/external/tensorflow/tensorflow/python/data/experimental/kernel_tests/ |
D | rebatch_dataset_test.py | 168 dataset = dataset_ops.Dataset.range(8).batch(4, drop_remainder=True) 176 combinations.combine(drop_remainder=[True, False]))) 177 def testShapeInferenceInputBatchDimDivisible(self, drop_remainder): argument 178 dataset = dataset_ops.Dataset.range(8).batch(4, drop_remainder=True) 180 dataset, batch_sizes=[2, 2], drop_remainder=drop_remainder) 187 dataset = dataset_ops.Dataset.range(8).batch(4, drop_remainder=False) 189 dataset, batch_sizes=[2, 2], drop_remainder=False) 196 dataset = dataset_ops.Dataset.range(8).batch(4, drop_remainder=False) 198 dataset, batch_sizes=[2, 2], drop_remainder=True) 205 dataset = dataset_ops.Dataset.range(10).batch(5, drop_remainder=True) [all …]
|
D | dense_to_ragged_batch_test.py | 115 drop_remainder=[True, False]))) 117 drop_remainder): argument 127 batching.dense_to_ragged_batch(batch_size, drop_remainder)) 131 if end_row > nrows and drop_remainder:
|
D | map_and_batch_test.py | 121 combinations.combine(drop_remainder=[True, False]))) 122 def testMapAndBatchPartialBatch(self, drop_remainder): argument 128 drop_remainder=drop_remainder))) 130 if drop_remainder: 137 if not drop_remainder: 183 lambda x: x, batch_size=100, drop_remainder=True))
|
/external/tensorflow/tensorflow/python/data/experimental/ops/ |
D | batching.py | 37 drop_remainder=False, argument 96 ragged_dataset, batch_size=batch_size, drop_remainder=drop_remainder) 156 drop_remainder=False, argument 201 num_parallel_calls, drop_remainder, 216 drop_remainder=False, argument 262 num_parallel_calls, drop_remainder) 331 drop_remainder, use_legacy_function=False): argument 344 drop_remainder, dtype=dtypes.bool, name="drop_remainder") 367 drop_remainder=self._drop_remainder_t,
|
/external/tensorflow/tensorflow/core/kernels/data/ |
D | batch_dataset_op.cc | 50 Dataset(OpKernelContext* ctx, int64 batch_size, bool drop_remainder, in Dataset() argument 58 reserve_size_(drop_remainder ? batch_size in Dataset() 60 drop_remainder_(drop_remainder), in Dataset() 67 {"drop_remainder", drop_remainder ? "true" : "false"}, in Dataset() 137 Node* drop_remainder = nullptr; in AsGraphDefInternal() local 138 TF_RETURN_IF_ERROR(b->AddScalar(drop_remainder_, &drop_remainder)); in AsGraphDefInternal() 142 b->AddDataset(this, {input_graph_node, batch_size, drop_remainder}, in AsGraphDefInternal() 271 bool drop_remainder = false; in MakeDataset() local 274 ctx, ParseScalarArgument<bool>(ctx, kDropRemainder, &drop_remainder)); in MakeDataset() 277 *output = new Dataset(ctx, batch_size, drop_remainder, parallel_copy_, input, in MakeDataset()
|
D | padded_batch_dataset_op.cc | 51 Dataset(OpKernelContext* ctx, int64 batch_size, bool drop_remainder, in Dataset() argument 57 drop_remainder_(drop_remainder), in Dataset() 66 {"drop_remainder", drop_remainder ? "true" : "false"}}) { in Dataset() 160 Node* drop_remainder = nullptr; in AsGraphDefInternal() local 161 TF_RETURN_IF_ERROR(b->AddScalar(drop_remainder_, &drop_remainder)); in AsGraphDefInternal() 173 this, {{0, input_graph_node}, {1, batch_size}, {4, drop_remainder}}, in AsGraphDefInternal() 409 bool drop_remainder = false; in MakeDataset() local 412 ctx, ParseScalarArgument<bool>(ctx, kDropRemainder, &drop_remainder)); in MakeDataset() 456 *output = new Dataset(ctx, batch_size, drop_remainder, parallel_copy_, in MakeDataset()
|
D | parallel_batch_dataset_op.cc | 67 bool drop_remainder, const DatasetBase* input) in Dataset() argument 74 reserve_size_(drop_remainder ? batch_size in Dataset() 77 drop_remainder_(drop_remainder), in Dataset() 84 {"drop_remainder", drop_remainder ? "true" : "false"}}) { in Dataset() 156 Node* drop_remainder = nullptr; in AsGraphDefInternal() local 157 TF_RETURN_IF_ERROR(b->AddScalar(drop_remainder_, &drop_remainder)); in AsGraphDefInternal() 161 {input_graph_node, batch_size, num_parallel_calls, drop_remainder}, {}, in AsGraphDefInternal() 539 bool drop_remainder = false; in MakeDataset() local 541 ctx, ParseScalarArgument<bool>(ctx, kDropRemainder, &drop_remainder)); in MakeDataset() 544 new Dataset(ctx, batch_size, num_parallel_calls, drop_remainder, input); in MakeDataset()
|
D | parallel_batch_dataset_op_test.cc | 30 int64 num_parallel_calls, bool drop_remainder, in ParallelBatchDatasetParams() argument 38 drop_remainder_(drop_remainder) { in ParallelBatchDatasetParams() 50 Tensor drop_remainder = in GetInputTensors() local 52 return {batch_size, num_parallel_calls, drop_remainder}; in GetInputTensors()
|
/external/tensorflow/tensorflow/python/data/experimental/kernel_tests/serialization/ |
D | map_and_batch_dataset_serialization_test.py | 48 def build_ds(range_start, drop_remainder=False): argument 59 drop_remainder=drop_remainder)) 74 def build_ds(range_start, drop_remainder=False): argument 85 drop_remainder=drop_remainder))
|
D | rebatch_dataset_serialization_test.py | 40 4 * batch_size, drop_remainder=True), 56 2 * batch_size, drop_remainder=True),
|
/external/tensorflow/tensorflow/python/data/kernel_tests/ |
D | window_test.py | 46 drop_remainder=[True, False]) + combinations.combine( 51 drop_remainder=[True, False]))) 52 def testWindowDataset(self, count, size, shift, stride, drop_remainder): argument 71 drop_remainder=drop_remainder).flat_map(_flat_map_fn) 86 if not drop_remainder: 132 drop_remainder=True).flat_map(lambda x: x.batch(batch_size=5)) 155 drop_remainder=True).flat_map(lambda x: x.batch(batch_size=5)) 182 drop_remainder=True).flat_map(lambda x: x.batch(batch_size=4)).window( 184 drop_remainder=True).flat_map(lambda x: x.batch(batch_size=3)) 226 drop_remainder=True).flat_map(lambda x: x.batch(batch_size=2)) [all …]
|
D | cardinality_test.py | 45 lambda: dataset_ops.Dataset.range(5).batch(2, drop_remainder=True), 2), 47 lambda: dataset_ops.Dataset.range(5).batch(2, drop_remainder=False), 3), 102 2, [], drop_remainder=True), 2), 104 2, [], drop_remainder=False), 3), 148 size=2, shift=2, drop_remainder=True), 2), 150 size=2, shift=2, drop_remainder=False), 3),
|
D | batch_test.py | 48 drop_remainder=[True, False], 50 def testBasic(self, count, batch_size, drop_remainder, num_parallel_calls): argument 72 _map_fn).repeat(count).batch(batch_size, drop_remainder, 76 if drop_remainder: 92 if not drop_remainder and (count * 7) % batch_size > 0:
|
/external/tensorflow/tensorflow/python/distribute/ |
D | input_lib_test.py | 572 drop_remainder=[True, False], 578 drop_remainder, distribution): argument 582 2, drop_remainder=drop_remainder) 587 if drop_remainder: 607 drop_remainder=[True, False], 613 iteration_type, drop_remainder, argument 633 return dataset.batch(2, drop_remainder=drop_remainder) 638 if drop_remainder and input_type == "dataset": 667 drop_remainder=[True, False], 673 drop_remainder, argument [all …]
|
D | input_lib_type_spec_test.py | 125 drop_remainder=[True, False], 130 drop_remainder): argument 143 2, drop_remainder=drop_remainder) 176 drop_remainder=[True, False], 180 drop_remainder): argument 185 4, drop_remainder=drop_remainder)
|
/external/tensorflow/tensorflow/python/keras/distribute/ |
D | keras_metrics_test.py | 39 4, drop_remainder=True) 52 3, drop_remainder=True) 65 3, drop_remainder=True) 120 4, drop_remainder=True)
|
/external/tensorflow/tensorflow/core/ops/compat/ops_history_v2/ |
D | BatchDatasetV2.pbtxt | 12 name: "drop_remainder" 43 name: "drop_remainder"
|
D | PaddedBatchDatasetV2.pbtxt | 21 name: "drop_remainder" 67 name: "drop_remainder"
|
D | ExperimentalMapAndBatchDataset.pbtxt | 20 name: "drop_remainder" 68 name: "drop_remainder"
|
/external/tensorflow/tensorflow/core/ops/compat/ops_history_v1/ |
D | BatchDatasetV2.pbtxt | 12 name: "drop_remainder" 43 name: "drop_remainder"
|
D | PaddedBatchDatasetV2.pbtxt | 21 name: "drop_remainder" 67 name: "drop_remainder"
|
D | ExperimentalMapAndBatchDataset.pbtxt | 20 name: "drop_remainder" 68 name: "drop_remainder"
|
/external/tensorflow/tensorflow/core/kernels/data/experimental/ |
D | rebatch_dataset_op.cc | 302 bool drop_remainder; in MakeDataset() local 304 ctx, ParseScalarArgument<bool>(ctx, "drop_remainder", &drop_remainder)); in MakeDataset() 306 *output = new Dataset(ctx, input, std::move(batch_sizes), drop_remainder, in MakeDataset() 314 std::vector<int64>&& batch_sizes, bool drop_remainder, in Dataset() argument 320 drop_remainder_(drop_remainder), in Dataset() 361 Node* drop_remainder = nullptr; in AsGraphDefInternal() local 362 TF_RETURN_IF_ERROR(b->AddScalar(drop_remainder_, &drop_remainder)); in AsGraphDefInternal() 364 this, {input_graph_node, batch_sizes, drop_remainder}, output)); in AsGraphDefInternal()
|
/external/tensorflow/tensorflow/compiler/mlir/tensorflow/transforms/ |
D | tf_data_optimization.td | 27 $batch_size, $drop_remainder, $parallel_copy, $batch_output_types, 30 (TF_ConstOp (GetI64ScalarElementsAttr<1>)), $drop_remainder, $f,
|
/external/tensorflow/tensorflow/python/profiler/integration_test/ |
D | mnist_testing_utils.py | 33 train_ds = train_ds.batch(64, drop_remainder=True) 42 eval_ds = eval_ds.batch(64, drop_remainder=True)
|