/external/tensorflow/tensorflow/python/kernel_tests/distributions/ |
D | categorical_test.py | 34 from tensorflow.python.ops.distributions import categorical 43 return categorical.Categorical(logits, dtype=dtype) 51 dist = categorical.Categorical(probs=p) 60 dist = categorical.Categorical(logits=logits) 118 dist = categorical.Categorical(logits) 132 dist = categorical.Categorical(math_ops.log(histograms) - 50.) 139 dist = categorical.Categorical(math_ops.log(histograms) - 50.) 150 dist = categorical.Categorical(probs=histograms) 189 dist = categorical.Categorical(probs=histograms_ph) 201 dist = categorical.Categorical(probs=histograms) [all …]
|
/external/tensorflow/tensorflow/python/keras/utils/ |
D | np_utils.py | 77 categorical = np.zeros((n, num_classes), dtype=dtype) 78 categorical[np.arange(n), y] = 1 80 categorical = np.reshape(categorical, output_shape) 81 return categorical
|
/external/tensorflow/tensorflow/tools/api/golden/v2/ |
D | tensorflow.keras.preprocessing.image.-image-data-generator.pbtxt | 23 …'filename\', \'class\', \'None\', \'(256, 256)\', \'rgb\', \'None\', \'categorical\', \'32\', \'Tr… 27 …gs=None, keywords=None, defaults=[\'(256, 256)\', \'rgb\', \'None\', \'categorical\', \'32\', \'Tr…
|
D | tensorflow.keras.preprocessing.sequence.pbtxt | 17 …cabulary_size\', \'window_size\', \'negative_samples\', \'shuffle\', \'categorical\', \'sampling_t…
|
D | tensorflow.keras.preprocessing.image.-directory-iterator.pbtxt | 27 …gs=None, keywords=None, defaults=[\'(256, 256)\', \'rgb\', \'None\', \'categorical\', \'32\', \'Tr…
|
D | tensorflow.random.pbtxt | 20 name: "categorical"
|
/external/tensorflow/tensorflow/tools/api/golden/v1/ |
D | tensorflow.keras.preprocessing.image.-image-data-generator.pbtxt | 23 …'filename\', \'class\', \'None\', \'(256, 256)\', \'rgb\', \'None\', \'categorical\', \'32\', \'Tr… 27 …gs=None, keywords=None, defaults=[\'(256, 256)\', \'rgb\', \'None\', \'categorical\', \'32\', \'Tr…
|
D | tensorflow.keras.preprocessing.sequence.pbtxt | 17 …cabulary_size\', \'window_size\', \'negative_samples\', \'shuffle\', \'categorical\', \'sampling_t…
|
D | tensorflow.keras.preprocessing.image.-directory-iterator.pbtxt | 27 …gs=None, keywords=None, defaults=[\'(256, 256)\', \'rgb\', \'None\', \'categorical\', \'32\', \'Tr…
|
D | tensorflow.distributions.-categorical.pbtxt | 3 is_instance: "<class \'tensorflow.python.ops.distributions.categorical.Categorical\'>"
|
D | tensorflow.random.pbtxt | 20 name: "categorical"
|
/external/tensorflow/tensorflow/python/ops/distributions/ |
D | distributions.py | 27 from tensorflow.python.ops.distributions.categorical import Categorical
|
/external/tensorflow/tensorflow/lite/tools/optimize/testdata/ |
D | README.md | 30 of mapping categorical input to embeddings.
|
/external/tensorflow/tensorflow/python/keras/preprocessing/ |
D | sequence_test.py | 94 np.arange(5), vocabulary_size=5, window_size=1, categorical=True)
|
/external/tensorflow/tensorflow/python/ops/ |
D | random_ops.py | 501 def categorical(logits, num_samples, dtype=None, seed=None, name=None): function
|
/external/tensorflow/tensorflow/python/ops/numpy_ops/g3doc/ |
D | TensorFlow_NumPy_Text_Generation.ipynb | 725 "sampled_indices = tf.random.categorical(example_batch_predictions[0], num_samples=1)\n", 997 …"* Then, use a categorical distribution to calculate the index of the predicted character. Use thi… 1046 " # using a categorical distribution to predict the character returned by the model\n", 1048 " predicted_id = tf.random.categorical(predictions, num_samples=1)[-1,0].numpy()\n",
|
/external/tensorflow/tensorflow/tools/ci_build/ |
D | pylint_allowlist | 93 ^tensorflow/python/ops/distributions/categorical.py.*\[E1130.*invalid-unary-operand-type
|
/external/tensorflow/tensorflow/python/ops/parallel_for/ |
D | control_flow_ops_test.py | 744 return random_ops.categorical(logits=[[1., -1.]], num_samples=3) 753 return random_ops.categorical(logits_i, num_samples=3)
|
/external/tensorflow/ |
D | RELEASE.md | 1138 …ental.preprocessing`) to handle data preprocessing operations such as categorical feature encodin… 1139 * Added **categorical data** processing layers: 1140 * `IntegerLookup` & `StringLookup`: build an index of categorical feature values 1142 …* `CategoryCrossing`: create new categorical features representing co-occurrences of previous cate… 1143 * `Hashing`: the hashing trick, for large-vocabulary categorical features 1144 …* `Discretization`: turn continuous numerical features into categorical features by binning their … 2020 * Add v2 sparse categorical crossentropy metric. 2452 * Add v2 sparse categorical crossentropy metric.
|
/external/cldr/tools/java/org/unicode/cldr/util/data/transforms/ |
D | internal_overrides.txt | 562 categorical → kˌætɪgˈorɪkəl
|
D | internal_raw_IPA-old.txt | 32139 categorical %23809 -gɔr-, kˌætəgˈɑrɪkəl, kˌætəgˈɔrɪkəl, kˌætɪgˈorɪkəl
|
D | internal_raw_IPA.txt | 27227 categorical %33785 kˌætəgˈɑrɪkəl, kˌætəgˈɔrɪkəl, kˌætɪgˈorɪkəl
|
/external/jline/src/src/test/resources/jline/example/ |
D | english.gz |
|