/external/eigen/test/ |
D | eigensolver_generic.cpp | 42 VERIFY_IS_APPROX(a.template cast<Complex>() * ei1.eigenvectors(), in eigensolver() 43 ei1.eigenvectors() * ei1.eigenvalues().asDiagonal()); in eigensolver() 44 VERIFY_IS_APPROX(ei1.eigenvectors().colwise().norm(), RealVectorType::Ones(rows).transpose()); in eigensolver() 50 VERIFY_IS_EQUAL(ei2.eigenvectors(), ei1.eigenvectors()); in eigensolver() 86 VERIFY((ei3.eigenvectors().transpose()*ei3.eigenvectors().transpose()).eval().isIdentity()); in eigensolver() 93 VERIFY_RAISES_ASSERT(eig.eigenvectors()); in eigensolver_verify_assert() 100 VERIFY_RAISES_ASSERT(eig.eigenvectors()); in eigensolver_verify_assert() 149 …VERIFY_IS_APPROX(a * eig.eigenvectors()*scale, eig.eigenvectors() * eig.eigenvalues().asDiagonal()… in test_eigensolver_generic() 160 VERIFY_IS_APPROX((a * eig.eigenvectors()).norm()+1., 1.); in test_eigensolver_generic() 161 VERIFY_IS_APPROX((eig.eigenvectors() * eig.eigenvalues().asDiagonal()).norm()+1., 1.); in test_eigensolver_generic()
|
D | eigensolver_selfadjoint.cpp | 35 VERIFY_IS_APPROX((m.template selfadjointView<Lower>() * eiSymm.eigenvectors())/scaling, in selfadjointeigensolver_essential_check() 36 (eiSymm.eigenvectors() * eiSymm.eigenvalues().asDiagonal())/scaling); in selfadjointeigensolver_essential_check() 39 VERIFY_IS_UNITARY(eiSymm.eigenvectors()); in selfadjointeigensolver_essential_check() 60 VERIFY_IS_APPROX((m.template selfadjointView<Lower>() * eiDirect.eigenvectors())/scaling, in selfadjointeigensolver_essential_check() 61 (eiDirect.eigenvectors() * eiDirect.eigenvalues().asDiagonal())/scaling); in selfadjointeigensolver_essential_check() 65 VERIFY_IS_UNITARY(eiDirect.eigenvectors()); in selfadjointeigensolver_essential_check() 111 VERIFY((symmC.template selfadjointView<Lower>() * eiSymmGen.eigenvectors()).isApprox( in selfadjointeigensolver() 112 …symmB.template selfadjointView<Lower>() * (eiSymmGen.eigenvectors() * eiSymmGen.eigenvalues().asDi… in selfadjointeigensolver() 117 …ointView<Lower>() * (symmC.template selfadjointView<Lower>() * eiSymmGen.eigenvectors())).isApprox( in selfadjointeigensolver() 118 (eiSymmGen.eigenvectors() * eiSymmGen.eigenvalues().asDiagonal()), largerEps)); in selfadjointeigensolver() [all …]
|
D | eigensolver_complex.cpp | 89 VERIFY_IS_APPROX(symmA * ei0.eigenvectors(), ei0.eigenvectors() * ei0.eigenvalues().asDiagonal()); in eigensolver() 93 VERIFY_IS_APPROX(a * ei1.eigenvectors(), ei1.eigenvectors() * ei1.eigenvalues().asDiagonal()); in eigensolver() 101 VERIFY_IS_EQUAL(ei2.eigenvectors(), ei1.eigenvectors()); in eigensolver() 141 VERIFY((ei3.eigenvectors().transpose()*ei3.eigenvectors().transpose()).eval().isIdentity()); in eigensolver() 148 VERIFY_RAISES_ASSERT(eig.eigenvectors()); in eigensolver_verify_assert() 153 VERIFY_RAISES_ASSERT(eig.eigenvectors()); in eigensolver_verify_assert()
|
D | eigensolver_generalized_real.cpp | 49 typename GeneralizedEigenSolver<MatrixType>::EigenvectorsType V = eig.eigenvectors(); in generalized_eigensolver_real() 69 typename GeneralizedEigenSolver<MatrixType>::EigenvectorsType V = eig.eigenvectors(); in generalized_eigensolver_real()
|
/external/libchrome/ui/gfx/geometry/ |
D | matrix3_unittest.cc | 120 Matrix3F eigenvectors = Matrix3F::Zeros(); in TEST() local 121 Vector3dF eigenvals = matrix.SolveEigenproblem(&eigenvectors); in TEST() 124 EXPECT_EQ(Vector3dF(0.0f, 0.0f, 1.0f), eigenvectors.get_column(0)); in TEST() 125 EXPECT_EQ(Vector3dF(1.0f, 0.0f, 0.0f), eigenvectors.get_column(1)); in TEST() 126 EXPECT_EQ(Vector3dF(0.0f, 1.0f, 0.0f), eigenvectors.get_column(2)); in TEST() 136 Matrix3F eigenvectors = Matrix3F::Zeros(); in TEST() local 137 Vector3dF eigenvals = matrix.SolveEigenproblem(&eigenvectors); in TEST() 142 (expected_principal - eigenvectors.get_column(0)).Length(), in TEST() 150 Matrix3F eigenvectors = Matrix3F::Zeros(); in TEST() local 153 Vector3dF eigenvals = matrix.SolveEigenproblem(&eigenvectors); in TEST() [all …]
|
D | matrix3_f.cc | 153 Vector3dF Matrix3F::SolveEigenproblem(Matrix3F* eigenvectors) const { in SolveEigenproblem() 221 if (eigenvectors != NULL && diagonal) { in SolveEigenproblem() 223 *eigenvectors = Zeros(); in SolveEigenproblem() 225 eigenvectors->set(indices[i], i, 1.0f); in SolveEigenproblem() 226 } else if (eigenvectors != NULL) { in SolveEigenproblem() 259 eigenvectors->set_column(i, eigvec); in SolveEigenproblem()
|
/external/apache-commons-math/src/main/java/org/apache/commons/math/linear/ |
D | EigenDecompositionImpl.java | 78 private ArrayRealVector[] eigenvectors; field in EigenDecompositionImpl 162 final int m = eigenvectors.length; in getV() 165 cachedV.setColumnVector(k, eigenvectors[k]); in getV() 186 final int m = eigenvectors.length; in getVT() 189 cachedVt.setRowVector(k, eigenvectors[k]); in getVT() 223 return eigenvectors[i].copy(); in getEigenvector() 240 return new Solver(realEigenvalues, imagEigenvalues, eigenvectors); in getSolver() 253 private final ArrayRealVector[] eigenvectors; field in EigenDecompositionImpl.Solver 266 final ArrayRealVector[] eigenvectors) { in Solver() argument 269 this.eigenvectors = eigenvectors; in Solver() [all …]
|
/external/eigen/doc/snippets/ |
D | ComplexEigenSolver_compute.cpp | 7 cout << "The matrix of eigenvectors, V, is:" << endl << ces.eigenvectors() << endl << endl; 11 VectorXcf v = ces.eigenvectors().col(0); 16 << ces.eigenvectors() * ces.eigenvalues().asDiagonal() * ces.eigenvectors().inverse() << endl;
|
D | EigenSolver_EigenSolver_MatrixType.cpp | 6 cout << "The matrix of eigenvectors, V, is:" << endl << es.eigenvectors() << endl << endl; 10 VectorXcd v = es.eigenvectors().col(0); 15 MatrixXcd V = es.eigenvectors();
|
D | SelfAdjointEigenSolver_SelfAdjointEigenSolver_MatrixType.cpp | 7 cout << "The matrix of eigenvectors, V, is:" << endl << es.eigenvectors() << endl << endl; 11 VectorXd v = es.eigenvectors().col(0); 16 MatrixXd V = es.eigenvectors();
|
D | SelfAdjointEigenSolver_SelfAdjointEigenSolver_MatrixType2.cpp | 10 cout << "The matrix of eigenvectors, V, is:" << endl << es.eigenvectors() << endl << endl; 14 VectorXd v = es.eigenvectors().col(0);
|
D | SelfAdjointEigenSolver_eigenvectors.cpp | 4 << endl << es.eigenvectors().col(1) << endl;
|
D | ComplexEigenSolver_eigenvectors.cpp | 4 << endl << ces.eigenvectors().col(1) << endl;
|
D | EigenSolver_eigenvectors.cpp | 4 << endl << es.eigenvectors().col(0) << endl;
|
/external/tensorflow/tensorflow/core/api_def/base_api/ |
D | api_def_SelfAdjointEigV2.pbtxt | 27 If `True` then eigenvectors will be computed and returned in `v`. 33 Computes the eigenvalues and (optionally) eigenvectors of each inner matrix in 40 # v is a tensor of eigenvectors.
|
D | api_def_Eig.pbtxt | 27 If `True` then eigenvectors will be computed and returned in `v`. 33 Computes the eigenvalues and (optionally) right eigenvectors of each inner matrix in 40 # v is a tensor of eigenvectors.
|
D | api_def_SelfAdjointEig.pbtxt | 22 eigenvalues, and subsequent [...,1:, :] containing the eigenvectors. The eigenvalues
|
/external/tensorflow/tensorflow/core/kernels/linalg/ |
D | self_adjoint_eig_v2_op_gpu.cc | 71 Tensor* eigenvectors; in ComputeAsync() local 75 context, context->allocate_output(1, eigenvectors_shape, &eigenvectors), in ComputeAsync() 152 context, DoMatrixTranspose(device, input_copy, eigenvectors), done); in ComputeAsync()
|
D | self_adjoint_eig_op.cc | 70 outputs->at(0).bottomRows(rows) = es.eigenvectors(); in ComputeMatrix()
|
D | self_adjoint_eig_v2_op_impl.h | 82 outputs->at(1) = eig.eigenvectors(); in ComputeMatrix()
|
D | eig_op_impl.h | 88 outputs->at(1) = eig.eigenvectors(); in ComputeMatrix()
|
/external/eigen/unsupported/test/ |
D | mpreal_support.cpp | 56 …VERIFY( (S.selfadjointView<Lower>() * eig.eigenvectors()).isApprox(eig.eigenvectors() * eig.eigenv… in test_mpreal_support()
|
/external/eigen/doc/examples/ |
D | TutorialLinAlgSelfAdjointEigenSolver.cpp | 17 << eigensolver.eigenvectors() << endl; in main()
|
/external/eigen/bench/ |
D | benchEigenSolver.cpp | 61 acc += ei.eigenvectors().coeff(r,c); in benchEigenSolver() 75 acc += ei.eigenvectors().coeff(r,c); in benchEigenSolver()
|
/external/eigen/lapack/ |
D | eigenvalues.cpp | 59 matrix(a,*n,*n,*lda) = eig.eigenvectors();
|