Home
last modified time | relevance | path

Searched refs:img_dim (Results 1 – 4 of 4) sorted by relevance

/external/OpenCL-CTS/test_conformance/mem_host_flags/
Dmem_host_image.cpp34 size_t array_size, size_t *img_dim) in test_mem_host_read_only_RW_Image() argument
44 checker.m_cl_Image_desc.image_width = img_dim[0]; in test_mem_host_read_only_RW_Image()
45 checker.m_cl_Image_desc.image_height = img_dim[1]; in test_mem_host_read_only_RW_Image()
46 checker.m_cl_Image_desc.image_depth = img_dim[2]; in test_mem_host_read_only_RW_Image()
65 size_t array_size, size_t *img_dim) in test_mem_host_read_only_RW_Image_Mapping() argument
75 checker.m_cl_Image_desc.image_width = img_dim[0]; in test_mem_host_read_only_RW_Image_Mapping()
76 checker.m_cl_Image_desc.image_height = img_dim[1]; in test_mem_host_read_only_RW_Image_Mapping()
77 checker.m_cl_Image_desc.image_depth = img_dim[2]; in test_mem_host_read_only_RW_Image_Mapping()
146 size_t array_size, size_t *img_dim) in test_MEM_HOST_WRIE_ONLY_Image_RW() argument
156 checker.m_cl_Image_desc.image_width = img_dim[0]; in test_MEM_HOST_WRIE_ONLY_Image_RW()
[all …]
/external/tensorflow/tensorflow/python/keras/integration_test/
Dgradient_checkpoint_test.py29 def _get_big_cnn_model(img_dim, n_channels, num_partitions, argument
33 model.add(layers.Input(shape=(img_dim, img_dim, n_channels)))
48 def _get_split_cnn_model(img_dim, n_channels, num_partitions, argument
52 models[0].add(layers.Input(shape=(img_dim, img_dim, n_channels)))
88 def _get_dummy_data(img_dim, n_channels, batch_size): argument
89 inputs = tf.ones([batch_size, img_dim, img_dim, n_channels])
96 img_dim, n_channels, batch_size = 256, 1, 4
97 x, y = _get_dummy_data(img_dim, n_channels, batch_size)
99 img_dim, n_channels, num_partitions=3, blocks_per_partition=2)
116 img_dim, n_channels, batch_size = 256, 1, 4
[all …]
/external/tensorflow/tensorflow/python/keras/applications/
Dimagenet_utils.py398 img_dim = 2 if backend.image_data_format() == 'channels_first' else 1
399 input_size = backend.int_shape(inputs)[img_dim:(img_dim + 2)]
Dnasnet.py551 img_dim = 2 if backend.image_data_format() == 'channels_first' else -2
562 elif p_shape[img_dim] != ip_shape[img_dim]: