1// Protocol Buffers - Google's data interchange format 2// Copyright 2008 Google Inc. All rights reserved. 3// https://developers.google.com/protocol-buffers/ 4// 5// Redistribution and use in source and binary forms, with or without 6// modification, are permitted provided that the following conditions are 7// met: 8// 9// * Redistributions of source code must retain the above copyright 10// notice, this list of conditions and the following disclaimer. 11// * Redistributions in binary form must reproduce the above 12// copyright notice, this list of conditions and the following disclaimer 13// in the documentation and/or other materials provided with the 14// distribution. 15// * Neither the name of Google Inc. nor the names of its 16// contributors may be used to endorse or promote products derived from 17// this software without specific prior written permission. 18// 19// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 20// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 21// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 22// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 23// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 24// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 25// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 26// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 27// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 28// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 29// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 30 31/** 32 * @fileoverview This file contains helper code used by jspb.BinaryReader 33 * and BinaryWriter. 34 * 35 * @author aappleby@google.com (Austin Appleby) 36 */ 37 38goog.provide('jspb.utils'); 39 40goog.require('goog.asserts'); 41goog.require('goog.crypt'); 42goog.require('goog.crypt.base64'); 43goog.require('goog.string'); 44goog.require('jspb.BinaryConstants'); 45 46 47/** 48 * Javascript can't natively handle 64-bit data types, so to manipulate them we 49 * have to split them into two 32-bit halves and do the math manually. 50 * 51 * Instead of instantiating and passing small structures around to do this, we 52 * instead just use two global temporary values. This one stores the low 32 53 * bits of a split value - for example, if the original value was a 64-bit 54 * integer, this temporary value will contain the low 32 bits of that integer. 55 * If the original value was a double, this temporary value will contain the 56 * low 32 bits of the binary representation of that double, etcetera. 57 * @type {number} 58 */ 59jspb.utils.split64Low = 0; 60 61 62/** 63 * And correspondingly, this temporary variable will contain the high 32 bits 64 * of whatever value was split. 65 * @type {number} 66 */ 67jspb.utils.split64High = 0; 68 69 70/** 71 * Splits an unsigned Javascript integer into two 32-bit halves and stores it 72 * in the temp values above. 73 * @param {number} value The number to split. 74 */ 75jspb.utils.splitUint64 = function(value) { 76 // Extract low 32 bits and high 32 bits as unsigned integers. 77 var lowBits = value >>> 0; 78 var highBits = Math.floor((value - lowBits) / 79 jspb.BinaryConstants.TWO_TO_32) >>> 0; 80 81 jspb.utils.split64Low = lowBits; 82 jspb.utils.split64High = highBits; 83}; 84 85 86/** 87 * Splits a signed Javascript integer into two 32-bit halves and stores it in 88 * the temp values above. 89 * @param {number} value The number to split. 90 */ 91jspb.utils.splitInt64 = function(value) { 92 // Convert to sign-magnitude representation. 93 var sign = (value < 0); 94 value = Math.abs(value); 95 96 // Extract low 32 bits and high 32 bits as unsigned integers. 97 var lowBits = value >>> 0; 98 var highBits = Math.floor((value - lowBits) / 99 jspb.BinaryConstants.TWO_TO_32); 100 highBits = highBits >>> 0; 101 102 // Perform two's complement conversion if the sign bit was set. 103 if (sign) { 104 highBits = ~highBits >>> 0; 105 lowBits = ~lowBits >>> 0; 106 lowBits += 1; 107 if (lowBits > 0xFFFFFFFF) { 108 lowBits = 0; 109 highBits++; 110 if (highBits > 0xFFFFFFFF) highBits = 0; 111 } 112 } 113 114 jspb.utils.split64Low = lowBits; 115 jspb.utils.split64High = highBits; 116}; 117 118 119/** 120 * Convers a signed Javascript integer into zigzag format, splits it into two 121 * 32-bit halves, and stores it in the temp values above. 122 * @param {number} value The number to split. 123 */ 124jspb.utils.splitZigzag64 = function(value) { 125 // Convert to sign-magnitude and scale by 2 before we split the value. 126 var sign = (value < 0); 127 value = Math.abs(value) * 2; 128 129 jspb.utils.splitUint64(value); 130 var lowBits = jspb.utils.split64Low; 131 var highBits = jspb.utils.split64High; 132 133 // If the value is negative, subtract 1 from the split representation so we 134 // don't lose the sign bit due to precision issues. 135 if (sign) { 136 if (lowBits == 0) { 137 if (highBits == 0) { 138 lowBits = 0xFFFFFFFF; 139 highBits = 0xFFFFFFFF; 140 } else { 141 highBits--; 142 lowBits = 0xFFFFFFFF; 143 } 144 } else { 145 lowBits--; 146 } 147 } 148 149 jspb.utils.split64Low = lowBits; 150 jspb.utils.split64High = highBits; 151}; 152 153 154/** 155 * Converts a floating-point number into 32-bit IEEE representation and stores 156 * it in the temp values above. 157 * @param {number} value 158 */ 159jspb.utils.splitFloat32 = function(value) { 160 var sign = (value < 0) ? 1 : 0; 161 value = sign ? -value : value; 162 var exp; 163 var mant; 164 165 // Handle zeros. 166 if (value === 0) { 167 if ((1 / value) > 0) { 168 // Positive zero. 169 jspb.utils.split64High = 0; 170 jspb.utils.split64Low = 0x00000000; 171 } else { 172 // Negative zero. 173 jspb.utils.split64High = 0; 174 jspb.utils.split64Low = 0x80000000; 175 } 176 return; 177 } 178 179 // Handle nans. 180 if (isNaN(value)) { 181 jspb.utils.split64High = 0; 182 jspb.utils.split64Low = 0x7FFFFFFF; 183 return; 184 } 185 186 // Handle infinities. 187 if (value > jspb.BinaryConstants.FLOAT32_MAX) { 188 jspb.utils.split64High = 0; 189 jspb.utils.split64Low = ((sign << 31) | (0x7F800000)) >>> 0; 190 return; 191 } 192 193 // Handle denormals. 194 if (value < jspb.BinaryConstants.FLOAT32_MIN) { 195 // Number is a denormal. 196 mant = Math.round(value / Math.pow(2, -149)); 197 jspb.utils.split64High = 0; 198 jspb.utils.split64Low = ((sign << 31) | mant) >>> 0; 199 return; 200 } 201 202 exp = Math.floor(Math.log(value) / Math.LN2); 203 mant = value * Math.pow(2, -exp); 204 mant = Math.round(mant * jspb.BinaryConstants.TWO_TO_23) & 0x7FFFFF; 205 206 jspb.utils.split64High = 0; 207 jspb.utils.split64Low = ((sign << 31) | ((exp + 127) << 23) | mant) >>> 0; 208}; 209 210 211/** 212 * Converts a floating-point number into 64-bit IEEE representation and stores 213 * it in the temp values above. 214 * @param {number} value 215 */ 216jspb.utils.splitFloat64 = function(value) { 217 var sign = (value < 0) ? 1 : 0; 218 value = sign ? -value : value; 219 220 // Handle zeros. 221 if (value === 0) { 222 if ((1 / value) > 0) { 223 // Positive zero. 224 jspb.utils.split64High = 0x00000000; 225 jspb.utils.split64Low = 0x00000000; 226 } else { 227 // Negative zero. 228 jspb.utils.split64High = 0x80000000; 229 jspb.utils.split64Low = 0x00000000; 230 } 231 return; 232 } 233 234 // Handle nans. 235 if (isNaN(value)) { 236 jspb.utils.split64High = 0x7FFFFFFF; 237 jspb.utils.split64Low = 0xFFFFFFFF; 238 return; 239 } 240 241 // Handle infinities. 242 if (value > jspb.BinaryConstants.FLOAT64_MAX) { 243 jspb.utils.split64High = ((sign << 31) | (0x7FF00000)) >>> 0; 244 jspb.utils.split64Low = 0; 245 return; 246 } 247 248 // Handle denormals. 249 if (value < jspb.BinaryConstants.FLOAT64_MIN) { 250 // Number is a denormal. 251 var mant = value / Math.pow(2, -1074); 252 var mantHigh = (mant / jspb.BinaryConstants.TWO_TO_32); 253 jspb.utils.split64High = ((sign << 31) | mantHigh) >>> 0; 254 jspb.utils.split64Low = (mant >>> 0); 255 return; 256 } 257 258 var exp = Math.floor(Math.log(value) / Math.LN2); 259 if (exp == 1024) exp = 1023; 260 var mant = value * Math.pow(2, -exp); 261 262 var mantHigh = (mant * jspb.BinaryConstants.TWO_TO_20) & 0xFFFFF; 263 var mantLow = (mant * jspb.BinaryConstants.TWO_TO_52) >>> 0; 264 265 jspb.utils.split64High = 266 ((sign << 31) | ((exp + 1023) << 20) | mantHigh) >>> 0; 267 jspb.utils.split64Low = mantLow; 268}; 269 270 271/** 272 * Converts an 8-character hash string into two 32-bit numbers and stores them 273 * in the temp values above. 274 * @param {string} hash 275 */ 276jspb.utils.splitHash64 = function(hash) { 277 var a = hash.charCodeAt(0); 278 var b = hash.charCodeAt(1); 279 var c = hash.charCodeAt(2); 280 var d = hash.charCodeAt(3); 281 var e = hash.charCodeAt(4); 282 var f = hash.charCodeAt(5); 283 var g = hash.charCodeAt(6); 284 var h = hash.charCodeAt(7); 285 286 jspb.utils.split64Low = (a + (b << 8) + (c << 16) + (d << 24)) >>> 0; 287 jspb.utils.split64High = (e + (f << 8) + (g << 16) + (h << 24)) >>> 0; 288}; 289 290 291/** 292 * Joins two 32-bit values into a 64-bit unsigned integer. Precision will be 293 * lost if the result is greater than 2^52. 294 * @param {number} bitsLow 295 * @param {number} bitsHigh 296 * @return {number} 297 */ 298jspb.utils.joinUint64 = function(bitsLow, bitsHigh) { 299 return bitsHigh * jspb.BinaryConstants.TWO_TO_32 + bitsLow; 300}; 301 302 303/** 304 * Joins two 32-bit values into a 64-bit signed integer. Precision will be lost 305 * if the result is greater than 2^52. 306 * @param {number} bitsLow 307 * @param {number} bitsHigh 308 * @return {number} 309 */ 310jspb.utils.joinInt64 = function(bitsLow, bitsHigh) { 311 // If the high bit is set, do a manual two's complement conversion. 312 var sign = (bitsHigh & 0x80000000); 313 if (sign) { 314 bitsLow = (~bitsLow + 1) >>> 0; 315 bitsHigh = ~bitsHigh >>> 0; 316 if (bitsLow == 0) { 317 bitsHigh = (bitsHigh + 1) >>> 0; 318 } 319 } 320 321 var result = jspb.utils.joinUint64(bitsLow, bitsHigh); 322 return sign ? -result : result; 323}; 324 325 326/** 327 * Joins two 32-bit values into a 64-bit unsigned integer and applies zigzag 328 * decoding. Precision will be lost if the result is greater than 2^52. 329 * @param {number} bitsLow 330 * @param {number} bitsHigh 331 * @return {number} 332 */ 333jspb.utils.joinZigzag64 = function(bitsLow, bitsHigh) { 334 // Extract the sign bit and shift right by one. 335 var sign = bitsLow & 1; 336 bitsLow = ((bitsLow >>> 1) | (bitsHigh << 31)) >>> 0; 337 bitsHigh = bitsHigh >>> 1; 338 339 // Increment the split value if the sign bit was set. 340 if (sign) { 341 bitsLow = (bitsLow + 1) >>> 0; 342 if (bitsLow == 0) { 343 bitsHigh = (bitsHigh + 1) >>> 0; 344 } 345 } 346 347 var result = jspb.utils.joinUint64(bitsLow, bitsHigh); 348 return sign ? -result : result; 349}; 350 351 352/** 353 * Joins two 32-bit values into a 32-bit IEEE floating point number and 354 * converts it back into a Javascript number. 355 * @param {number} bitsLow The low 32 bits of the binary number; 356 * @param {number} bitsHigh The high 32 bits of the binary number. 357 * @return {number} 358 */ 359jspb.utils.joinFloat32 = function(bitsLow, bitsHigh) { 360 var sign = ((bitsLow >> 31) * 2 + 1); 361 var exp = (bitsLow >>> 23) & 0xFF; 362 var mant = bitsLow & 0x7FFFFF; 363 364 if (exp == 0xFF) { 365 if (mant) { 366 return NaN; 367 } else { 368 return sign * Infinity; 369 } 370 } 371 372 if (exp == 0) { 373 // Denormal. 374 return sign * Math.pow(2, -149) * mant; 375 } else { 376 return sign * Math.pow(2, exp - 150) * 377 (mant + Math.pow(2, 23)); 378 } 379}; 380 381 382/** 383 * Joins two 32-bit values into a 64-bit IEEE floating point number and 384 * converts it back into a Javascript number. 385 * @param {number} bitsLow The low 32 bits of the binary number; 386 * @param {number} bitsHigh The high 32 bits of the binary number. 387 * @return {number} 388 */ 389jspb.utils.joinFloat64 = function(bitsLow, bitsHigh) { 390 var sign = ((bitsHigh >> 31) * 2 + 1); 391 var exp = (bitsHigh >>> 20) & 0x7FF; 392 var mant = jspb.BinaryConstants.TWO_TO_32 * (bitsHigh & 0xFFFFF) + bitsLow; 393 394 if (exp == 0x7FF) { 395 if (mant) { 396 return NaN; 397 } else { 398 return sign * Infinity; 399 } 400 } 401 402 if (exp == 0) { 403 // Denormal. 404 return sign * Math.pow(2, -1074) * mant; 405 } else { 406 return sign * Math.pow(2, exp - 1075) * 407 (mant + jspb.BinaryConstants.TWO_TO_52); 408 } 409}; 410 411 412/** 413 * Joins two 32-bit values into an 8-character hash string. 414 * @param {number} bitsLow 415 * @param {number} bitsHigh 416 * @return {string} 417 */ 418jspb.utils.joinHash64 = function(bitsLow, bitsHigh) { 419 var a = (bitsLow >>> 0) & 0xFF; 420 var b = (bitsLow >>> 8) & 0xFF; 421 var c = (bitsLow >>> 16) & 0xFF; 422 var d = (bitsLow >>> 24) & 0xFF; 423 var e = (bitsHigh >>> 0) & 0xFF; 424 var f = (bitsHigh >>> 8) & 0xFF; 425 var g = (bitsHigh >>> 16) & 0xFF; 426 var h = (bitsHigh >>> 24) & 0xFF; 427 428 return String.fromCharCode(a, b, c, d, e, f, g, h); 429}; 430 431 432/** 433 * Individual digits for number->string conversion. 434 * @const {!Array<string>} 435 */ 436jspb.utils.DIGITS = [ 437 '0', '1', '2', '3', '4', '5', '6', '7', 438 '8', '9', 'a', 'b', 'c', 'd', 'e', 'f' 439]; 440 441 442/** 443 * Losslessly converts a 64-bit unsigned integer in 32:32 split representation 444 * into a decimal string. 445 * @param {number} bitsLow The low 32 bits of the binary number; 446 * @param {number} bitsHigh The high 32 bits of the binary number. 447 * @return {string} The binary number represented as a string. 448 */ 449jspb.utils.joinUnsignedDecimalString = function(bitsLow, bitsHigh) { 450 // Skip the expensive conversion if the number is small enough to use the 451 // built-in conversions. 452 if (bitsHigh <= 0x1FFFFF) { 453 return '' + (jspb.BinaryConstants.TWO_TO_32 * bitsHigh + bitsLow); 454 } 455 456 // What this code is doing is essentially converting the input number from 457 // base-2 to base-1e7, which allows us to represent the 64-bit range with 458 // only 3 (very large) digits. Those digits are then trivial to convert to 459 // a base-10 string. 460 461 // The magic numbers used here are - 462 // 2^24 = 16777216 = (1,6777216) in base-1e7. 463 // 2^48 = 281474976710656 = (2,8147497,6710656) in base-1e7. 464 465 // Split 32:32 representation into 16:24:24 representation so our 466 // intermediate digits don't overflow. 467 var low = bitsLow & 0xFFFFFF; 468 var mid = (((bitsLow >>> 24) | (bitsHigh << 8)) >>> 0) & 0xFFFFFF; 469 var high = (bitsHigh >> 16) & 0xFFFF; 470 471 // Assemble our three base-1e7 digits, ignoring carries. The maximum 472 // value in a digit at this step is representable as a 48-bit integer, which 473 // can be stored in a 64-bit floating point number. 474 var digitA = low + (mid * 6777216) + (high * 6710656); 475 var digitB = mid + (high * 8147497); 476 var digitC = (high * 2); 477 478 // Apply carries from A to B and from B to C. 479 var base = 10000000; 480 if (digitA >= base) { 481 digitB += Math.floor(digitA / base); 482 digitA %= base; 483 } 484 485 if (digitB >= base) { 486 digitC += Math.floor(digitB / base); 487 digitB %= base; 488 } 489 490 // Convert base-1e7 digits to base-10, omitting leading zeroes. 491 var table = jspb.utils.DIGITS; 492 var start = false; 493 var result = ''; 494 495 function emit(digit) { 496 var temp = base; 497 for (var i = 0; i < 7; i++) { 498 temp /= 10; 499 var decimalDigit = ((digit / temp) % 10) >>> 0; 500 if ((decimalDigit == 0) && !start) continue; 501 start = true; 502 result += table[decimalDigit]; 503 } 504 } 505 506 if (digitC || start) emit(digitC); 507 if (digitB || start) emit(digitB); 508 if (digitA || start) emit(digitA); 509 510 return result; 511}; 512 513 514/** 515 * Losslessly converts a 64-bit signed integer in 32:32 split representation 516 * into a decimal string. 517 * @param {number} bitsLow The low 32 bits of the binary number; 518 * @param {number} bitsHigh The high 32 bits of the binary number. 519 * @return {string} The binary number represented as a string. 520 */ 521jspb.utils.joinSignedDecimalString = function(bitsLow, bitsHigh) { 522 // If we're treating the input as a signed value and the high bit is set, do 523 // a manual two's complement conversion before the decimal conversion. 524 var negative = (bitsHigh & 0x80000000); 525 if (negative) { 526 bitsLow = (~bitsLow + 1) >>> 0; 527 var carry = (bitsLow == 0) ? 1 : 0; 528 bitsHigh = (~bitsHigh + carry) >>> 0; 529 } 530 531 var result = jspb.utils.joinUnsignedDecimalString(bitsLow, bitsHigh); 532 return negative ? '-' + result : result; 533}; 534 535 536/** 537 * Convert an 8-character hash string representing either a signed or unsigned 538 * 64-bit integer into its decimal representation without losing accuracy. 539 * @param {string} hash The hash string to convert. 540 * @param {boolean} signed True if we should treat the hash string as encoding 541 * a signed integer. 542 * @return {string} 543 */ 544jspb.utils.hash64ToDecimalString = function(hash, signed) { 545 jspb.utils.splitHash64(hash); 546 var bitsLow = jspb.utils.split64Low; 547 var bitsHigh = jspb.utils.split64High; 548 return signed ? 549 jspb.utils.joinSignedDecimalString(bitsLow, bitsHigh) : 550 jspb.utils.joinUnsignedDecimalString(bitsLow, bitsHigh); 551}; 552 553 554/** 555 * Converts an array of 8-character hash strings into their decimal 556 * representations. 557 * @param {!Array<string>} hashes The array of hash strings to convert. 558 * @param {boolean} signed True if we should treat the hash string as encoding 559 * a signed integer. 560 * @return {!Array<string>} 561 */ 562jspb.utils.hash64ArrayToDecimalStrings = function(hashes, signed) { 563 var result = new Array(hashes.length); 564 for (var i = 0; i < hashes.length; i++) { 565 result[i] = jspb.utils.hash64ToDecimalString(hashes[i], signed); 566 } 567 return result; 568}; 569 570 571/** 572 * Converts a signed or unsigned decimal string into its hash string 573 * representation. 574 * @param {string} dec 575 * @return {string} 576 */ 577jspb.utils.decimalStringToHash64 = function(dec) { 578 goog.asserts.assert(dec.length > 0); 579 580 // Check for minus sign. 581 var minus = false; 582 if (dec[0] === '-') { 583 minus = true; 584 dec = dec.slice(1); 585 } 586 587 // Store result as a byte array. 588 var resultBytes = [0, 0, 0, 0, 0, 0, 0, 0]; 589 590 // Set result to m*result + c. 591 function muladd(m, c) { 592 for (var i = 0; i < 8 && (m !== 1 || c > 0); i++) { 593 var r = m * resultBytes[i] + c; 594 resultBytes[i] = r & 0xFF; 595 c = r >>> 8; 596 } 597 } 598 599 // Negate the result bits. 600 function neg() { 601 for (var i = 0; i < 8; i++) { 602 resultBytes[i] = (~resultBytes[i]) & 0xFF; 603 } 604 } 605 606 // For each decimal digit, set result to 10*result + digit. 607 for (var i = 0; i < dec.length; i++) { 608 muladd(10, jspb.utils.DIGITS.indexOf(dec[i])); 609 } 610 611 // If there's a minus sign, convert into two's complement. 612 if (minus) { 613 neg(); 614 muladd(1, 1); 615 } 616 617 return goog.crypt.byteArrayToString(resultBytes); 618}; 619 620 621/** 622 * Converts a signed or unsigned decimal string into two 32-bit halves, and 623 * stores them in the temp variables listed above. 624 * @param {string} value The decimal string to convert. 625 */ 626jspb.utils.splitDecimalString = function(value) { 627 jspb.utils.splitHash64(jspb.utils.decimalStringToHash64(value)); 628}; 629 630 631/** 632 * Converts an 8-character hash string into its hexadecimal representation. 633 * @param {string} hash 634 * @return {string} 635 */ 636jspb.utils.hash64ToHexString = function(hash) { 637 var temp = new Array(18); 638 temp[0] = '0'; 639 temp[1] = 'x'; 640 641 for (var i = 0; i < 8; i++) { 642 var c = hash.charCodeAt(7 - i); 643 temp[i * 2 + 2] = jspb.utils.DIGITS[c >> 4]; 644 temp[i * 2 + 3] = jspb.utils.DIGITS[c & 0xF]; 645 } 646 647 var result = temp.join(''); 648 return result; 649}; 650 651 652/** 653 * Converts a '0x<16 digits>' hex string into its hash string representation. 654 * @param {string} hex 655 * @return {string} 656 */ 657jspb.utils.hexStringToHash64 = function(hex) { 658 hex = hex.toLowerCase(); 659 goog.asserts.assert(hex.length == 18); 660 goog.asserts.assert(hex[0] == '0'); 661 goog.asserts.assert(hex[1] == 'x'); 662 663 var result = ''; 664 for (var i = 0; i < 8; i++) { 665 var hi = jspb.utils.DIGITS.indexOf(hex[i * 2 + 2]); 666 var lo = jspb.utils.DIGITS.indexOf(hex[i * 2 + 3]); 667 result = String.fromCharCode(hi * 16 + lo) + result; 668 } 669 670 return result; 671}; 672 673 674/** 675 * Convert an 8-character hash string representing either a signed or unsigned 676 * 64-bit integer into a Javascript number. Will lose accuracy if the result is 677 * larger than 2^52. 678 * @param {string} hash The hash string to convert. 679 * @param {boolean} signed True if the has should be interpreted as a signed 680 * number. 681 * @return {number} 682 */ 683jspb.utils.hash64ToNumber = function(hash, signed) { 684 jspb.utils.splitHash64(hash); 685 var bitsLow = jspb.utils.split64Low; 686 var bitsHigh = jspb.utils.split64High; 687 return signed ? jspb.utils.joinInt64(bitsLow, bitsHigh) : 688 jspb.utils.joinUint64(bitsLow, bitsHigh); 689}; 690 691 692/** 693 * Convert a Javascript number into an 8-character hash string. Will lose 694 * precision if the value is non-integral or greater than 2^64. 695 * @param {number} value The integer to convert. 696 * @return {string} 697 */ 698jspb.utils.numberToHash64 = function(value) { 699 jspb.utils.splitInt64(value); 700 return jspb.utils.joinHash64(jspb.utils.split64Low, 701 jspb.utils.split64High); 702}; 703 704 705/** 706 * Counts the number of contiguous varints in a buffer. 707 * @param {!Uint8Array} buffer The buffer to scan. 708 * @param {number} start The starting point in the buffer to scan. 709 * @param {number} end The end point in the buffer to scan. 710 * @return {number} The number of varints in the buffer. 711 */ 712jspb.utils.countVarints = function(buffer, start, end) { 713 // Count how many high bits of each byte were set in the buffer. 714 var count = 0; 715 for (var i = start; i < end; i++) { 716 count += buffer[i] >> 7; 717 } 718 719 // The number of varints in the buffer equals the size of the buffer minus 720 // the number of non-terminal bytes in the buffer (those with the high bit 721 // set). 722 return (end - start) - count; 723}; 724 725 726/** 727 * Counts the number of contiguous varint fields with the given field number in 728 * the buffer. 729 * @param {!Uint8Array} buffer The buffer to scan. 730 * @param {number} start The starting point in the buffer to scan. 731 * @param {number} end The end point in the buffer to scan. 732 * @param {number} field The field number to count. 733 * @return {number} The number of matching fields in the buffer. 734 */ 735jspb.utils.countVarintFields = function(buffer, start, end, field) { 736 var count = 0; 737 var cursor = start; 738 var tag = field * 8 + jspb.BinaryConstants.WireType.VARINT; 739 740 if (tag < 128) { 741 // Single-byte field tag, we can use a slightly quicker count. 742 while (cursor < end) { 743 // Skip the field tag, or exit if we find a non-matching tag. 744 if (buffer[cursor++] != tag) return count; 745 746 // Field tag matches, we've found a valid field. 747 count++; 748 749 // Skip the varint. 750 while (1) { 751 var x = buffer[cursor++]; 752 if ((x & 0x80) == 0) break; 753 } 754 } 755 } else { 756 while (cursor < end) { 757 // Skip the field tag, or exit if we find a non-matching tag. 758 var temp = tag; 759 while (temp > 128) { 760 if (buffer[cursor] != ((temp & 0x7F) | 0x80)) return count; 761 cursor++; 762 temp >>= 7; 763 } 764 if (buffer[cursor++] != temp) return count; 765 766 // Field tag matches, we've found a valid field. 767 count++; 768 769 // Skip the varint. 770 while (1) { 771 var x = buffer[cursor++]; 772 if ((x & 0x80) == 0) break; 773 } 774 } 775 } 776 return count; 777}; 778 779 780/** 781 * Counts the number of contiguous fixed32 fields with the given tag in the 782 * buffer. 783 * @param {!Uint8Array} buffer The buffer to scan. 784 * @param {number} start The starting point in the buffer to scan. 785 * @param {number} end The end point in the buffer to scan. 786 * @param {number} tag The tag value to count. 787 * @param {number} stride The number of bytes to skip per field. 788 * @return {number} The number of fields with a matching tag in the buffer. 789 * @private 790 */ 791jspb.utils.countFixedFields_ = 792 function(buffer, start, end, tag, stride) { 793 var count = 0; 794 var cursor = start; 795 796 if (tag < 128) { 797 // Single-byte field tag, we can use a slightly quicker count. 798 while (cursor < end) { 799 // Skip the field tag, or exit if we find a non-matching tag. 800 if (buffer[cursor++] != tag) return count; 801 802 // Field tag matches, we've found a valid field. 803 count++; 804 805 // Skip the value. 806 cursor += stride; 807 } 808 } else { 809 while (cursor < end) { 810 // Skip the field tag, or exit if we find a non-matching tag. 811 var temp = tag; 812 while (temp > 128) { 813 if (buffer[cursor++] != ((temp & 0x7F) | 0x80)) return count; 814 temp >>= 7; 815 } 816 if (buffer[cursor++] != temp) return count; 817 818 // Field tag matches, we've found a valid field. 819 count++; 820 821 // Skip the value. 822 cursor += stride; 823 } 824 } 825 return count; 826}; 827 828 829/** 830 * Counts the number of contiguous fixed32 fields with the given field number 831 * in the buffer. 832 * @param {!Uint8Array} buffer The buffer to scan. 833 * @param {number} start The starting point in the buffer to scan. 834 * @param {number} end The end point in the buffer to scan. 835 * @param {number} field The field number to count. 836 * @return {number} The number of matching fields in the buffer. 837 */ 838jspb.utils.countFixed32Fields = function(buffer, start, end, field) { 839 var tag = field * 8 + jspb.BinaryConstants.WireType.FIXED32; 840 return jspb.utils.countFixedFields_(buffer, start, end, tag, 4); 841}; 842 843 844/** 845 * Counts the number of contiguous fixed64 fields with the given field number 846 * in the buffer. 847 * @param {!Uint8Array} buffer The buffer to scan. 848 * @param {number} start The starting point in the buffer to scan. 849 * @param {number} end The end point in the buffer to scan. 850 * @param {number} field The field number to count 851 * @return {number} The number of matching fields in the buffer. 852 */ 853jspb.utils.countFixed64Fields = function(buffer, start, end, field) { 854 var tag = field * 8 + jspb.BinaryConstants.WireType.FIXED64; 855 return jspb.utils.countFixedFields_(buffer, start, end, tag, 8); 856}; 857 858 859/** 860 * Counts the number of contiguous delimited fields with the given field number 861 * in the buffer. 862 * @param {!Uint8Array} buffer The buffer to scan. 863 * @param {number} start The starting point in the buffer to scan. 864 * @param {number} end The end point in the buffer to scan. 865 * @param {number} field The field number to count. 866 * @return {number} The number of matching fields in the buffer. 867 */ 868jspb.utils.countDelimitedFields = function(buffer, start, end, field) { 869 var count = 0; 870 var cursor = start; 871 var tag = field * 8 + jspb.BinaryConstants.WireType.DELIMITED; 872 873 while (cursor < end) { 874 // Skip the field tag, or exit if we find a non-matching tag. 875 var temp = tag; 876 while (temp > 128) { 877 if (buffer[cursor++] != ((temp & 0x7F) | 0x80)) return count; 878 temp >>= 7; 879 } 880 if (buffer[cursor++] != temp) return count; 881 882 // Field tag matches, we've found a valid field. 883 count++; 884 885 // Decode the length prefix. 886 var length = 0; 887 var shift = 1; 888 while (1) { 889 temp = buffer[cursor++]; 890 length += (temp & 0x7f) * shift; 891 shift *= 128; 892 if ((temp & 0x80) == 0) break; 893 } 894 895 // Advance the cursor past the blob. 896 cursor += length; 897 } 898 return count; 899}; 900 901 902/** 903 * String-ify bytes for text format. Should be optimized away in non-debug. 904 * The returned string uses \xXX escapes for all values and is itself quoted. 905 * [1, 31] serializes to '"\x01\x1f"'. 906 * @param {jspb.ByteSource} byteSource The bytes to serialize. 907 * @return {string} Stringified bytes for text format. 908 */ 909jspb.utils.debugBytesToTextFormat = function(byteSource) { 910 var s = '"'; 911 if (byteSource) { 912 var bytes = jspb.utils.byteSourceToUint8Array(byteSource); 913 for (var i = 0; i < bytes.length; i++) { 914 s += '\\x'; 915 if (bytes[i] < 16) s += '0'; 916 s += bytes[i].toString(16); 917 } 918 } 919 return s + '"'; 920}; 921 922 923/** 924 * String-ify a scalar for text format. Should be optimized away in non-debug. 925 * @param {string|number|boolean} scalar The scalar to stringify. 926 * @return {string} Stringified scalar for text format. 927 */ 928jspb.utils.debugScalarToTextFormat = function(scalar) { 929 if (goog.isString(scalar)) { 930 return goog.string.quote(scalar); 931 } else { 932 return scalar.toString(); 933 } 934}; 935 936 937/** 938 * Utility function: convert a string with codepoints 0--255 inclusive to a 939 * Uint8Array. If any codepoints greater than 255 exist in the string, throws an 940 * exception. 941 * @param {string} str 942 * @return {!Uint8Array} 943 */ 944jspb.utils.stringToByteArray = function(str) { 945 var arr = new Uint8Array(str.length); 946 for (var i = 0; i < str.length; i++) { 947 var codepoint = str.charCodeAt(i); 948 if (codepoint > 255) { 949 throw new Error('Conversion error: string contains codepoint ' + 950 'outside of byte range'); 951 } 952 arr[i] = codepoint; 953 } 954 return arr; 955}; 956 957 958/** 959 * Converts any type defined in jspb.ByteSource into a Uint8Array. 960 * @param {!jspb.ByteSource} data 961 * @return {!Uint8Array} 962 * @suppress {invalidCasts} 963 */ 964jspb.utils.byteSourceToUint8Array = function(data) { 965 if (data.constructor === Uint8Array) { 966 return /** @type {!Uint8Array} */(data); 967 } 968 969 if (data.constructor === ArrayBuffer) { 970 data = /** @type {!ArrayBuffer} */(data); 971 return /** @type {!Uint8Array} */(new Uint8Array(data)); 972 } 973 974 if (typeof Buffer != 'undefined' && data.constructor === Buffer) { 975 return /** @type {!Uint8Array} */ ( 976 new Uint8Array(/** @type {?} */ (data))); 977 } 978 979 if (data.constructor === Array) { 980 data = /** @type {!Array<number>} */(data); 981 return /** @type {!Uint8Array} */(new Uint8Array(data)); 982 } 983 984 if (data.constructor === String) { 985 data = /** @type {string} */(data); 986 return goog.crypt.base64.decodeStringToUint8Array(data); 987 } 988 989 goog.asserts.fail('Type not convertible to Uint8Array.'); 990 return /** @type {!Uint8Array} */(new Uint8Array(0)); 991}; 992