/external/tensorflow/tensorflow/compiler/tests/ |
D | binary_ops_test.py | 53 pa = array_ops.placeholder(dtypes.as_dtype(a.dtype), a.shape, name="a") 54 pb = array_ops.placeholder(dtypes.as_dtype(b.dtype), b.shape, name="b") 60 rtol = 1e-15 if a.dtype == np.float64 else 1e-3 62 atol = 1e-15 if a.dtype == np.float64 else 1e-6 77 for dtype in self.float_types: 78 if dtype == dtypes.bfloat16.as_numpy_dtype: 87 np.array([[[[-1, 2.00009999], [-3, b]]]], dtype=dtype), 88 np.array([[[[a, 2], [-3.00009, 4]]]], dtype=dtype), 89 expected=np.array([[[[False, True], [True, False]]]], dtype=dtype)) 93 np.array([3, 3, -1.5, -8, 44], dtype=dtype), [all …]
|
D | unary_ops_test.py | 73 dtypes.as_dtype(inp.dtype), inp.shape, name="a") 77 self.assertEqual(output.dtype, expected.dtype) 101 for dtype in self.numeric_types - {np.int8, np.uint8}: 103 array_ops.diag, np.array([1, 2, 3, 4], dtype=dtype), 106 dtype=dtype)) 109 np.arange(36).reshape([2, 3, 2, 3]).astype(dtype), 110 np.array([[0, 7, 14], [21, 28, 35]], dtype=dtype)) 112 array_ops.diag, np.array([[1, 2], [3, 4]], dtype=dtype), 116 dtype=dtype)) 120 np.array([[-1, 1]], dtype=dtype), [all …]
|
D | ternary_ops_test.py | 39 pa = array_ops.placeholder(dtypes.as_dtype(a.dtype), a.shape, name="a") 40 pb = array_ops.placeholder(dtypes.as_dtype(b.dtype), b.shape, name="b") 41 pc = array_ops.placeholder(dtypes.as_dtype(c.dtype), c.shape, name="c") 54 expected = np.linspace(start, end, num, dtype=np.float32) 72 expected=np.array([1], dtype=np.int32)) 78 expected=np.array([1, 3, 5], dtype=np.int32)) 81 for dtype in self.numeric_types: 85 np.array(2, dtype=dtype), 86 np.array(7, dtype=dtype), 87 expected=np.array(7, dtype=dtype)) [all …]
|
D | nary_ops_test.py | 38 array_ops.placeholder(dtypes.as_dtype(arg.dtype), arg.shape) 58 [np.array([[1, 2, 3]], dtype=np.float32)], 59 expected=np.array([[1, 2, 3]], dtype=np.float32)) 62 [np.array([1, 2], dtype=np.float32), 63 np.array([10, 20], dtype=np.float32)], 64 expected=np.array([11, 22], dtype=np.float32)) 66 [np.array([-4], dtype=np.float32), 67 np.array([10], dtype=np.float32), 68 np.array([42], dtype=np.float32)], 69 expected=np.array([48], dtype=np.float32)) [all …]
|
D | segment_reduction_ops_test.py | 37 d = array_ops.placeholder(data.dtype, shape=data.shape) 41 i = array_ops.placeholder(indices.dtype, shape=indices.shape) 61 for dtype in self.numeric_types: 66 dtype=dtype), 68 np.array([0, 1, 2, 3, 4, 5], dtype=dtype), 2, 4)) 71 for dtype in self.numeric_types: 73 np.array([1, 3, 2, 9], dtype=dtype), 75 np.array([0, 1, 2, 3, 4, 5], dtype=dtype), 76 np.array([3, 0, 2, 1, 3, 3], dtype=np.int32), 4)) 79 for dtype in self.numeric_types: [all …]
|
D | dynamic_slice_ops_test.py | 36 array_ops.placeholder(dtypes.as_dtype(arg.dtype), arg.shape) 45 for dtype in self.numeric_types: 48 np.array([], dtype=dtype), 49 np.array([], dtype=dtype), 50 np.array([0], dtype=np.int32) 52 expected=np.array([], dtype=dtype)) 56 np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10], dtype=dtype), 57 np.array([-1, -2, -3], dtype=dtype), 58 np.array([6], dtype=np.int32) 60 expected=np.array([1, 2, 3, 4, 5, 6, -1, -2, -3, 10], dtype=dtype)) [all …]
|
D | nullary_ops_test.py | 46 for dtype in self.numeric_types: 48 dtype(42), 49 np.array([], dtype=dtype), 50 np.array([1, 2], dtype=dtype), 51 np.array([7, 7, 7, 7, 7], dtype=dtype), 52 np.array([[1, 2, 3], [4, 5, 6]], dtype=dtype), 54 dtype=dtype), 55 np.array([[[]], [[]]], dtype=dtype), 56 np.array([[[[1]]]], dtype=dtype), 62 for dtype in self.complex_types: [all …]
|
D | ftrl_test.py | 34 def initVariableAndGradient(self, dtype): argument 35 var0 = resource_variable_ops.ResourceVariable([0.0, 0.0], dtype=dtype) 36 var1 = resource_variable_ops.ResourceVariable([0.0, 0.0], dtype=dtype) 37 grads0 = constant_op.constant([0.1, 0.2], dtype=dtype) 38 grads1 = constant_op.constant([0.02, 0.04], dtype=dtype) 42 def equivAdagradTest_FtrlPart(self, steps, dtype): argument 43 var0, var1, grads0, grads1 = self.initVariableAndGradient(dtype) 62 def equivAdagradTest_AdagradPart(self, steps, dtype): argument 63 var0, var1, grads0, grads1 = self.initVariableAndGradient(dtype) 77 def equivGradientDescentTest_FtrlPart(self, steps, dtype): argument [all …]
|
D | variable_ops_test.py | 46 for dtype in self.numeric_types: 48 zeros = np.zeros([3, 0], dtype=dtype) 50 p = array_ops.placeholder(dtype) 59 for dtype in self.numeric_types: 60 init = np.array([[1, 2j], [3, 4]]).astype(dtype) 64 p = array_ops.placeholder(dtype) 69 np.array([[2, 1 + 2j], [4, 5]]).astype(dtype), sess.run(y, {p: 1})) 72 for dtype in self.numeric_types: 74 11]]).astype(dtype) 80 np.array([8j, 9, 10, 11]).astype(dtype), self.evaluate(x)) [all …]
|
D | adagrad_da_test.py | 35 for dtype in self.float_types: 38 0, dtype=dtypes.int64) 39 var0 = resource_variable_ops.ResourceVariable([0.0, 0.0], dtype=dtype) 40 var1 = resource_variable_ops.ResourceVariable([0.0, 0.0], dtype=dtype) 41 grads0 = constant_op.constant([0.1, 0.2], dtype=dtype) 42 grads1 = constant_op.constant([0.01, 0.02], dtype=dtype) 71 for dtype in self.float_types: 74 0, dtype=dtypes.int64) 75 var0 = resource_variable_ops.ResourceVariable([1.0, 2.0], dtype=dtype) 76 var1 = resource_variable_ops.ResourceVariable([4.0, 3.0], dtype=dtype) [all …]
|
D | einsum_op_test.py | 38 dtypes.as_dtype(inp.dtype), inp.shape, name='a') 41 self.assertEqual(output.dtype, expected.dtype) 49 pa = array_ops.placeholder(dtypes.as_dtype(a.dtype), a.shape, name='a') 50 pb = array_ops.placeholder(dtypes.as_dtype(b.dtype), b.shape, name='b') 56 for dtype in self.float_types: 59 np.array([[-0.25]], dtype=dtype), 60 np.array([[8]], dtype=dtype), 61 expected=np.array([[-2]], dtype=dtype)) 64 for dtype in self.float_types: 67 np.array([[[1, 3], [2, 5], [6, 8]]], dtype=dtype), [all …]
|
D | xla_ops_test.py | 47 array_ops.placeholder(dtypes.as_dtype(arg.dtype), arg.shape) 58 for dtype in self.numeric_types: 61 args=(np.array([1, 2, 3], dtype=dtype), 62 np.array([4, 5, 6], dtype=dtype)), 63 expected=np.array([5, 7, 9], dtype=dtype)) 67 args=(np.array([[1, 2], [3, 4]], dtype=dtype), 68 np.array([7, 11], dtype=dtype)), 69 expected=np.array([[8, 9], [14, 15]], dtype=dtype)) 73 args=(np.array([[1, 2], [3, 4]], dtype=dtype), 74 np.array([7, 11], dtype=dtype)), [all …]
|
/external/tensorflow/tensorflow/python/kernel_tests/ |
D | sets_test.py | 40 def _values(values, dtype): argument 43 dtype=(np.unicode if (dtype == dtypes.string) else dtype.as_numpy_dtype)) 46 def _constant(values, dtype): argument 47 return constant_op.constant(_values(values, dtype), dtype=dtype) 50 def _dense_to_sparse(dense, dtype): argument 62 values.append(str(cell) if dtype == dtypes.string else cell) 67 constant_op.constant(values, dtype), 75 for dtype in _DTYPES: 76 self._test_set_size_2d(dtype) 78 def _test_set_size_2d(self, dtype): argument [all …]
|
D | one_hot_op_test.py | 36 dtype=None, argument 41 array_ops.one_hot(dtype=dtype, **inputs) 43 ans = array_ops.one_hot(dtype=dtype, **inputs) 47 if dtype: 48 self.assertEqual(tf_ans.dtype, dtype) 58 def _testBasic(self, dtype): argument 59 indices = np.asarray([0, 2, -1, 1], dtype=np.int64) 61 on_value = np.asarray(1.0, dtype=dtype) 62 off_value = np.asarray(-1.0, dtype=dtype) 67 dtype=dtype) [all …]
|
/external/tensorflow/tensorflow/python/ops/signal/ |
D | window_ops.py | 35 def _check_params(window_length, dtype): argument 49 if not dtype.is_floating: 50 raise ValueError('dtype must be a floating point type. Found %s' % dtype) 51 window_length = ops.convert_to_tensor(window_length, dtype=dtypes.int32) 58 def kaiser_window(window_length, beta=12., dtype=dtypes.float32, name=None): argument 74 window_length = _check_params(window_length, dtype) 77 return array_ops.ones([1], dtype=dtype) 80 math_ops.cast(window_length, dtype=dtypes.float32) - 1.0) / 2.0 82 dtype=dtypes.float32) 84 arg = math_ops.cast(arg, dtype=dtype) [all …]
|
/external/tensorflow/tensorflow/python/keras/optimizer_v2/ |
D | ftrl_test.py | 39 for dtype in [dtypes.float32]: 42 var0 = variables.Variable([0.0, 0.0], dtype=dtype) 43 var1 = variables.Variable([0.0, 0.0], dtype=dtype) 45 var0 = variables.Variable([0.0, 0.0], dtype=dtype) 46 var1 = variables.Variable([0.0, 0.0], dtype=dtype) 47 grads0 = constant_op.constant([0.1, 0.2], dtype=dtype) 48 grads1 = constant_op.constant([0.01, 0.02], dtype=dtype) 79 for dtype in [dtypes.half, dtypes.float32]: 81 var0 = variables.Variable([1.0, 2.0], dtype=dtype) 82 var1 = variables.Variable([4.0, 3.0], dtype=dtype) [all …]
|
D | gradient_descent_test.py | 44 for dtype in [dtypes.half, dtypes.float32, dtypes.float64]: 45 var0 = variables.Variable([1.0, 2.0], dtype=dtype) 46 var1 = variables.Variable([3.0, 4.0], dtype=dtype) 47 grads0 = constant_op.constant([0.1, 0.1], dtype=dtype) 48 grads1 = constant_op.constant([0.01, 0.01], dtype=dtype) 60 def _test_basic_sgd_with_learning_rate_decay(self, sgd, dtype): argument 61 var0 = variables.Variable([1.0, 2.0], dtype=dtype) 62 var1 = variables.Variable([3.0, 4.0], dtype=dtype) 63 grads0 = constant_op.constant([0.1, 0.1], dtype=dtype) 64 grads1 = constant_op.constant([0.01, 0.01], dtype=dtype) [all …]
|
D | adagrad_test.py | 75 for dtype in _DATA_TYPES: 76 var0_np = np.array([1.0, 2.0], dtype=dtype.as_numpy_dtype) 77 var1_np = np.array([3.0, 4.0], dtype=dtype.as_numpy_dtype) 78 grads0_np = np.array([0.1, 0.1], dtype=dtype.as_numpy_dtype) 79 grads1_np = np.array([0.01, 0.01], dtype=dtype.as_numpy_dtype) 91 accum0_np = np.array([0.1, 0.1], dtype=dtype.as_numpy_dtype) 92 accum1_np = np.array([0.1, 0.1], dtype=dtype.as_numpy_dtype) 126 for dtype in _DATA_TYPES: 127 var0_np = np.array([1.0, 2.0], dtype=dtype.as_numpy_dtype) 128 var1_np = np.array([3.0, 4.0], dtype=dtype.as_numpy_dtype) [all …]
|
/external/tensorflow/tensorflow/python/training/ |
D | ftrl_test.py | 41 for dtype in [dtypes.half, dtypes.float32]: 45 dtype=dtype) 47 dtype=dtype) 49 var0 = variables.Variable([0.0, 0.0], dtype=dtype) 50 var1 = variables.Variable([0.0, 0.0], dtype=dtype) 51 grads0 = constant_op.constant([0.1, 0.2], dtype=dtype) 52 grads1 = constant_op.constant([0.01, 0.02], dtype=dtype) 84 for dtype in [dtypes.half, dtypes.float32]: 86 var0 = variables.Variable([1.0, 2.0], dtype=dtype) 87 var1 = variables.Variable([4.0, 3.0], dtype=dtype) [all …]
|
D | gradient_descent_test.py | 39 for dtype in [dtypes.half, dtypes.float32, dtypes.float64]: 42 var0 = variables.Variable([1.0, 2.0], dtype=dtype) 43 var1 = variables.Variable([3.0, 4.0], dtype=dtype) 44 grads0 = constant_op.constant([0.1, 0.1], dtype=dtype) 45 grads1 = constant_op.constant([0.01, 0.01], dtype=dtype) 63 for dtype in [dtypes.half, dtypes.float32, dtypes.float64]: 66 var0 = resource_variable_ops.ResourceVariable([1.0, 2.0], dtype=dtype) 67 var1 = resource_variable_ops.ResourceVariable([3.0, 4.0], dtype=dtype) 68 grads0 = constant_op.constant([0.1, 0.1], dtype=dtype) 69 grads1 = constant_op.constant([0.01, 0.01], dtype=dtype) [all …]
|
D | adagrad_da_test.py | 38 for dtype in [dtypes.float64, dtypes.float32]: 40 global_step = variables.Variable(0, dtype=dtypes.int64) 42 var0 = resource_variable_ops.ResourceVariable([0.0, 0.0], dtype=dtype) 43 var1 = resource_variable_ops.ResourceVariable([0.0, 0.0], dtype=dtype) 45 var0 = variables.Variable([0.0, 0.0], dtype=dtype) 46 var1 = variables.Variable([0.0, 0.0], dtype=dtype) 47 grads0 = constant_op.constant([0.1, 0.2], dtype=dtype) 48 grads1 = constant_op.constant([0.01, 0.02], dtype=dtype) 86 for dtype in [dtypes.float32, dtypes.float64]: 88 var0 = resource_variable_ops.ResourceVariable([[1.0, 2.0]], dtype=dtype) [all …]
|
/external/tensorflow/tensorflow/python/ops/ |
D | math_grad_test.py | 73 def _testGrad(self, shape, dtype=None, max_error=None, bias=None, sigma=None): argument 75 if dtype in (dtypes.complex64, dtypes.complex128): 84 shape, bias=bias), dtype=dtype) 96 [3, 3], dtype=dtypes.float32, max_error=2e-5, bias=0.1, sigma=1.0) 98 [3, 3], dtype=dtypes.complex64, max_error=2e-5, bias=0.1, sigma=1.0) 102 [3, 3], dtype=dtypes.float32, max_error=100.0, bias=0.0, sigma=0.1) 104 [3, 3], dtype=dtypes.complex64, max_error=100.0, bias=0.0, sigma=0.1) 111 inputs = constant_op.constant([1.0], dtype=dtypes.float32) 119 inputs = constant_op.constant([1.0], dtype=dtypes.float32) 130 inputs = constant_op.constant([1.0, 2.0, 3.0, 4.0], dtype=dtypes.float32) [all …]
|
D | init_ops.py | 58 def __call__(self, shape, dtype=None, partition_info=None): argument 108 def __init__(self, dtype=dtypes.float32): argument 109 self.dtype = dtypes.as_dtype(dtype) 111 def __call__(self, shape, dtype=None, partition_info=None): argument 112 if dtype is None: 113 dtype = self.dtype 114 return array_ops.zeros(shape, dtype) 117 return {"dtype": self.dtype.name} 128 def __init__(self, dtype=dtypes.float32): argument 129 self.dtype = dtypes.as_dtype(dtype) [all …]
|
D | init_ops_v2.py | 52 def __call__(self, shape, dtype=None, **kwargs): argument 136 def __call__(self, shape, dtype=dtypes.float32, **kwargs): argument 149 dtype = dtypes.as_dtype(dtype) 150 if not dtype.is_numpy_compatible or dtype == dtypes.string: 151 raise ValueError("Expected numeric or boolean dtype, got %s." % dtype) 154 return array_ops.zeros(shape, dtype) 182 def __call__(self, shape, dtype=dtypes.float32, **kwargs): argument 195 dtype = dtypes.as_dtype(dtype) 196 if not dtype.is_numpy_compatible or dtype == dtypes.string: 197 raise ValueError("Expected numeric or boolean dtype, got %s." % dtype) [all …]
|
/external/tensorflow/tensorflow/python/kernel_tests/boosted_trees/ |
D | training_ops_test.py | 50 feature1_nodes = np.array([0], dtype=np.int32) 51 feature1_gains = np.array([7.62], dtype=np.float32) 52 feature1_thresholds = np.array([52], dtype=np.int32) 53 feature1_left_node_contribs = np.array([[-4.375]], dtype=np.float32) 54 feature1_right_node_contribs = np.array([[7.143]], dtype=np.float32) 56 feature2_nodes = np.array([0], dtype=np.int32) 57 feature2_gains = np.array([0.63], dtype=np.float32) 58 feature2_thresholds = np.array([23], dtype=np.int32) 59 feature2_left_node_contribs = np.array([[-0.6]], dtype=np.float32) 60 feature2_right_node_contribs = np.array([[0.24]], dtype=np.float32) [all …]
|