/external/tensorflow/tensorflow/core/kernels/ |
D | deep_conv2d.cc | 49 int out_tile_rows, int out_tile_cols, int in_depth, in GetDeepConvCost() argument 54 input_tile_spatial_size * input_tile_spatial_size * in_depth; in GetDeepConvCost() 57 const int64 product_cost = input_tile_spatial_size * in_depth * out_depth; in GetDeepConvCost() 74 static int64 GetDirectConvCost(int filter_rows, int filter_cols, int in_depth, in GetDirectConvCost() argument 76 return filter_rows * filter_cols * in_depth * out_depth * out_rows * out_cols; in GetDirectConvCost() 98 int filter_cols, int in_depth, int out_depth, in CanUseDeepConv2D() argument 117 t.output_shape().cols, in_depth, out_depth, out_rows, out_cols); in CanUseDeepConv2D() 119 filter_rows, filter_cols, in_depth, out_depth, out_rows, out_cols); in CanUseDeepConv2D() 146 const int64 vectorized_size = args.in_depth / kPacketSize; in operator ()() 147 const int64 scalar_size = args.in_depth % kPacketSize; in operator ()() [all …]
|
D | depthwise_conv_op_gpu.h | 93 const int in_depth = args.in_depth; 139 in_depth * (in_col + in_width * (in_row + input_offset_temp)); 143 (in_channel + in_depth * (filter_col + filter_offset_temp)); 162 in_depth * (in_col + in_width * (in_row + input_offset_temp)); 166 (in_channel + in_depth * (filter_col + filter_offset_temp)); 204 const int in_depth = args.in_depth; 219 const int in_row_size = in_width * in_depth; 230 const int batch_blocks = (in_depth + kBlockDepth - 1) / kBlockDepth; 250 const int tensor_idx = thread_pix * in_depth + thread_depth; 260 const int max_channel = in_depth - thread_depth; [all …]
|
D | depthwise_conv_op.h | 30 int in_depth; member 47 in_depth(0), in DepthwiseArgs() 201 (args.in_depth / kPacketSize) * kPacketSize; 202 const int64 input_scalar_size = args.in_depth - input_vectorized_size; 227 input + (in_r * args.in_cols + in_c) * args.in_depth; 228 int64 limit = args.in_depth; 246 for (int64 d = limit; d < args.in_depth; d++) { 281 input + (in_r * args.in_cols + in_c) * args.in_depth; 283 for (int64 d = 0; d < args.in_depth; d++) { 314 input + (in_r * args.in_cols + in_c) * args.in_depth;
|
D | conv_ops_benchmark_test.cc | 76 static Conv2DGraph Conv2D(int batch, int height, int width, int in_depth, in Conv2D() argument 82 ? MakeRandomTensor<T>({batch, height, width, in_depth}) in Conv2D() 83 : MakeRandomTensor<T>({batch, in_depth, height, width}); in Conv2D() 87 MakeRandomTensor<T>({filter_w, filter_h, in_depth, out_depth}); in Conv2D() 108 int batch, int height, int width, int in_depth, int filter_w, int filter_h, in Conv2DWithBias() argument 110 Conv2DGraph conv_graph = Conv2D<T>(batch, height, width, in_depth, filter_w, in Conv2DWithBias() 134 int batch, int height, int width, int in_depth, int filter_w, int filter_h, in Conv2DWithBiasAndActivation() argument 138 Conv2DWithBias<T>(batch, height, width, in_depth, filter_w, filter_h, in Conv2DWithBiasAndActivation() 157 int batch, int height, int width, int in_depth, int filter_w, int filter_h, in Conv2DWithBatchNorm() argument 159 Conv2DGraph conv_graph = Conv2D<T>(batch, height, width, in_depth, filter_w, in Conv2DWithBatchNorm() [all …]
|
D | depthwise_conv_grad_op.cc | 103 const int64 in_depth = GetTensorDim(input_shape, data_format_, 'C'); \ 104 OP_REQUIRES(context, in_depth == filter_shape.dim_size(2), \ 116 context, (depth_multiplier * in_depth) == out_depth, \ 148 args.in_depth = in_depth; \ 159 << input_rows << ", " << input_cols << ", " << in_depth \ 161 << in_depth << ", " << depth_multiplier << "]; stride = " << stride \ 296 const int64 in_depth = args.in_depth; in ComputeBackpropInput() local 306 const int64 base_output_index = (in_r * args.in_cols + in_c) * in_depth; in ComputeBackpropInput() 363 for (int64 d = 0; d < in_depth; ++d) { in ComputeBackpropInput() 422 args.in_rows * args.in_cols * args.in_depth; in operator ()() [all …]
|
D | depthwise_conv_op.cc | 196 args.in_rows * args.in_cols * args.in_depth; in operator ()() 343 const int64 in_depth = GetTensorDim(input, data_format_, 'C'); in Compute() local 344 OP_REQUIRES(context, in_depth == filter.dim_size(2), in Compute() 346 "input and filter must have the same depth: ", in_depth, in Compute() 353 const int32 out_depth = in_depth * depth_multiplier; in Compute() 409 (in_depth == 1 || in Compute() 413 /*in_depth=*/in_depth, in Compute() 418 << ", " << in_depth << "]; Filter: [" << filter_rows << ", " in Compute() 419 << filter_cols << ", " << in_depth << ", " << depth_multiplier in Compute() 455 args.in_depth = in_depth; in Compute()
|
D | deep_conv2d.h | 72 int in_depth; member 87 in_depth(0), in Conv2DArgs() 101 int filter_cols, int in_depth, int out_depth,
|
D | conv_ops.cc | 158 const int64 in_depth = GetTensorDim(input, data_format, 'C'); in operator ()() local 159 OP_REQUIRES(ctx, in_depth == filter.dim_size(2), in operator ()() 164 in_depth, " does not match the filter input depth of ", in operator ()() 196 const int64 in_depth = GetTensorDim(input, data_format, 'C'); in operator ()() local 197 OP_REQUIRES(ctx, in_depth == filter.dim_size(2), in operator ()() 202 in_depth, " does not match the filter input depth of ", in operator ()() 223 int input_cols, int in_depth, int filter_rows, in Run() argument 239 int input_cols, int in_depth, int filter_rows, in Run() argument 247 in_depth, out_depth, out_rows, out_cols)) { in Run() 255 args.in_depth = in_depth; in Run() [all …]
|
D | eigen_spatial_convolutions_test.cc | 669 const int in_depth = 5; in TEST() local 678 const int out_depth = in_depth; in TEST() 682 Tensor<float, 4> input(in_channels, in_depth, in_rows, in_cols); in TEST() 711 c - off_c + k >= 0 && p - off_p + i < in_depth && in TEST() 730 const int in_depth = 5; in TEST() local 739 const int out_depth = in_depth; in TEST() 743 Tensor<float, 4, RowMajor> input(in_cols, in_rows, in_depth, in_channels); in TEST() 773 c - off_c + k >= 0 && p - off_p + i < in_depth && in TEST() 792 const int in_depth = 5; in TEST() local 805 Tensor<float, 4> input(in_channels, in_depth, in_rows, in_cols); in TEST() [all …]
|
D | conv_grad_filter_ops_benchmark_test.cc | 41 int in_depth, int filter_h, int filter_w, in Conv2DBackpropFilter() argument 47 ? MakeRandomTensor<T>({batch, height, width, in_depth}) in Conv2DBackpropFilter() 48 : MakeRandomTensor<T>({batch, in_depth, height, width}); in Conv2DBackpropFilter() 50 MakeRandomTensor<T>({filter_h, filter_w, in_depth, out_depth}); in Conv2DBackpropFilter() 72 filter_dims_t.flat<int32>()(2) = in_depth; in Conv2DBackpropFilter()
|
D | conv_ops_3d.cc | 139 const int64 in_depth = GetTensorDim(input, data_format_, 'C'); in Compute() local 145 OP_REQUIRES(context, in_depth % filter_depth == 0, in Compute() 148 in_depth, " vs ", filter_depth)); in Compute() 226 const int64 in_depth = GetTensorDim(input, data_format, 'C'); in launch() local 248 bool is_grouped_convolution = filter_depth != in_depth; in launch() 257 const uint64 k = in_depth; in launch() 284 const uint64 k = in_planes * in_rows * in_cols * in_depth; in launch() 324 in_depth); in launch() 358 FORMAT_NCHW, in_batch, {{in_planes, in_rows, in_cols}}, in_depth); in launch() 359 if (in_depth > 1) { in launch() [all …]
|
D | conv_grad_ops_3d.cc | 388 dims.spatial_dims[2].filter_size * dims.in_depth; in Compute() 463 dims.spatial_dims[2].input_size * dims.in_depth; in Compute() 502 Col2im<T>(col_buffer_data, dims.in_depth, in Compute() 555 Col2im<T>(im2col_buf, dims.in_depth, in Compute() 856 dims.spatial_dims[2].filter_size * dims.in_depth; in Compute() 925 dims.spatial_dims[2].input_size * dims.in_depth; in Compute() 968 Im2col<T>(input_data_shard, dims.in_depth, in Compute() 1180 bool is_grouped_convolution = filter_shape.dim_size(3) != dims.in_depth; in Compute() 1189 const uint64 n = dims.in_depth; in Compute() 1219 dims.input_size(2) * dims.in_depth; in Compute() [all …]
|
D | conv_grad_input_ops_benchmark_test.cc | 40 int in_depth, int filter_h, int filter_w, in Conv2DBackpropInput() argument 46 ? MakeRandomTensor<T>({batch, height, width, in_depth}) in Conv2DBackpropInput() 47 : MakeRandomTensor<T>({batch, in_depth, height, width}); in Conv2DBackpropInput() 49 MakeRandomTensor<T>({filter_w, filter_h, in_depth, out_depth}); in Conv2DBackpropInput()
|
/external/tensorflow/tensorflow/lite/kernels/internal/optimized/ |
D | im2col_utils.h | 32 int in_depth, int single_buffer_length, in ExtractPatchIntoBufferColumn() argument 39 const int kwidth_times_indepth = kwidth * in_depth; in ExtractPatchIntoBufferColumn() 40 const int inwidth_times_indepth = in_width * in_depth; in ExtractPatchIntoBufferColumn() 54 std::min(kwidth - w_offset, in_width - iw_start) * in_depth; in ExtractPatchIntoBufferColumn() 57 output_row_offset + (h_offset * kwidth + w_offset) * in_depth; in ExtractPatchIntoBufferColumn() 66 ((kwidth - (left_padding + right_padding)) * in_depth)); in ExtractPatchIntoBufferColumn() 71 const int top_row_elements = (top_padding * kwidth * in_depth); in ExtractPatchIntoBufferColumn() 88 const int left_start = (out_offset - (left_padding * in_depth)); in ExtractPatchIntoBufferColumn() 90 (left_padding * in_depth * sizeof(T))); in ExtractPatchIntoBufferColumn() 97 (right_padding * in_depth * sizeof(T))); in ExtractPatchIntoBufferColumn() [all …]
|
/external/tensorflow/tensorflow/python/kernel_tests/ |
D | conv_ops_3d_test.py | 464 self, batch, input_shape, filter_shape, in_depth, out_depth, stride, argument 470 input_shape = [batch, input_planes, input_rows, input_cols, in_depth] 472 filter_planes, filter_rows, filter_cols, in_depth, out_depth 567 in_depth=2, 579 in_depth=2, 591 in_depth=2, 603 in_depth=2, 615 in_depth=2, 627 in_depth=2, 639 in_depth=2, [all …]
|
D | conv_ops_test.py | 862 in_depth=4, 884 in_depth=4, 1856 in_depth, argument 1866 assert in_depth % num_groups == 0 and out_depth % num_groups == 0 1867 input_shape = [batch, input_rows, input_cols, in_depth] 1868 filter_shape = [filter_rows, filter_cols, in_depth // num_groups, out_depth] 1950 in_depth=2, 1968 in_depth=2, 1986 in_depth=2, 2004 in_depth=2, [all …]
|
/external/tensorflow/tensorflow/core/kernels/neon/ |
D | neon_depthwise_conv_op.cc | 73 const int32 in_depth = input.dim_size(3); in Compute() local 74 OP_REQUIRES(context, in_depth == filter.dim_size(2), in Compute() 76 "input and filter must have the same depth: ", in_depth, in Compute() 86 const int32 out_depth = in_depth * depth_multiplier; in Compute() 111 << ", " << in_depth << "]; Filter: [" << filter_rows << ", " in Compute() 112 << filter_cols << ", " << in_depth << ", " << depth_multiplier in Compute()
|
/external/tensorflow/tensorflow/lite/kernels/ |
D | padding.h | 83 int in_height, int in_width, int in_depth, int filter_height, in ComputePadding3DValues() argument 90 *out_depth = ComputeOutSize(padding, in_depth, filter_depth, stride_depth, in ComputePadding3DValues() 96 ComputePaddingWithOffset(stride_depth, dilation_rate_depth, in_depth, in ComputePadding3DValues()
|
/external/tensorflow/tensorflow/compiler/tf2xla/kernels/ |
D | conv_op_helpers.cc | 215 in_depth = input_shape.dimensions(feature_dim); in MakeXlaForwardConvOp() local 218 if (in_depth % filter_in_depth != 0) { in MakeXlaForwardConvOp() 220 "Depth of input must be a multiple of depth of filter: ", in_depth, in MakeXlaForwardConvOp() 223 int64 feature_group_count = in_depth / filter_in_depth; in MakeXlaForwardConvOp() 281 /*feature_group_count=*/attrs.depthwise ? in_depth in MakeXlaForwardConvOp() 289 /*feature_group_count=*/attrs.depthwise ? in_depth : feature_group_count, in MakeXlaForwardConvOp() 308 int64 in_depth = input_shape.dimensions(feature_dim), in MakeXlaBackpropInputConvOp() local 311 attrs.depthwise ? filter_in_depth : in_depth / filter_in_depth; in MakeXlaBackpropInputConvOp() 432 int64 in_depth = input_shape.dimensions(c_dim), in MakeXlaBackpropFilterConvOp() local 435 attrs.depthwise ? filter_in_depth : in_depth / filter_in_depth; in MakeXlaBackpropFilterConvOp()
|
/external/tensorflow/tensorflow/core/api_def/base_api/ |
D | api_def_Conv3D.pbtxt | 6 Shape `[batch, in_depth, in_height, in_width, in_channels]`. 34 [batch, in_depth, in_height, in_width, in_channels]. 36 [batch, in_channels, in_depth, in_height, in_width].
|
D | api_def_MaxPool3D.pbtxt | 40 [batch, in_depth, in_height, in_width, in_channels]. 42 [batch, in_channels, in_depth, in_height, in_width].
|
D | api_def_MaxPool3DGrad.pbtxt | 46 [batch, in_depth, in_height, in_width, in_channels]. 48 [batch, in_channels, in_depth, in_height, in_width].
|
D | api_def_AvgPool3DGrad.pbtxt | 46 [batch, in_depth, in_height, in_width, in_channels]. 48 [batch, in_channels, in_depth, in_height, in_width].
|
/external/tensorflow/tensorflow/core/util/ |
D | use_cudnn.cc | 74 const int32 filter_cols, const int32 in_depth, in IsCudnnSupportedFilterSize() argument 76 return in_depth == out_depth && filter_rows == filter_cols && in IsCudnnSupportedFilterSize()
|
/external/tensorflow/tensorflow/core/grappler/costs/ |
D | utils_test.cc | 72 int in_depth = 3; in TEST() local 80 CreateConstOp("input", {batch, rows, cols, in_depth}, input); in TEST() 83 CreateConstOp("filter", {filter_rows, filter_cols, in_depth, out_depth}, in TEST() 92 std::vector<int32>({batch, rows, cols, in_depth}), in TEST() 98 std::vector<int32>({filter_rows, filter_cols, in_depth, out_depth}), in TEST()
|