Home
last modified time | relevance | path

Searched refs:cumprod (Results 1 – 25 of 27) sorted by relevance

12

/external/tensorflow/tensorflow/core/api_def/base_api/
Dapi_def_Cumprod.pbtxt21 If `True`, perform exclusive cumprod.
32 By default, this op performs an inclusive cumprod, which means that the first
36 tf.cumprod([a, b, c]) # => [a, a * b, a * b * c]
39 By setting the `exclusive` kwarg to `True`, an exclusive cumprod is
43 tf.cumprod([a, b, c], exclusive=True) # => [1, a, a * b]
46 By setting the `reverse` kwarg to `True`, the cumprod is performed in the
50 tf.cumprod([a, b, c], reverse=True) # => [a * b * c, b * c, c]
58 tf.cumprod([a, b, c], exclusive=True, reverse=True) # => [b * c, c, 1]
/external/tensorflow/tensorflow/compiler/tests/
Dscan_ops_test.py60 elif func == np.cumprod:
160 np_out = handle_options(np.cumprod, x, axis, exclusive, reverse)
163 prod = math_ops.cumprod(p, axis, exclusive, reverse)
186 math_ops.cumprod(x, axis).eval(feed_dict={p: x})
220 math_ops.cumprod(input_tensor, -3).eval()
224 math_ops.cumprod(input_tensor, 2).eval()
228 math_ops.cumprod(input_tensor, [0]).eval()
/external/tensorflow/tensorflow/python/kernel_tests/
Dscan_ops_test.py60 elif func == np.cumprod:
214 np_out = handle_options(np.cumprod, x, axis, exclusive, reverse)
216 tf_out = math_ops.cumprod(x, axis, exclusive, reverse).eval()
239 tf_out = math_ops.cumprod(x, axis).eval()
285 math_ops.cumprod(input_tensor, -3).eval()
289 math_ops.cumprod(input_tensor, 2).eval()
293 math_ops.cumprod(input_tensor, [0]).eval()
299 result = math_ops.cumprod(t, axis, exclusive, reverse)
/external/eigen/unsupported/test/
Dcxx11_tensor_scan.cpp39 result = tensor.cumprod(0, Exclusive); in test_1d_scan()
/external/tensorflow/tensorflow/python/ops/ragged/
Dragged_conversion_ops.py135 leading_ones = math_ops.cumprod(dim_is_one)
Dragged_gather_ops.py166 shape_cumprod = math_ops.cumprod(indices_shape)
Dragged_array_ops.py198 split_size = math_ops.cumprod(mask_shape) + 1
Dragged_tensor.py1605 dim_size = np.cumprod(input_shape)
1608 dim_size = math_ops.cumprod(input_shape)
/external/tensorflow/tensorflow/python/ops/numpy_ops/
Dnp_array_ops.py435 def cumprod(a, axis=None, dtype=None): # pylint: disable=missing-docstring function
447 return math_ops.cumprod(a, axis)
1760 index_scaling = math_ops.cumprod(
Dnp_array_ops_test.py648 np_array_ops.cumprod(arg, *args, **kwargs),
649 np.cumprod(arg, *args, **kwargs))
/external/tensorflow/tensorflow/python/ops/
Dmath_grad.py309 left = math_ops.cumprod(reshaped, axis=0, exclusive=True)
310 right = math_ops.cumprod(reshaped, axis=0, exclusive=True, reverse=True)
1990 prod = math_ops.cumprod(x, axis, exclusive=exclusive, reverse=reverse)
Dmath_ops.py3969 def cumprod(x, axis=0, exclusive=False, reverse=False, name=None): function
4016 return gen_math_ops.cumprod(
/external/tensorflow/tensorflow/python/ops/parallel_for/
Dmath_test.py439 return math_ops.cumprod(
Dpfor.py2635 @RegisterPForWithArgs("Cumprod", math_ops.cumprod)
/external/tensorflow/tensorflow/tools/api/golden/v2/
Dtensorflow.math.pbtxt112 name: "cumprod"
Dtensorflow.keras.backend.pbtxt124 name: "cumprod"
/external/tensorflow/tensorflow/tools/api/golden/v1/
Dtensorflow.math.pbtxt112 name: "cumprod"
Dtensorflow.keras.backend.pbtxt128 name: "cumprod"
Dtensorflow.pbtxt1072 name: "cumprod"
/external/tensorflow/tensorflow/python/ops/structured/
Dstructured_tensor.py1285 shape_cumprod = math_ops.cumprod(shape[:rank])
/external/tensorflow/third_party/py/numpy/tf_numpy_api/
Dtensorflow.experimental.numpy.pbtxt312 name: "cumprod"
/external/eigen/unsupported/Eigen/CXX11/src/Tensor/
DTensorBase.h512 cumprod(const Index& axis, bool exclusive = false) const {
DREADME.md1204 ### <Operation> cumprod(const Index& axis)
/external/tensorflow/tensorflow/python/keras/
Dbackend.py2376 def cumprod(x, axis=0): function
2386 return math_ops.cumprod(x, axis=axis)
/external/tensorflow/tensorflow/compiler/mlir/tensorflow/ir/
Dtf_generated_ops.td2519 By default, this op performs an inclusive cumprod, which means that the first
2523 tf.cumprod([a, b, c]) # => [a, a * b, a * b * c]
2526 By setting the `exclusive` kwarg to `True`, an exclusive cumprod is
2530 tf.cumprod([a, b, c], exclusive=True) # => [1, a, a * b]
2533 By setting the `reverse` kwarg to `True`, the cumprod is performed in the
2537 tf.cumprod([a, b, c], reverse=True) # => [a * b * c, b * c, c]
2545 tf.cumprod([a, b, c], exclusive=True, reverse=True) # => [b * c, c, 1]

12