FT_SYMLINK 7
332 #define BTRFS_FT_XATTR 8
333 #define BTRFS_FT_MAX 9
334
335 /*
336 * The key defines the order in the tree, and so it also defines (optimal)
337 * block layout.
338 *
339 * objectid corresponds to the inode number.
340 *
341 * type tells us things about the object, and is a kind of stream selector.
342 * so for a given inode, keys with type of 1 might refer to the inode data,
343 * type of 2 may point to file data in the btree and type == 3 may point to
344 * extents.
345 *
346 * offset is the starting byte offset for this key in the stream.
347 *
348 * btrfs_disk_key is in disk byte order. struct btrfs_key is always
349 * in cpu native order. Otherwise they are identical and their sizes
350 * should be the same (ie both packed)
351 */
352 struct btrfs_disk_key {
353 __le64 objectid;
354 __u8 type;
355 __le64 offset;
356 } __attribute__ ((__packed__));
357
358 struct btrfs_key {
359 __u64 objectid;
360 __u8 type;
361 __u64 offset;
362 } __attribute__ ((__packed__));
363
364 struct btrfs_dev_item {
365 /* the internal btrfs device id */
366 __le64 devid;
367
368 /* size of the device */
369 __le64 total_bytes;
370
371 /* bytes used */
372 __le64 bytes_used;
373
374 /* optimal io alignment for this device */
375 __le32 io_align;
376
377 /* optimal io width for this device */
378 __le32 io_width;
379
380 /* minimal io size for this device */
381 __le32 sector_size;
382
383 /* type and info about this device */
384 __le64 type;
385
386 /* expected generation for this device */
387 __le64 generation;
388
389 /*
390 * starting byte of this partition on the device,
391 * to allow for stripe alignment in the future
392 */
393 __le64 start_offset;
394
395 /* grouping information for allocation decisions */
396 __le32 dev_group;
397
398 /* seek speed 0-100 where 100 is fastest */
399 __u8 seek_speed;
400
401 /* bandwidth 0-100 where 100 is fastest */
402 __u8 bandwidth;
403
404 /* btrfs generated uuid for this device */
405 __u8 uuid[BTRFS_UUID_SIZE];
406
407 /* uuid of FS who owns this device */
408 __u8 fsid[BTRFS_UUID_SIZE];
409 } __attribute__ ((__packed__));
410
411 struct btrfs_stripe {
412 __le64 devid;
413 __le64 offset;
414 __u8 dev_uuid[BTRFS_UUID_SIZE];
415 } __attribute__ ((__packed__));
416
417 struct btrfs_chunk {
418 /* size of this chunk in bytes */
419 __le64 length;
420
421 /* objectid of the root referencing this chunk */
422 __le64 owner;
423
424 __le64 stripe_len;
425 __le64 type;
426
427 /* optimal io alignment for this chunk */
428 __le32 io_align;
429
430 /* optimal io width for this chunk */
431 __le32 io_width;
432
433 /* minimal io size for this chunk */
434 __le32 sector_size;
435
436 /* 2^16 stripes is quite a lot, a second limit is the size of a single
437 * item in the btree
438 */
439 __le16 num_stripes;
440
441 /* sub stripes only matter for raid10 */
442 __le16 sub_stripes;
443 struct btrfs_stripe stripe;
444 /* additional stripes go here */
445 } __attribute__ ((__packed__));
446
447 #define BTRFS_FREE_SPACE_EXTENT 1
448 #define BTRFS_FREE_SPACE_BITMAP 2
449
450 struct btrfs_free_space_entry {
451 __le64 offset;
452 __le64 bytes;
453 __u8 type;
454 } __attribute__ ((__packed__));
455
456 struct btrfs_free_space_header {
457 struct btrfs_disk_key location;
458 __le64 generation;
459 __le64 num_entries;
460 __le64 num_bitmaps;
461 } __attribute__ ((__packed__));
462
463 #define BTRFS_HEADER_FLAG_WRITTEN (1ULL << 0)
464 #define BTRFS_HEADER_FLAG_RELOC (1ULL << 1)
465
466 /* Super block flags */
467 /* Errors detected */
468 #define BTRFS_SUPER_FLAG_ERROR (1ULL << 2)
469
470 #define BTRFS_SUPER_FLAG_SEEDING (1ULL << 32)
471 #define BTRFS_SUPER_FLAG_METADUMP (1ULL << 33)
472 #define BTRFS_SUPER_FLAG_METADUMP_V2 (1ULL << 34)
473 #define BTRFS_SUPER_FLAG_CHANGING_FSID (1ULL << 35)
474 #define BTRFS_SUPER_FLAG_CHANGING_FSID_V2 (1ULL << 36)
475
476
477 /*
478 * items in the extent btree are used to record the objectid of the
479 * owner of the block and the number of references
480 */
481
482 struct btrfs_extent_item {
483 __le64 refs;
484 __le64 generation;
485 __le64 flags;
486 } __attribute__ ((__packed__));
487
488 struct btrfs_extent_item_v0 {
489 __le32 refs;
490 } __attribute__ ((__packed__));
491
492
493 #define BTRFS_EXTENT_FLAG_DATA (1ULL << 0)
494 #define BTRFS_EXTENT_FLAG_TREE_BLOCK (1ULL << 1)
495
496 /* following flags only apply to tree blocks */
497
498 /* use full backrefs for extent pointers in the block */
499 #define BTRFS_BLOCK_FLAG_FULL_BACKREF (1ULL << 8)
500
501 /*
502 * this flag is only used internally by scrub and may be changed at any time
503 * it is only declared here to avoid collisions
504 */
505 #define BTRFS_EXTENT_FLAG_SUPER (1ULL << 48)
506
507 struct btrfs_tree_block_info {
508 struct btrfs_disk_key key;
509 __u8 level;
510 } __attribute__ ((__packed__));
511
512 struct btrfs_extent_data_ref {
513 __le64 root;
514 __le64 objectid;
515 __le64 offset;
516 __le32 count;
517 } __attribute__ ((__packed__));
518
519 struct btrfs_shared_data_ref {
520 __le32 count;
521 } __attribute__ ((__packed__));
522
523 struct btrfs_extent_inline_ref {
524 __u8 type;
525 __le64 offset;
526 } __attribute__ ((__packed__));
527
528 /* dev extents record free space on individual devices. The owner
529 * field points back to the chunk allocation mapping tree that allocated
530 * the extent. The chunk tree uuid field is a way to double check the owner
531 */
532 struct btrfs_dev_extent {
533 __le64 chunk_tree;
534 __le64 chunk_objectid;
535 __le64 chunk_offset;
536 __le64 length;
537 __u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
538 } __attribute__ ((__packed__));
539
540 struct btrfs_inode_ref {
541 __le64 index;
542 __le16 name_len;
543 /* name goes here */
544 } __attribute__ ((__packed__));
545
546 struct btrfs_inode_extref {
547 __le64 parent_objectid;
548 __le64 index;
549 __le16 name_len;
550 __u8 name[0];
551 /* name goes here */
552 } __attribute__ ((__packed__));
553
554 struct btrfs_timespec {
555 __le64 sec;
556 __le32 nsec;
557 } __attribute__ ((__packed__));
558
559 struct btrfs_inode_item {
560 /* nfs style generation number */
561 __le64 generation;
562 /* transid that last touched this inode */
563 __le64 transid;
564 __le64 size;
565 __le64 nbytes;
566 __le64 block_group;
567 __le32 nlink;
568 __le32 uid;
569 __le32 gid;
570 __le32 mode;
571 __le64 rdev;
572 __le64 flags;
573
574 /* modification sequence number for NFS */
575 __le64 sequence;
576
577 /*
578 * a little future expansion, for more than this we can
579 * just grow the inode item and version it
580 */
581 __le64 reserved[4];
582 struct btrfs_timespec atime;
583 struct btrfs_timespec ctime;
584 struct btrfs_timespec mtime;
585 struct btrfs_timespec otime;
586 } __attribute__ ((__packed__));
587
588 struct btrfs_dir_log_item {
589 __le64 end;
590 } __attribute__ ((__packed__));
591
592 struct btrfs_dir_item {
593 struct btrfs_disk_key location;
594 __le64 transid;
595 __le16 data_len;
596 __le16 name_len;
597 __u8 type;
598 } __attribute__ ((__packed__));
599
600 #define BTRFS_ROOT_SUBVOL_RDONLY (1ULL << 0)
601
602 /*
603 * Internal in-memory flag that a subvolume has been marked for deletion but
604 * still visible as a directory
605 */
606 #define BTRFS_ROOT_SUBVOL_DEAD (1ULL << 48)
607
608 struct btrfs_root_item {
609 struct btrfs_inode_item inode;
610 __le64 generation;
611 __le64 root_dirid;
612 __le64 bytenr;
613 __le64 byte_limit;
614 __le64 bytes_used;
615 __le64 last_snapshot;
616 __le64 flags;
617 __le32 refs;
618 struct btrfs_disk_key drop_progress;
619 __u8 drop_level;
620 __u8 level;
621
622 /*
623 * The following fields appear after subvol_uuids+subvol_times
624 * were introduced.
625 */
626
627 /*
628 * This generation number is used to test if the new fields are valid
629 * and up to date while reading the root item. Every time the root item
630 * is written out, the "generation" field is copied into this field. If
631 * anyone ever mounted the fs with an older kernel, we will have
632 * mismatching generation values here and thus must invalidate the
633 * new fields. See btrfs_update_root and btrfs_find_last_root for
634 * details.
635 * the offset of generation_v2 is also used as the start for the memset
636 * when invalidating the fields.
637 */
638 __le64 generation_v2;
639 __u8 uuid[BTRFS_UUID_SIZE];
640 __u8 parent_uuid[BTRFS_UUID_SIZE];
641 __u8 received_uuid[BTRFS_UUID_SIZE];
642 __le64 ctransid; /* updated when an inode changes */
643 __le64 otransid; /* trans when created */
644 __le64 stransid; /* trans when sent. non-zero for received subvol */
645 __le64 rtransid; /* trans when received. non-zero for received subvol */
646 struct btrfs_timespec ctime;
647 struct btrfs_timespec otime;
648 struct btrfs_timespec stime;
649 struct btrfs_timespec rtime;
650 __le64 reserved[8]; /* for future */
651 } __attribute__ ((__packed__));
652
653 /*
654 * Btrfs root item used to be smaller than current size. The old format ends
655 * at where member generation_v2 is.
656 */
btrfs_legacy_root_item_size(void)657 static inline __u32 btrfs_legacy_root_item_size(void)
658 {
659 return offsetof(struct btrfs_root_item, generation_v2);
660 }
661
662 /*
663 * this is used for both forward and backward root refs
664 */
665 struct btrfs_root_ref {
666 __le64 dirid;
667 __le64 sequence;
668 __le16 name_len;
669 } __attribute__ ((__packed__));
670
671 struct btrfs_disk_balance_args {
672 /*
673 * profiles to operate on, single is denoted by
674 * BTRFS_AVAIL_ALLOC_BIT_SINGLE
675 */
676 __le64 profiles;
677
678 /*
679 * usage filter
680 * BTRFS_BALANCE_ARGS_USAGE with a single value means '0..N'
681 * BTRFS_BALANCE_ARGS_USAGE_RANGE - range syntax, min..max
682 */
683 union {
684 __le64 usage;
685 struct {
686 __le32 usage_min;
687 __le32 usage_max;
688 };
689 };
690
691 /* devid filter */
692 __le64 devid;
693
694 /* devid subset filter [pstart..pend) */
695 __le64 pstart;
696 __le64 pend;
697
698 /* btrfs virtual address space subset filter [vstart..vend) */
699 __le64 vstart;
700 __le64 vend;
701
702 /*
703 * profile to convert to, single is denoted by
704 * BTRFS_AVAIL_ALLOC_BIT_SINGLE
705 */
706 __le64 target;
707
708 /* BTRFS_BALANCE_ARGS_* */
709 __le64 flags;
710
711 /*
712 * BTRFS_BALANCE_ARGS_LIMIT with value 'limit'
713 * BTRFS_BALANCE_ARGS_LIMIT_RANGE - the extend version can use minimum
714 * and maximum
715 */
716 union {
717 __le64 limit;
718 struct {
719 __le32 limit_min;
720 __le32 limit_max;
721 };
722 };
723
724 /*
725 * Process chunks that cross stripes_min..stripes_max devices,
726 * BTRFS_BALANCE_ARGS_STRIPES_RANGE
727 */
728 __le32 stripes_min;
729 __le32 stripes_max;
730
731 __le64 unused[6];
732 } __attribute__ ((__packed__));
733
734 /*
735 * store balance parameters to disk so that balance can be properly
736 * resumed after crash or unmount
737 */
738 struct btrfs_balance_item {
739 /* BTRFS_BALANCE_* */
740 __le64 flags;
741
742 struct btrfs_disk_balance_args data;
743 struct btrfs_disk_balance_args meta;
744 struct btrfs_disk_balance_args sys;
745
746 __le64 unused[4];
747 } __attribute__ ((__packed__));
748
749 enum {
750 BTRFS_FILE_EXTENT_INLINE = 0,
751 BTRFS_FILE_EXTENT_REG = 1,
752 BTRFS_FILE_EXTENT_PREALLOC = 2,
753 BTRFS_NR_FILE_EXTENT_TYPES = 3,
754 };
755
756 struct btrfs_file_extent_item {
757 /*
758 * transaction id that created this extent
759 */
760 __le64 generation;
761 /*
762 * max number of bytes to hold this extent in ram
763 * when we split a compressed extent we can't know how big
764 * each of the resulting pieces will be. So, this is
765 * an upper limit on the size of the extent in ram instead of
766 * an exact limit.
767 */
768 __le64 ram_bytes;
769
770 /*
771 * 32 bits for the various ways we might encode the data,
772 * including compression and encryption. If any of these
773 * are set to something a given disk format doesn't understand
774 * it is treated like an incompat flag for reading and writing,
775 * but not for stat.
776 */
777 __u8 compression;
778 __u8 encryption;
779 __le16 other_encoding; /* spare for later use */
780
781 /* are we inline data or a real extent? */
782 __u8 type;
783
784 /*
785 * disk space consumed by the extent, checksum blocks are included
786 * in these numbers
787 *
788 * At this offset in the structure, the inline extent data start.
789 */
790 __le64 disk_bytenr;
791 __le64 disk_num_bytes;
792 /*
793 * the logical offset in file blocks (no csums)
794 * this extent record is for. This allows a file extent to point
795 * into the middle of an existing extent on disk, sharing it
796 * between two snapshots (useful if some bytes in the middle of the
797 * extent have changed
798 */
799 __le64 offset;
800 /*
801 * the logical number of file blocks (no csums included). This
802 * always reflects the size uncompressed and without encoding.
803 */
804 __le64 num_bytes;
805
806 } __attribute__ ((__packed__));
807
808 struct btrfs_csum_item {
809 __u8 csum;
810 } __attribute__ ((__packed__));
811
812 struct btrfs_dev_stats_item {
813 /*
814 * grow this item struct at the end for future enhancements and keep
815 * the existing values unchanged
816 */
817 __le64 values[BTRFS_DEV_STAT_VALUES_MAX];
818 } __attribute__ ((__packed__));
819
820 #define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_ALWAYS 0
821 #define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID 1
822
823 struct btrfs_dev_replace_item {
824 /*
825 * grow this item struct at the end for future enhancements and keep
826 * the existing values unchanged
827 */
828 __le64 src_devid;
829 __le64 cursor_left;
830 __le64 cursor_right;
831 __le64 cont_reading_from_srcdev_mode;
832
833 __le64 replace_state;
834 __le64 time_started;
835 __le64 time_stopped;
836 __le64 num_write_errors;
837 __le64 num_uncorrectable_read_errors;
838 } __attribute__ ((__packed__));
839
840 /* different types of block groups (and chunks) */
841 #define BTRFS_BLOCK_GROUP_DATA (1ULL << 0)
842 #define BTRFS_BLOCK_GROUP_SYSTEM (1ULL << 1)
843 #define BTRFS_BLOCK_GROUP_METADATA (1ULL << 2)
844 #define BTRFS_BLOCK_GROUP_RAID0 (1ULL << 3)
845 #define BTRFS_BLOCK_GROUP_RAID1 (1ULL << 4)
846 #define BTRFS_BLOCK_GROUP_DUP (1ULL << 5)
847 #define BTRFS_BLOCK_GROUP_RAID10 (1ULL << 6)
848 #define BTRFS_BLOCK_GROUP_RAID5 (1ULL << 7)
849 #define BTRFS_BLOCK_GROUP_RAID6 (1ULL << 8)
850 #define BTRFS_BLOCK_GROUP_RAID1C3 (1ULL << 9)
851 #define BTRFS_BLOCK_GROUP_RAID1C4 (1ULL << 10)
852 #define BTRFS_BLOCK_GROUP_RESERVED (BTRFS_AVAIL_ALLOC_BIT_SINGLE | \
853 BTRFS_SPACE_INFO_GLOBAL_RSV)
854
855 enum btrfs_raid_types {
856 BTRFS_RAID_RAID10,
857 BTRFS_RAID_RAID1,
858 BTRFS_RAID_DUP,
859 BTRFS_RAID_RAID0,
860 BTRFS_RAID_SINGLE,
861 BTRFS_RAID_RAID5,
862 BTRFS_RAID_RAID6,
863 BTRFS_RAID_RAID1C3,
864 BTRFS_RAID_RAID1C4,
865 BTRFS_NR_RAID_TYPES
866 };
867
868 #define BTRFS_BLOCK_GROUP_TYPE_MASK (BTRFS_BLOCK_GROUP_DATA | \
869 BTRFS_BLOCK_GROUP_SYSTEM | \
870 BTRFS_BLOCK_GROUP_METADATA)
871
872 #define BTRFS_BLOCK_GROUP_PROFILE_MASK (BTRFS_BLOCK_GROUP_RAID0 | \
873 BTRFS_BLOCK_GROUP_RAID1 | \
874 BTRFS_BLOCK_GROUP_RAID1C3 | \
875 BTRFS_BLOCK_GROUP_RAID1C4 | \
876 BTRFS_BLOCK_GROUP_RAID5 | \
877 BTRFS_BLOCK_GROUP_RAID6 | \
878 BTRFS_BLOCK_GROUP_DUP | \
879 BTRFS_BLOCK_GROUP_RAID10)
880 #define BTRFS_BLOCK_GROUP_RAID56_MASK (BTRFS_BLOCK_GROUP_RAID5 | \
881 BTRFS_BLOCK_GROUP_RAID6)
882
883 #define BTRFS_BLOCK_GROUP_RAID1_MASK (BTRFS_BLOCK_GROUP_RAID1 | \
884 BTRFS_BLOCK_GROUP_RAID1C3 | \
885 BTRFS_BLOCK_GROUP_RAID1C4)
886
887 /*
888 * We need a bit for restriper to be able to tell when chunks of type
889 * SINGLE are available. This "extended" profile format is used in
890 * fs_info->avail_*_alloc_bits (in-memory) and balance item fields
891 * (on-disk). The corresponding on-disk bit in chunk.type is reserved
892 * to avoid remappings between two formats in future.
893 */
894 #define BTRFS_AVAIL_ALLOC_BIT_SINGLE (1ULL << 48)
895
896 /*
897 * A fake block group type that is used to communicate global block reserve
898 * size to userspace via the SPACE_INFO ioctl.
899 */
900 #define BTRFS_SPACE_INFO_GLOBAL_RSV (1ULL << 49)
901
902 #define BTRFS_EXTENDED_PROFILE_MASK (BTRFS_BLOCK_GROUP_PROFILE_MASK | \
903 BTRFS_AVAIL_ALLOC_BIT_SINGLE)
904
chunk_to_extended(__u64 flags)905 static inline __u64 chunk_to_extended(__u64 flags)
906 {
907 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0)
908 flags |= BTRFS_AVAIL_ALLOC_BIT_SINGLE;
909
910 return flags;
911 }
extended_to_chunk(__u64 flags)912 static inline __u64 extended_to_chunk(__u64 flags)
913 {
914 return flags & ~BTRFS_AVAIL_ALLOC_BIT_SINGLE;
915 }
916
917 struct btrfs_block_group_item {
918 __le64 used;
919 __le64 chunk_objectid;
920 __le64 flags;
921 } __attribute__ ((__packed__));
922
923 struct btrfs_free_space_info {
924 __le32 extent_count;
925 __le32 flags;
926 } __attribute__ ((__packed__));
927
928 #define BTRFS_FREE_SPACE_USING_BITMAPS (1ULL << 0)
929
930 #define BTRFS_QGROUP_LEVEL_SHIFT 48
btrfs_qgroup_level(__u64 qgroupid)931 static inline __u16 btrfs_qgroup_level(__u64 qgroupid)
932 {
933 return (__u16)(qgroupid >> BTRFS_QGROUP_LEVEL_SHIFT);
934 }
935
936 /*
937 * is subvolume quota turned on?
938 */
939 #define BTRFS_QGROUP_STATUS_FLAG_ON (1ULL << 0)
940 /*
941 * RESCAN is set during the initialization phase
942 */
943 #define BTRFS_QGROUP_STATUS_FLAG_RESCAN (1ULL << 1)
944 /*
945 * Some qgroup entries are known to be out of date,
946 * either because the configuration has changed in a way that
947 * makes a rescan necessary, or because the fs has been mounted
948 * with a non-qgroup-aware version.
949 * Turning qouta off and on again makes it inconsistent, too.
950 */
951 #define BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT (1ULL << 2)
952
953 #define BTRFS_QGROUP_STATUS_VERSION 1
954
955 struct btrfs_qgroup_status_item {
956 __le64 version;
957 /*
958 * the generation is updated during every commit. As older
959 * versions of btrfs are not aware of qgroups, it will be
960 * possible to detect inconsistencies by checking the
961 * generation on mount time
962 */
963 __le64 generation;
964
965 /* flag definitions see above */
966 __le64 flags;
967
968 /*
969 * only used during scanning to record the progress
970 * of the scan. It contains a logical address
971 */
972 __le64 rescan;
973 } __attribute__ ((__packed__));
974
975 struct btrfs_qgroup_info_item {
976 __le64 generation;
977 __le64 rfer;
978 __le64 rfer_cmpr;
979 __le64 excl;
980 __le64 excl_cmpr;
981 } __attribute__ ((__packed__));
982
983 struct btrfs_qgroup_limit_item {
984 /*
985 * only updated when any of the other values change
986 */
987 __le64 flags;
988 __le64 max_rfer;
989 __le64 max_excl;
990 __le64 rsv_rfer;
991 __le64 rsv_excl;
992 } __attribute__ ((__packed__));
993
994 #endif /* _BTRFS_CTREE_H_ */
995