/external/libtextclassifier/native/annotator/ |
D | quantization_test.cc | 41 std::vector<uint8> embeddings{{/*0: */ 0x00, 0xFF, 0x09, 0x00, in TEST() local 51 DequantizeAdd(scales.data(), embeddings.data(), bytes_per_embedding, in TEST() 69 DequantizeAdd(scales.data(), embeddings.data(), bytes_per_embedding, in TEST() 93 std::vector<uint8> embeddings(bytes_per_embedding * num_buckets); in TEST() local 95 std::fill(embeddings.begin(), embeddings.end(), 0); in TEST() 98 DequantizeAdd(scales.data(), embeddings.data(), bytes_per_embedding, in TEST() 116 std::vector<uint8> embeddings(bytes_per_embedding * num_buckets, 0xFF); in TEST() local 119 DequantizeAdd(scales.data(), embeddings.data(), bytes_per_embedding, in TEST() 137 std::vector<uint8> embeddings(bytes_per_embedding * num_buckets, 0); in TEST() local 139 embeddings[4] = (1 << 7) | (1 << 6) | (1 << 4) | 1; in TEST() [all …]
|
D | quantization.cc | 28 void DequantizeAdd8bit(const float* scales, const uint8* embeddings, in DequantizeAdd8bit() argument 36 embeddings[bucket_id * bytes_per_embedding + k]); in DequantizeAdd8bit() 40 void DequantizeAddNBit(const float* scales, const uint8* embeddings, in DequantizeAddNBit() argument 50 uint16 data = embeddings[bucket_id * bytes_per_embedding + read16_offset]; in DequantizeAddNBit() 54 data |= embeddings[bucket_id * bytes_per_embedding + read16_offset + 1] in DequantizeAddNBit() 73 bool DequantizeAdd(const float* scales, const uint8* embeddings, in DequantizeAdd() argument 78 DequantizeAdd8bit(scales, embeddings, bytes_per_embedding, in DequantizeAdd() 81 DequantizeAddNBit(scales, embeddings, bytes_per_embedding, in DequantizeAdd()
|
D | model-executor.cc | 66 const TfLiteTensor* embeddings = interpreter->tensor(0); in FromBuffer() local 67 if (embeddings->dims->size != 2) { in FromBuffer() 70 int num_buckets = embeddings->dims->data[0]; in FromBuffer() 76 int bytes_per_embedding = embeddings->dims->data[1]; in FromBuffer() 85 embedding_size, scales, embeddings, std::move(interpreter), in FromBuffer() 92 const TfLiteTensor* scales, const TfLiteTensor* embeddings, in TFLiteEmbeddingExecutor() argument 101 embeddings_(embeddings), in TFLiteEmbeddingExecutor()
|
D | quantization.h | 32 bool DequantizeAdd(const float* scales, const uint8* embeddings,
|
D | model-executor.h | 100 const TfLiteTensor* scales, const TfLiteTensor* embeddings,
|
/external/tensorflow/tensorflow/python/ops/ |
D | embedding_ops.py | 511 embeddings = embedding_lookup( 513 if embeddings.dtype in (dtypes.float16, dtypes.bfloat16): 514 embeddings = math_ops.cast(embeddings, dtypes.float32) 520 if weights.dtype != embeddings.dtype: 521 weights = math_ops.cast(weights, embeddings.dtype) 523 embeddings = array_ops.gather(embeddings, idx) 527 array_ops.expand_dims(array_ops.rank(embeddings) - 1, 0), 1) 536 if embeddings.get_shape().ndims is not None: 539 [1 for _ in range(embeddings.get_shape().ndims - 1)])) 541 embeddings *= weights [all …]
|
/external/libtextclassifier/native/actions/ |
D | actions-suggestions_test.cc | 1445 std::vector<float> embeddings; in TEST_F() local 1448 EXPECT_TRUE(embedder.EmbedTokensPerMessage(tokens, &embeddings, in TEST_F() 1452 EXPECT_EQ(embeddings.size(), 3); in TEST_F() 1453 EXPECT_THAT(embeddings[0], FloatEq(tc3farmhash::Fingerprint64("a", 1) % in TEST_F() 1455 EXPECT_THAT(embeddings[1], FloatEq(tc3farmhash::Fingerprint64("b", 1) % in TEST_F() 1457 EXPECT_THAT(embeddings[2], FloatEq(tc3farmhash::Fingerprint64("c", 1) % in TEST_F() 1466 std::vector<float> embeddings; in TEST_F() local 1469 EXPECT_TRUE(embedder.EmbedTokensPerMessage(tokens, &embeddings, in TEST_F() 1473 EXPECT_EQ(embeddings.size(), 5); in TEST_F() 1474 EXPECT_THAT(embeddings[0], FloatEq(tc3farmhash::Fingerprint64("a", 1) % in TEST_F() [all …]
|
D | actions-suggestions.cc | 486 std::vector<float>* embeddings, int* max_num_tokens_per_message) const { in EmbedTokensPerMessage() argument 517 tokens[i][pos], embedding_executor_.get(), embeddings)) { in EmbedTokensPerMessage() 524 embeddings->insert(embeddings->end(), embedded_padding_token_.begin(), in EmbedTokensPerMessage() 534 std::vector<float>* embeddings, int* total_token_count) const { in EmbedAndFlattenTokens() argument 565 embeddings->insert(embeddings->end(), embedded_start_token_.begin(), in EmbedAndFlattenTokens() 573 tokens[i][pos], embedding_executor_.get(), embeddings)) { in EmbedAndFlattenTokens() 581 embeddings->insert(embeddings->end(), embedded_end_token_.begin(), in EmbedAndFlattenTokens() 592 embeddings->insert(embeddings->end(), embedded_padding_token_.begin(), in EmbedAndFlattenTokens()
|
D | actions-suggestions.h | 123 std::vector<float>* embeddings, 134 std::vector<float>* embeddings,
|
D | actions_model.fbs | 85 // embedding size) float tensor specifying the embeddings of each token of 109 // A (max tokens, embedding_size) float tensor specifying the embeddings of 152 // Serialized TensorFlow Lite model with weights for the token embeddings. 158 // Number of bits for quantization for embeddings.
|
/external/tensorflow/tensorflow/python/keras/layers/ |
D | embeddings.py | 142 self.embeddings = self.add_weight( 150 self.embeddings = self.add_weight( 193 if isinstance(self.embeddings, sharded_variable.ShardedVariable): 194 out = embedding_ops.embedding_lookup_v2(self.embeddings.variables, inputs) 196 out = embedding_ops.embedding_lookup_v2(self.embeddings, inputs)
|
D | recurrent_v2_test.py | 32 from tensorflow.python.keras.layers import embeddings 122 embedder = embeddings.Embedding(input_dim=vocab_size, output_dim=16)
|
D | serialization.py | 37 from tensorflow.python.keras.layers import embeddings 69 embeddings, einsum_dense, local, merge, noise, normalization,
|
D | embeddings_test.py | 145 layer.embeddings = sharded_variable.ShardedVariable(v)
|
/external/libtextclassifier/native/lang_id/common/flatbuffers/ |
D | embedding-network-params-from-flatbuffer.cc | 211 Matrix embeddings = GetEmbeddingMatrix(i); in ValidityChecking() local 212 if (!VerifyMatrix(embeddings, bytes)) { in ValidityChecking() 216 input_size += embedding_num_features(i) * embeddings.cols; in ValidityChecking()
|
D | model.fbs | 41 // parameters for a Neurosis FFNN with embeddings, or a word cluster structure,
|
/external/tensorflow/tensorflow/python/kernel_tests/ |
D | embedding_ops_test.py | 271 embeddings = constant_op.constant([[2.0]]) 275 [embeddings], ids, max_norm=1.0) 282 embeddings = constant_op.constant([[2.0, 4.0], [3.0, 1.0]]) 286 [embeddings], ids, max_norm=2.0) 289 math_ops.reduce_sum(embeddings * embeddings, axis=1)) 290 normalized = embeddings / array_ops.stack([norms, norms], axis=1) 647 embeddings = constant_op.constant([[2.0]]) 649 embedding = embedding_ops.embedding_lookup([embeddings], ids, max_norm=1.0)
|
/external/tensorflow/tensorflow/python/keras/mixed_precision/ |
D | layer_correctness_test.py | 35 from tensorflow.python.keras.layers import embeddings 108 ('Embedding', lambda: embeddings.Embedding(4, 4),
|
/external/tensorflow/tensorflow/core/api_def/base_api/ |
D | api_def_TPUEmbeddingActivations.pbtxt | 35 differentiation of graphs containing embeddings via the TPU Embedding Python
|
/external/tensorflow/tensorflow/lite/tools/optimize/testdata/ |
D | README.md | 30 of mapping categorical input to embeddings.
|
/external/tensorflow/tensorflow/python/keras/protobuf/ |
D | projector_config.proto | 46 repeated EmbeddingInfo embeddings = 2; field
|
/external/icu/icu4j/main/tests/core/src/com/ibm/icu/dev/test/bidi/ |
D | TestBidi.java | 582 byte[] embeddings = new byte[2]; // all 0 in testExplicitLevel0() 584 Bidi bidi = new Bidi(text.toCharArray(), 0, embeddings, 0, text.length(), flags); in testExplicitLevel0() 589 …java.text.Bidi jb = new java.text.Bidi(text.toCharArray(), 0, embeddings, 0, text.length(), flags); in testExplicitLevel0()
|
/external/icu/android_icu4j/src/main/tests/android/icu/dev/test/bidi/ |
D | TestBidi.java | 585 byte[] embeddings = new byte[2]; // all 0 in testExplicitLevel0() 587 Bidi bidi = new Bidi(text.toCharArray(), 0, embeddings, 0, text.length(), flags); in testExplicitLevel0() 592 …java.text.Bidi jb = new java.text.Bidi(text.toCharArray(), 0, embeddings, 0, text.length(), flags); in testExplicitLevel0()
|
/external/tensorflow/tensorflow/python/distribute/ |
D | custom_training_loop_input_test.py | 758 embeddings = array_ops.gather(embedding_weights, flat_inputs) 759 embeddings = array_ops.reshape(embeddings, inputs.shape.as_list() + [128]) 760 return embeddings
|
/external/tensorflow/tensorflow/lite/g3doc/models/text_classification/ |
D | overview.md | 113 * [Word embeddings and tutorial to train this model](https://www.tensorflow.org/tutorials/text/wo…
|