/external/tensorflow/tensorflow/python/distribute/ |
D | mirrored_strategy_test.py | 70 distribution=[ 80 def testMinimizeLoss(self, distribution): argument 82 self._test_minimize_loss_eager(distribution) 84 self._test_minimize_loss_graph(distribution) 86 def testReplicaId(self, distribution): argument 87 self._test_replica_id(distribution) 89 def testNumReplicasInSync(self, distribution): argument 90 self.assertEqual(2, distribution.num_replicas_in_sync) 92 def testCallAndMergeExceptions(self, distribution): argument 93 self._test_call_and_merge_exceptions(distribution) [all …]
|
D | custom_training_loop_input_test.py | 81 distribution=strategy_combinations.all_strategies, 84 def testConstantNumpyInput(self, distribution): argument 92 outputs = distribution.experimental_local_results( 93 distribution.run(computation, args=(x,))) 97 constant_op.constant(4., shape=(distribution.num_replicas_in_sync)), 102 distribution=strategy_combinations.all_strategies, 105 def testStatefulExperimentalRunAlwaysExecute(self, distribution): argument 106 with distribution.scope(): 116 distribution.run(assign_add) 124 distribution=strategy_combinations.strategies_minus_tpu, [all …]
|
D | one_device_strategy_test.py | 34 distribution=[ 43 def testMinimizeLoss(self, distribution): argument 45 self._test_minimize_loss_eager(distribution) 47 self._test_minimize_loss_graph(distribution) 49 def testReplicaId(self, distribution): argument 50 self._test_replica_id(distribution) 52 def testCallAndMergeExceptions(self, distribution): argument 53 self._test_call_and_merge_exceptions(distribution) 55 def testReplicateDataset(self, distribution): argument 65 self._test_input_fn_iterable(distribution, input_fn, expected_values) [all …]
|
D | mirrored_variable_test.py | 62 distribution=[ 102 def testVariableInFuncGraph(self, distribution): argument 109 with func_graph.FuncGraph("fg").as_default(), distribution.scope(): 111 v2 = distribution.extended.call_for_each_replica(model_fn) 113 self._test_mv_properties(v1, "foo:0", distribution) 114 self._test_mv_properties(v2, "bar:0", distribution) 116 def testVariableWithTensorInitialValueInFunction(self, distribution): argument 131 return distribution.experimental_local_results( 132 distribution.extended.call_for_each_replica(model_fn)) 136 def testSingleVariable(self, distribution): argument [all …]
|
D | metrics_v1_test.py | 77 distribution=[ 88 distribution=[ 99 def _test_metric(self, distribution, dataset_fn, metric_fn, expected_fn): argument 100 with ops.Graph().as_default(), distribution.scope(): 101 iterator = distribution.make_input_fn_iterator(lambda _: dataset_fn()) 102 if isinstance(distribution, (tpu_strategy.TPUStrategy, 105 value, update = distribution.extended.call_for_each_replica( 108 return distribution.group(update) 110 ctx = distribution.extended.experimental_run_steps_on_iterator( 111 step_fn, iterator, iterations=distribution.extended.steps_per_run) [all …]
|
D | moving_averages_test.py | 48 distribution=all_distributions, mode=["graph"]) 51 distribution=all_distributions, mode=["eager"], use_function=[True, False]) 57 def testReplicaModeWithoutZeroDebias(self, distribution): argument 69 with distribution.scope(): 70 var, assign = distribution.extended.call_for_each_replica(replica_fn) 73 self.evaluate(distribution.experimental_local_results(assign)) 84 def testReplicaMode(self, distribution): argument 95 with distribution.scope(): 96 var, assign_op = distribution.extended.call_for_each_replica(replica_fn) 99 self.evaluate(distribution.experimental_local_results(assign_op)) [all …]
|
D | vars_test.py | 57 distribution=[ 63 distribution=[ 74 distribution=[ 86 def testAssign(self, distribution, experimental_run_tf_function): argument 95 return distribution.experimental_local_results( 96 distribution.run(update_fn)) 114 with distribution.scope(): 126 def testAssignOnWriteVar(self, distribution, experimental_run_tf_function): argument 128 with distribution.scope(): 141 return distribution.experimental_local_results( [all …]
|
D | input_lib_test.py | 290 distribution=[ 296 def testDisablingOwnedIteratorsInTF2(self, distribution, input_type): argument 310 distribution) 314 distribution) 323 distribution._enable_legacy_iterators = True 332 distribution=[ 335 def testMultiDeviceIterInitialize(self, distribution): argument 345 dataset_fn(distribute_lib.InputContext()), input_workers, distribution) 361 distribution=[ 366 def testOneDeviceCPU(self, input_type, api_type, iteration_type, distribution, argument [all …]
|
D | values_test.py | 85 def _make_mirrored(distribution=None): argument 87 if distribution: 88 devices = distribution.extended.worker_devices 97 if (distribution is not None) and isinstance(distribution, _TPU_STRATEGIES): 101 mirrored = var_cls(distribution, v, variable_scope.VariableAggregation.SUM) 107 distribution=[ 119 distribution=(strategy_combinations.all_strategies_minus_default + 123 def testMakeDistributedValueFromTensor(self, distribution): argument 132 distribution.experimental_distribute_values_from_function(value_fn)) 134 ds_test_util.gather(distribution, distributed_values), [all …]
|
D | input_lib_type_spec_test.py | 55 distribution=[ 60 def testTypeSpec(self, input_type, distribution, argument 67 distribution.extended.experimental_enable_get_next_as_optional = ( 70 dist_dataset = distribution.experimental_distribute_dataset(dataset) 71 with distribution.scope(): 87 distribution=[ 93 distribution, enable_get_next_as_optional): argument 100 distribution.extended.experimental_enable_get_next_as_optional = ( 103 dist_dataset = distribution.experimental_distribute_dataset(dataset) 104 with distribution.scope(): [all …]
|
D | tf_function_test.py | 48 distribution=strategy_combinations.all_strategies, 53 self, distribution, run_functions_eagerly): argument 57 worker = distribution.extended.worker_devices[0] 62 with distribution.scope(): 74 distribution=strategy_combinations.all_strategies, 79 self, distribution, run_functions_eagerly): argument 83 worker = distribution.extended.worker_devices[0] 88 with distribution.scope(): 105 distribution=strategy_combinations.all_strategies, 109 def testReadVariableInsideFunction(self, distribution, run_functions_eagerly): argument [all …]
|
D | remote_mirrored_strategy_eager_test.py | 40 distribution=[ 55 def testNumReplicasInSync(self, distribution): argument 56 self._testNumReplicasInSync(distribution) 58 def testMinimizeLoss(self, distribution): argument 59 self._testMinimizeLoss(distribution) 61 def testDeviceScope(self, distribution): argument 62 self._testDeviceScope(distribution) 64 def testMakeInputFnIteratorWithDataset(self, distribution): argument 65 self._testMakeInputFnIteratorWithDataset(distribution) 67 def testMakeInputFnIteratorWithCallable(self, distribution): argument [all …]
|
/external/bcc/tools/ |
D | runqlat_example.txt | 12 usecs : count distribution 30 The distribution is bimodal, with one mode between 0 and 15 microseconds, 32 spikes in the ASCII distribution (which is merely a visual representation 49 msecs : count distribution 57 msecs : count distribution 65 msecs : count distribution 73 This shows a similar distribution across the three summaries. 82 msecs : count distribution 90 msecs : count distribution 98 msecs : count distribution [all …]
|
/external/tensorflow/tensorflow/python/ops/ |
D | nn_loss_scaling_utilities_test.py | 49 distribution=[ 53 def testComputeAverageLossDefaultGlobalBatchSize(self, distribution): argument 60 with distribution.scope(): 61 per_replica_losses = distribution.run( 63 loss = distribution.reduce("SUM", per_replica_losses, axis=None) 68 distribution=[ 72 def testComputeAverageLossSampleWeights(self, distribution): argument 73 with distribution.scope(): 75 per_replica_losses = distribution.run( 79 loss = distribution.reduce("SUM", per_replica_losses, axis=None) [all …]
|
/external/tensorflow/tensorflow/python/keras/distribute/ |
D | keras_dnn_correctness_test.py | 38 distribution=strategy_combinations.all_strategies, 40 distribution=strategy_combinations.multi_worker_mirrored_strategies, 46 distribution=keras_correctness_test_base.all_strategies, 62 distribution=None, argument 64 with keras_correctness_test_base.MaybeDistributionScope(distribution): 110 def test_dnn_correctness(self, distribution, use_numpy, use_validation_data): argument 111 self.run_correctness_test(distribution, use_numpy, use_validation_data) 117 def test_dnn_correctness_with_partial_last_batch_eval(self, distribution, argument 121 distribution, use_numpy, use_validation_data, partial_last_batch='eval') 127 def test_dnn_correctness_with_partial_last_batch(self, distribution, argument [all …]
|
D | keras_utils_test.py | 82 def test_callbacks_in_fit(self, distribution): argument 83 with distribution.scope(): 90 dataset = keras_test_lib.get_dataset(distribution) 106 if (isinstance(distribution, tpu_strategy.TPUStrategyV1) and 110 steps_per_run = distribution.extended.steps_per_run 136 def test_callbacks_in_eval(self, distribution): argument 137 with distribution.scope(): 144 dataset = keras_test_lib.get_dataset(distribution) 160 def test_callbacks_in_predict(self, distribution): argument 161 with distribution.scope(): [all …]
|
D | minimize_loss_test.py | 84 distribution=[strategy_combinations.tpu_strategy], 88 distribution=[strategy_combinations.tpu_strategy], 92 def testTrainNetwork(self, distribution, optimizer_fn, use_callable_loss): argument 93 with distribution.scope(): 100 return distribution.group( 101 distribution.extended.call_for_each_replica( 104 iterator = self._get_iterator(distribution, dataset_fn) 107 return distribution.extended.experimental_run_steps_on_iterator( 134 def testTrainNetworkByCallForEachReplica(self, distribution, optimizer_fn, argument 136 with distribution.scope(): [all …]
|
D | custom_training_loop_models_test.py | 61 distribution=(strategy_combinations.all_strategies + 68 def test_single_keras_layer_run(self, distribution): argument 70 input_iterator = iter(distribution.experimental_distribute_dataset(dataset)) 72 with distribution.scope(): 85 outputs = distribution.run( 87 return nest.map_structure(distribution.experimental_local_results, 92 def test_keras_model_optimizer_run(self, distribution): argument 94 input_iterator = iter(distribution.experimental_distribute_dataset(dataset)) 96 with distribution.scope(): 111 outputs = distribution.run(step_fn, args=(replicated_inputs,)) [all …]
|
D | saved_model_save_load_test.py | 49 distribution, argument 53 return test_base.load_and_run_with_saved_model_api(distribution, saved_dir, 59 distribution): argument 61 model_and_input, distribution) 67 distribution, save_in_scope): argument 69 model_and_input, distribution, save_in_scope) 86 def test_no_variable_device_placement(self, model_and_input, distribution, argument 88 saved_dir = self.run_test_save_strategy(model_and_input, distribution, 107 def _predict_with_model(self, distribution, model, predict_dataset): argument 108 if distribution: [all …]
|
D | keras_correctness_test_base.py | 62 combinations.combine(distribution=all_strategies), 68 combinations.combine(distribution=all_strategies), 74 combinations.combine(distribution=strategies_minus_tpu), 99 distribution=strategies_for_embedding_models()), 102 distribution=eager_mode_strategies), 112 combinations.combine(distribution=tpu_strategies), 118 combinations.combine(distribution=multi_worker_mirrored_strategies), 124 combinations.combine(distribution=multi_worker_mirrored_strategies), 131 def __init__(self, distribution): argument 132 self._distribution = distribution [all …]
|
D | distribute_strategy_test.py | 167 def batch_wrapper(dataset, batch_size, distribution, repeat=None): argument 172 if backend.is_tpu_strategy(distribution): 194 def get_dataset(distribution): argument 199 dataset = batch_wrapper(dataset, 10, distribution) 203 def get_predict_dataset(distribution): argument 207 dataset = batch_wrapper(dataset, 10, distribution) 241 distribution=strategies_minus_tpu, mode=['graph', 'eager']) 246 distribution=tpu_strategies, mode=['graph', 'eager']) 250 return combinations.combine(distribution=tpu_strategies, mode=['graph']) 255 distribution=multi_worker_mirrored_strategies, mode=['eager']) [all …]
|
D | custom_training_loop_metrics_test.py | 39 distribution=strategy_combinations.all_strategies + 43 def test_multiple_keras_metrics_experimental_run(self, distribution): argument 44 with distribution.scope(): 55 distribution.run(step_fn) 64 distribution=strategy_combinations.all_strategies+ 68 def test_update_keras_metric_declared_in_strategy_scope(self, distribution): argument 69 with distribution.scope(): 73 dataset = distribution.experimental_distribute_dataset(dataset) 80 distribution.run(step_fn, args=(i,)) 88 distribution=strategy_combinations.all_strategies, [all …]
|
D | saved_model_test_base.py | 77 distribution=strategies, 92 distribution=strategies, 104 def load_and_run_with_saved_model_api(distribution, saved_dir, predict_dataset, argument 108 if distribution: 109 dist_predict_dataset = distribution.experimental_distribute_dataset( 112 result = distribution.run( 118 reduced = distribution.experimental_local_results(result) 147 distribution, argument 176 def _predict_with_model(self, distribution, model, predict_dataset): argument 186 distribution): argument [all …]
|
D | custom_training_loop_optimizer_test.py | 39 distribution=keras_strategy_combinations.multidevice_strategies, 49 def test_custom_aggregation(self, distribution, argument 52 with distribution.scope(): 69 return distribution.experimental_local_results( 70 distribution.run(step_fn, args=(grads,))) 76 distribution=strategy_combinations.one_device_strategy, 79 def test_custom_aggregation_one_device(self, distribution, argument 82 with distribution.scope(): 96 return distribution.experimental_local_results( 97 distribution.run(step_fn, args=(grads,))) [all …]
|
/external/tensorflow/tensorflow/tools/api/golden/v1/ |
D | tensorflow.distributions.pbtxt | 5 mtype: "<class \'tensorflow.python.ops.distributions.distribution._DistributionMeta\'>" 9 mtype: "<class \'tensorflow.python.ops.distributions.distribution._DistributionMeta\'>" 13 mtype: "<class \'tensorflow.python.ops.distributions.distribution._DistributionMeta\'>" 17 mtype: "<class \'tensorflow.python.ops.distributions.distribution._DistributionMeta\'>" 21 mtype: "<class \'tensorflow.python.ops.distributions.distribution._DistributionMeta\'>" 25 mtype: "<class \'tensorflow.python.ops.distributions.distribution._DistributionMeta\'>" 29 mtype: "<class \'tensorflow.python.ops.distributions.distribution._DistributionMeta\'>" 33 mtype: "<class \'tensorflow.python.ops.distributions.distribution.ReparameterizationType\'>" 37 mtype: "<class \'tensorflow.python.ops.distributions.distribution._DistributionMeta\'>" 41 mtype: "<class \'tensorflow.python.ops.distributions.distribution._DistributionMeta\'>" [all …]
|