Home
last modified time | relevance | path

Searched refs:f_dim (Results 1 – 2 of 2) sorted by relevance

/external/tensorflow/tensorflow/core/kernels/boosted_trees/
Dstats_ops.cc436 for (int f_dim = 0; f_dim < feature_dims; ++f_dim) { in CalculateBestInequalitySplit() local
438 &stats_summary(node_id, f_dim, num_buckets, 0), in CalculateBestInequalitySplit()
449 total_grad[i] += stats_summary(node_id, f_dim, bucket, i); in CalculateBestInequalitySplit()
454 stats_summary(node_id, f_dim, bucket, logits_dim + i); in CalculateBestInequalitySplit()
477 total_hess - total_left_hess, logits_dim, bucket, f_dim, l1, l2, in CalculateBestInequalitySplit()
483 total_hess - cum_hess[bucket], logits_dim, bucket, f_dim, l1, l2, in CalculateBestInequalitySplit()
502 for (int f_dim = 0; f_dim < feature_dims; ++f_dim) { in CalculateBestEqualitySplit() local
504 ConstVectorMap stats_vec(&stats_summary(node_id, f_dim, bucket, 0), in CalculateBestEqualitySplit()
509 total_hess - curr_hess, logits_dim, bucket, f_dim, in CalculateBestEqualitySplit()
522 const int32 f_dim, const float l1, const float l2, in MaybeUpdateBestSplit() argument
[all …]
/external/tensorflow/tensorflow/python/kernel_tests/boosted_trees/
Dstats_ops_test.py256 f_dim = 0 # Both features only have one dimension.
257 self.assertAllEqual([f_dim] * 2, feature_dimensions)
400 f_dim = 0 # Both features only have one dimension.
401 self.assertAllEqual([f_dim, f_dim], feature_dimensions)
1536 for (instance, f_dim), bucket in zip(feature_indices, feature_values):
1538 dense_summary[node_id][f_dim][bucket] += np.concatenate(
1541 for instance, f_dim in missing_feature_indices:
1543 dense_summary[node_id][f_dim][num_buckets] += np.concatenate(