/external/llvm-project/mlir/test/IR/ |
D | repro_b120295301.mlir | 5 %1 = "std.constant"() {value = dense<0.1> : tensor<1xf32>} : () -> (tensor<1xf32>) 6 %2 = "std.constant"() {value = dense<0.1> : tensor<2xf32>} : () -> (tensor<2xf32>) 7 %3 = "std.constant"() {value = dense<0.1> : tensor<3xf32>} : () -> (tensor<3xf32>) 8 %4 = "std.constant"() {value = dense<0.1> : tensor<4xf32>} : () -> (tensor<4xf32>) 9 %5 = "std.constant"() {value = dense<0.1> : tensor<5xf32>} : () -> (tensor<5xf32>) 10 %6 = "std.constant"() {value = dense<0.1> : tensor<6xf32>} : () -> (tensor<6xf32>) 11 %7 = "std.constant"() {value = dense<0.1> : tensor<7xf32>} : () -> (tensor<7xf32>) 12 %8 = "std.constant"() {value = dense<0.1> : tensor<8xf32>} : () -> (tensor<8xf32>) 13 %9 = "std.constant"() {value = dense<0.1> : tensor<9xf32>} : () -> (tensor<9xf32>) 14 %10 = "std.constant"() {value = dense<0.1> : tensor<10xf32>} : () -> (tensor<10xf32>) [all …]
|
D | dense-elements-hex.mlir | 4 // HEX: dense<"0x000020410000A040"> : tensor<2xf32> 5 "foo.op"() {dense.attr = dense<[10.0, 5.0]> : tensor<2xf32>} : () -> () 7 // HEX: dense<"0x00000000000024400000000000001440"> : tensor<2xf64> 8 "foo.op"() {dense.attr = dense<[10.0, 5.0]> : tensor<2xf64>} : () -> () 10 // CHECK: dense<[1.000000e+01, 5.000000e+00]> : tensor<2xf32> 11 "foo.op"() {dense.attr = dense<"0x000020410000A040"> : tensor<2xf32>} : () -> () 13 // CHECK: dense<[1.000000e+01, 5.000000e+00]> : tensor<2xf64> 14 "foo.op"() {dense.attr = dense<"0x00000000000024400000000000001440"> : tensor<2xf64>} : () -> () 16 // CHECK: dense<(1.000000e+01,5.000000e+00)> : tensor<2xcomplex<f32>> 17 "foo.op"() {dense.attr = dense<"0x000020410000A040000020410000A040"> : tensor<2xcomplex<f32>>} : ()… [all …]
|
D | attribute.mlir | 361 // CHECK: scalar_f32_attr = dense<5.000000e+00> : tensor<2xf32> 362 // CHECK: tensor_f64_attr = dense<6.000000e+00> : tensor<4x8xf64> 363 scalar_f32_attr = dense<5.0> : tensor<2xf32>, 364 tensor_f64_attr = dense<6.0> : tensor<4x8xf64> 374 scalar_f32_attr = dense<5.0> : tensor<2xf64>, 375 tensor_f64_attr = dense<6.0> : tensor<4x8xf64> 385 scalar_f32_attr = dense<5.0> : tensor<2xf32>, 386 tensor_f64_attr = dense<6.0> : tensor<4xf64> 399 // CHECK: dense<"example"> 400 scalar_string_attr = dense<"example"> : tensor<2x!unknown<"">> [all …]
|
/external/tensorflow/tensorflow/compiler/mlir/lite/tests/ |
D | const-fold.mlir | 5 %0 = constant dense<4.5> : tensor<f32> 6 %1 = constant dense<1.5> : tensor<f32> 8 %2 = constant dense< 3.5> : tensor<4xf32> 9 %3 = constant dense<-0.5> : tensor<4xf32> 11 // CHECK: %[[CST:.*]] = constant dense<3.500000e+00> : tensor<4xf32> 12 // CHECK: %[[CST_0:.*]] = constant dense<-5.000000e-01> : tensor<4xf32> 13 // CHECK: %[[CST_1:.*]] = constant dense<6.000000e+00> : tensor<f32> 14 // CHECK: %[[CST_2:.*]] = constant dense<4.000000e+00> : tensor<4xf32> 15 // CHECK: %[[CST_3:.*]] = constant dense<5.000000e+00> : tensor<4xf32> 16 // CHECK: %[[CST_4:.*]] = constant dense<3.000000e+00> : tensor<4xf32> [all …]
|
D | prepare-quantize-post-training.mlir | 7 %cst_3 = constant dense<1.0> : tensor<20x20xf32> 8 %cst_7 = constant dense<1.0> : tensor<20xf32> 9 %cst_11 = constant dense<1.0> : tensor<20x28xf32> 10 %recurrent_input = constant dense<1.0> : tensor<1x20xf32> 11 …%recurrent_stats = "quant.stats"(%recurrent_input) {layerStats = dense<[-2.0, 1.0]> : tensor<2xf32… 12 %cell_input = constant dense<1.0> : tensor<1x20xf32> 13 …%cell_stats = "quant.stats"(%cell_input) {layerStats = dense<[-2.73090601, 7.94872093]> : tensor<2… 30 …%1 = "quant.stats"(%0) {layerStats = dense<[-1.0, 2.0]> : tensor<2xf32>} : (tensor<1x28x20xf32>) -… 33 // CHECK: %[[cell_input:.*]] = constant dense<1.000000e+00> : tensor<1x20xf32> 43 …%input = "quant.stats"(%arg0) {layerStats = dense<[-1.2, 1.5]> : tensor<2xf32>} : (tensor<1x5xf32>… [all …]
|
D | optimize.mlir | 51 %cst = constant dense<1.5> : tensor<16xf32> 52 …%cst_0 = constant dense<[1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0… 57 …// CHECK: %cst = constant dense<[2.500000e+00, 3.500000e+00, 4.500000e+00, 5.500000e+00, 6.500000e… 63 %cst = constant dense<0.5> : tensor<16xf32> 64 …%cst_0 = constant dense<[1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0… 69 …// CHECK: %cst = constant dense<[5.000000e-01, 1.500000e+00, 2.500000e+00, 3.500000e+00, 4.500000e… 75 %cst = constant dense<1.5> : tensor<32xf32> 76 …%cst_0 = constant dense<[1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0… 77 %cst_1 = constant dense<[1, 64, 84, 32]> : tensor<4xi32> 78 %cst_2 = constant dense<1.0> : tensor<32x4x4x128xf32> [all …]
|
/external/tensorflow/tensorflow/compiler/mlir/hlo/tests/ |
D | canonicalize.mlir | 5 %0 = mhlo.constant dense<[1, 2, 3, 4]> : tensor<4xi64> 6 %1 = mhlo.constant dense<[5, 6, 7, 8]> : tensor<4xi64> 7 // CHECK: mhlo.constant dense<[6, 8, 10, 12]> 14 %0 = mhlo.constant dense<1> : tensor<4xi64> 15 %1 = mhlo.constant dense<5> : tensor<4xi64> 16 // CHECK: mhlo.constant dense<6> 23 %0 = mhlo.constant dense<[1.0, 2.0, 3.0, 4.0]> : tensor<4xf64> 24 %1 = mhlo.constant dense<[5.0, 6.0, 7.0, 8.0]> : tensor<4xf64> 25 // CHECK: mhlo.constant dense<[6.000000e+00, 8.000000e+00, 1.000000e+01, 1.200000e+01]> 32 %0 = mhlo.constant dense<5> : tensor<4xi64> [all …]
|
D | optimize-hlo.mlir | 5 // CHECK: [[CST:%.+]] = mhlo.constant dense<0> : tensor<i64> 6 …+]] = "mhlo.dynamic-slice"(%arg0, %arg1, [[CST]], [[CST]]) {slice_sizes = dense<[1, 1, 2]> : tenso… 10 collapsed_slice_dims = dense<0> : tensor<1xi64>, 12 offset_dims = dense<[0, 1]> : tensor<2xi64>, 13 start_index_map = dense<0> : tensor<1xi64> 15 slice_sizes = dense<[1, 1, 2]> : tensor<3xi64> 24 // CHECK: [[CST:%.+]] = mhlo.constant dense<0> : tensor<i64> 26 …"mhlo.dynamic-slice"(%arg0, [[RESHAPE]], [[CST]], [[CST]]) {slice_sizes = dense<[1, 1, 2]> : tenso… 31 collapsed_slice_dims = dense<0> : tensor<1xi64>, 33 offset_dims = dense<[0, 1]> : tensor<2xi64>, [all …]
|
D | lhlo_gpu_ops.mlir | 39 input_spatial_dimensions = dense<[2,3]> : tensor<2xi64>, 42 kernel_spatial_dimensions = dense<[2,3]> : tensor<2xi64>, 45 output_spatial_dimensions = dense<[2,3]> : tensor<2xi64>}, 46 window_strides = dense<[1, 1]> : tensor<2xi64>, 47 padding = dense<[0,0]> : tensor<2xi64>, 48 lhs_dilation = dense<[1,1]> : tensor<2xi64>, 49 rhs_dilation = dense<[1,1]> : tensor<2xi64>, 74 input_spatial_dimensions = dense<[1, 2]> : tensor<2xi64>, 77 kernel_spatial_dimensions = dense<[0, 1]> : tensor<2xi64>, 80 output_spatial_dimensions = dense<[1, 2]> : tensor<2xi64>}, [all …]
|
D | chlo_legalize_to_mhlo.mlir | 7 // CHECK: mhlo.constant dense<3.389{{.*}}e+38> 16 // CHECK: mhlo.constant dense<6.550{{.*}}e+04> 25 // CHECK: mhlo.constant dense<3.402{{.*}}E+38> 35 // CHECK: %[[TMP_2:.*]] = mhlo.constant dense<1.797{{.*}}E+308> 40 // CHECK: %[[TMP_7:.*]] = mhlo.constant dense<2.000{{.*}}e+00> 44 // CHECK: %[[TMP_11:.*]] = mhlo.constant dense<1.000{{.*}}e+00> 52 // CHECK: %[[TMP_19:.*]] = mhlo.constant dense<1.000{{.*}}e+00> 55 // CHECK: %[[TMP_22:.*]] = mhlo.constant dense<1.000{{.*}}e+00> 65 // CHECK: %[[TMP_32:.*]] = mhlo.constant dense<1.000{{.*}}e+00> 81 // CHECK: %[[RESULT:.*]] = mhlo.constant dense<3.200000e+00> : tensor<1x2xf32> [all …]
|
D | hlo-legalize-gather-to-torch-index-select.mlir | 10 …dense<0> : tensor<1xi64>, index_vector_dim = 2 : i64, offset_dims = dense<2> : tensor<1xi64>, star… 23 …dense<0> : tensor<1xi64>, index_vector_dim = 0 : i64, offset_dims = dense<[0, 1]> : tensor<2xi64>,… 32 …dense<0> : tensor<1xi64>, index_vector_dim = 2 : i64, offset_dims = dense<2> : tensor<1xi64>, star… 39 …dense<0> : tensor<1xi64>, index_vector_dim = 2 : i64, offset_dims = dense<2> : tensor<1xi64>, star…
|
D | convert.mlir | 73 // CHECK-NEXT: [[CST:%.+]] = mhlo.constant dense<42> : tensor<i32> 74 %cst = mhlo.constant dense<42> : tensor<i32> 84 // CHECK-NEXT: [[CST:%.+]] = mhlo.constant dense<42> : tensor<i32> 85 %cst = mhlo.constant dense<42.0> : tensor<f32> 95 // CHECK-NEXT: [[CST:%.+]] = mhlo.constant dense<4.{{0*}}e+00> : tensor<f32> 96 %cst = mhlo.constant dense<4> : tensor<i32> 106 // CHECK-NEXT: [[CST:%.+]] = mhlo.constant dense<-4.{{0*}}e+00> : tensor<f32> 107 %cst = mhlo.constant dense<-4> : tensor<i32> 117 // CHECK-NEXT: [[CST:%.+]] = mhlo.constant dense<4.{{0*}}e+00> : tensor<bf16> 118 %cst = mhlo.constant dense<4> : tensor<i32> [all …]
|
D | lower-general-dot.mlir | 8 …dense<[]> : tensor<0xi64>, lhs_contracting_dimensions = dense<2> : tensor<1xi64>, rhs_batching_dim… 17 …// CHECK-DAG: [[R0:%.+]] = "mhlo.transpose"(%arg0) {permutation = dense<[1, 0]> : tensor<2xi64>} :… 18 …// CHECK-DAG: [[R1:%.+]] = "mhlo.transpose"(%arg1) {permutation = dense<[2, 0, 1]> : tensor<3xi64>… 23 …dense<[]> : tensor<0xi64>, lhs_contracting_dimensions = dense<0> : tensor<1xi64>, rhs_batching_dim… 32 …dense<[0]> : tensor<1xi64>, lhs_contracting_dimensions = dense<1> : tensor<1xi64>, rhs_batching_di…
|
/external/tensorflow/tensorflow/python/keras/legacy_tf_layers/ |
D | core_test.py | 48 dense = core_layers.Dense(2, activation=nn_ops.relu, name='my_dense') 49 self.assertEqual(dense.units, 2) 50 self.assertEqual(dense.activation, nn_ops.relu) 51 self.assertEqual(dense.kernel_regularizer, None) 52 self.assertEqual(dense.bias_regularizer, None) 53 self.assertEqual(dense.activity_regularizer, None) 54 self.assertEqual(dense.use_bias, True) 57 dense = core_layers.Dense(2, activation=nn_ops.relu) 58 dense.apply(random_ops.random_uniform((5, 2))) 59 self.assertEqual(dense.name, 'dense_1') [all …]
|
/external/tensorflow/tensorflow/compiler/mlir/tensorflow/tests/ |
D | tf_saved_model_lift_variables.mlir | 7 …0x50xf32>>> {tf.resource_name = "dense/kernel"}, %arg1: tensor<!tf.resource<tensor<50xf32>>> {tf.r… 9 ….VarHandleOp"() {_class = ["loc:@dense/kernel"], allowed_devices = [], container = "", device = ""… 11 …f.VarHandleOp"() {_class = ["loc:@dense/bias"], allowed_devices = [], container = "", device = "",… 17 // CHECK: sym_name = "dense/kernel" 19 // CHECK: sym_name = "dense/bias" 21 … %arg0: tensor<!tf.resource<tensor<100x50xf32>>> {tf_saved_model.bound_input = @"dense/kernel"}, 22 …// CHECK: %arg1: tensor<!tf.resource<tensor<50xf32>>> {tf_saved_model.bound_input = @"dense/bia… 31 …0x50xf32>>> {tf.resource_name = "dense/kernel"}, %arg1: tensor<!tf.resource<tensor<50xf32>>> {tf.r… 33 ….VarHandleOp"() {_class = ["loc:@dense/kernel"], allowed_devices = [], container = "", device = ""… 35 …f.VarHandleOp"() {_class = ["loc:@dense/bias"], allowed_devices = [], container = "", device = "",… [all …]
|
D | constant-fold.mlir | 7 // CHECK: tf.Const{{.*}} dense<> : tensor<0xi32> 12 // CHECK: "tf.Const"() {value = dense<[1, 32, 32, 16]> : tensor<4xi32>} : () -> tensor<?xi32> 25 %cst_zero = constant dense<0.0> : tensor<f32> 26 %cst_one = constant dense<1.0> : tensor<f32> 31 …// CHECK-DAG: %[[POW_ZERO:.*]] = "tf.Const"() {value = dense<1.000000e+00> : tensor<4xf32>} : () -… 43 %0 = "tf.Const"() { value = dense<5> : tensor<i32> } : () -> tensor<i32> 45 // CHECK: [[VAL:%.+]] = "tf.Const"() {value = dense<0> : tensor<5xi32>} 53 %0 = "tf.Const"() { value = dense<5> : tensor<i32> } : () -> tensor<i32> 55 // CHECK: [[VAL:%.+]] = "tf.Const"() {value = dense<0> : tensor<5xi64>} 63 %0 = "tf.Const"() { value = dense<5> : tensor<i32> } : () -> tensor<i32> [all …]
|
D | tf_optimize.mlir | 5 …%cst0 = constant dense<[[[[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]], [[7.0, 8.0], [9.0, 10.0], [11.0, 12… 6 %cst2 = constant dense<[1.0, 2.0]> : tensor<2xf32> 11 // CHECK: %[[CST:.*]] = "tf.Const{{.*}} dense< 22 …%cst0 = constant dense<[[[[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]], [[7.0, 8.0], [9.0, 10.0], [11.0, 12… 23 %cst2 = constant dense<3.0> : tensor<23x2xf32> 28 // CHECK: %cst_0 = constant dense<3.000000e+00> : tensor<23x2xf32> 37 %cst_1 = constant dense<[1, 8, 6, 1, 6, 1, 1, 18]> : tensor<8xi64> 39 %cst_2 = constant dense<[8, 6, 6, 18]> : tensor<4xi64> 43 …// CHECK: %[[CST:.*]] = "tf.Const"() {value = dense<[8, 1, 1, 18]> : tensor<4xi64>} : () -> tensor… 44 …// CHECK: %[[CST1:.*]] = "tf.Const"() {value = dense<[8, 6, 6, 18]> : tensor<4xi64>} : () -> tens… [all …]
|
/external/tensorflow/tensorflow/core/util/ |
D | strided_slice_op.cc | 81 const StridedSliceSparseSpec& sparse, StridedSliceDenseSpec* dense) { in BuildDenseSpec() argument 84 dense->begin.resize(dense->dims); in BuildDenseSpec() 85 dense->end.resize(dense->dims); in BuildDenseSpec() 86 dense->strides.resize(dense->dims); in BuildDenseSpec() 87 dense->input_shape_gather_indices_sparse.resize(dense->dims); in BuildDenseSpec() 89 dense->begin_mask = 0; in BuildDenseSpec() 90 dense->end_mask = 0; in BuildDenseSpec() 91 dense->shrink_axis_mask = 0; in BuildDenseSpec() 96 dense->begin_valid = sparse.begin_tensor != nullptr; in BuildDenseSpec() 97 dense->end_valid = sparse.end_tensor != nullptr; in BuildDenseSpec() [all …]
|
/external/llvm-project/mlir/integration_test/Dialect/Vector/CPU/ |
D | test-print-int.mlir | 10 %0 = std.constant dense<[true, false, -1, 0, 1]> : vector<5xi1> 14 %1 = std.constant dense<[true, false, -1, 0]> : vector<4xsi1> 18 %2 = std.constant dense<[true, false, 0, 1]> : vector<4xui1> 22 %3 = std.constant dense<[-128, -127, -1, 0, 1, 127, 128, 254, 255]> : vector<9xi8> 26 %4 = std.constant dense<[-128, -127, -1, 0, 1, 127]> : vector<6xsi8> 30 %5 = std.constant dense<[0, 1, 127, 128, 254, 255]> : vector<6xui8> 34 %6 = std.constant dense<[-32768, -32767, -1, 0, 1, 32767, 32768, 65534, 65535]> : vector<9xi16> 38 %7 = std.constant dense<[-32768, -32767, -1, 0, 1, 32767]> : vector<6xsi16> 42 %8 = std.constant dense<[0, 1, 32767, 32768, 65534, 65535]> : vector<6xui16> 46 %9 = std.constant dense<[-2147483648, -2147483647, -1, 0, 1, [all …]
|
/external/tensorflow/tensorflow/compiler/mlir/xla/tests/ |
D | legalize-tf-BatchMatMulV2.mlir | 18 …c_broadcast_in_dim"([[LHS]], [[LHSSHAPEEXTENTS]]) {broadcast_dimensions = dense<[0, 1, 2]> : tenso… 20 …dense<0> : tensor<1xi64>, lhs_contracting_dimensions = dense<2> : tensor<1xi64>, rhs_batching_dime… 30 // CHECK: "mhlo.dynamic_broadcast_in_dim"({{.*}}, {{.*}}) {broadcast_dimensions = dense<[… 32 // CHECK-SAME: lhs_batching_dimensions = dense<0> : tensor<1xi64>, 33 // CHECK-SAME: lhs_contracting_dimensions = dense<2> : tensor<1xi64>, 34 // CHECK-SAME: rhs_batching_dimensions = dense<0> : tensor<1xi64>, 35 // CHECK-SAME: rhs_contracting_dimensions = dense<1> : tensor<1xi64>}} 42 // CHECK: "mhlo.dynamic_broadcast_in_dim"({{.*}}, {{.*}}) {broadcast_dimensions = dense<[… 44 // CHECK-SAME: lhs_batching_dimensions = dense<0> : tensor<1xi64>, 45 // CHECK-SAME: lhs_contracting_dimensions = dense<2> : tensor<1xi64>, [all …]
|
D | legalize-tf.mlir | 65 // CHECK: [[DUMMY:%.*]] = mhlo.constant dense<0.000000e+00> : tensor<0xf32> 99 // CHECK: %[[FACTOR:.*]] = mhlo.constant dense<1.00195694> 102 // CHECK-DAG: %[[ALPHA:.*]] = mhlo.constant dense<0.199999988> 103 // CHECK-DAG: %[[BETA:.*]] = mhlo.constant dense<8.000000e-01> 157 // CHECK-NEXT: %[[eps:.*]] = mhlo.constant dense<1.000000e-03> : tensor<f32> 159 …// CHECK-NEXT: %[[add:.*]] = chlo.broadcast_add %arg4, %[[eps]] {broadcast_dimensions = dense<> : … 162 … = "mhlo.dynamic_broadcast_in_dim"(%arg3, {{.*}}) {broadcast_dimensions = dense<3> : tensor<1xi64>… 165 // CHECK-NEXT: mhlo.constant dense<[0, 1, 2]> : tensor<3xi64> 167 // CHECK-NEXT: %[[init:.*]] = mhlo.constant dense<0.000000e+00> : tensor<f32> 172 …// CHECK-NEXT: }) {dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<8x8x8x8xf32>, tensor<f… [all …]
|
/external/tensorflow/tensorflow/compiler/mlir/lite/tests/flatbuffer2mlir/ |
D | constants.mlir | 6 // CHECK: value = dense<[false, true, true, false]> : tensor<4xi1> 7 …%0 = "tfl.pseudo_const"() { value = dense<[false, true, true, false]> : tensor<4xi1> } : () -> ten… 27 // %0 = "tfl.pseudo_const"() { value = dense<[1.0, 2.0, 3.0, 4.0]> : tensor<4xf16> } : () -> tens… 33 // CHECK: value = dense<[1.000000e+00, 2.000000e+00, 3.000000e+00, 4.000000e+00]> : tensor<4xf32> 34 …%0 = "tfl.pseudo_const"() { value = dense<[1.0, 2.0, 3.0, 4.0]> : tensor<4xf32> } : () -> tensor<4… 40 // CHECK: value = dense<[1.000000e+00, 2.000000e+00, 3.000000e+00, 4.000000e+00]> : tensor<4xf64> 41 …%0 = "tfl.pseudo_const"() { value = dense<[1.0, 2.0, 3.0, 4.0]> : tensor<4xf64> } : () -> tensor<4… 47 // CHECK: value = dense<[1, 2, 3, 4]> : tensor<4xi8> 48 %0 = "tfl.pseudo_const" () { value = dense<[1, 2, 3, 4]> : tensor<4xi8> } : () -> tensor<4xi8> 54 // CHECK: value = dense<[1, 2, 3, 258]> : tensor<4xi16> [all …]
|
/external/rust/crates/regex/src/ |
D | sparse.rs | 19 dense: Vec<usize>, field 30 dense: Vec::with_capacity(size), in new() 36 self.dense.len() in len() 40 self.dense.is_empty() in is_empty() 44 self.dense.capacity() in capacity() 50 self.dense.push(value); in insert() 56 self.dense.get(i) == Some(&value) in contains() 60 self.dense.clear(); in clear() 66 write!(f, "SparseSet({:?})", self.dense) in fmt() 74 &self.dense in deref()
|
/external/tensorflow/tensorflow/compiler/mlir/xla/tests/translate/ |
D | layouts_and_names.mlir | 13 input_spatial_dimensions = dense<[ 1, 2 ]> : tensor<2xi64>, 16 kernel_spatial_dimensions = dense<[ 1, 2 ]> : tensor<2xi64>, 19 output_spatial_dimensions = dense<[ 2, 3 ]> : tensor<2xi64> 22 lhs_dilations = dense<1> : tensor<2xi64>, 23 minor_to_major = dense<[ 1, 3, 2, 0 ]> : tensor<4xindex>, 24 padding = dense<3> : tensor<2x2xi64>, 26 rhs_dilations = dense<1> : tensor<2xi64>, 27 window_strides = dense<2> : tensor<2xi64> 31 …%cst_1 = "std.constant"() {value = dense<[[42]]> : tensor<1x1xi32>, minor_to_major = dense<[0, 1]>…
|
/external/llvm-project/mlir/test/Dialect/Quant/ |
D | convert-const.mlir | 14 // CHECK: %cst = constant dense<-64> : tensor<4xi8> 16 %cst = constant dense<0.5> : tensor<4xf32> 26 // CHECK: %cst = constant dense<63> : tensor<4xi8> 28 %cst = constant dense<0.5> : tensor<4xf32> 38 // CHECK: %cst = constant dense<64> : tensor<4xi8> 40 %cst = constant dense<0.5> : tensor<4xf32> 50 // CHECK: %cst = constant dense<-64> : tensor<4xi8> 51 %cst = constant dense<-0.5> : tensor<4xf32> 58 // Verifies i8 fixedpoint quantization on a dense tensor, sweeping values. 61 // CHECK: %cst = constant dense<[-128, -128, -64, 0, 64, 127, 127]> : tensor<7xi8> [all …]
|