| /external/tensorflow/tensorflow/lite/toco/graph_transformations/ |
| D | resolve_constant_reshape.cc | 55 const Array& input_array = model->GetArray(op->inputs[0]); in Run() local 56 if (!ShapesAgreeUpToExtending(input_array.shape(), output_array.shape())) { in Run() 58 ShapeToString(input_array.shape()), in Run() 64 switch (input_array.data_type) { in Run() 66 CopyArrayBuffer<ArrayDataType::kBool>(input_array, &output_array); in Run() 69 CopyArrayBuffer<ArrayDataType::kFloat>(input_array, &output_array); in Run() 72 CopyArrayBuffer<ArrayDataType::kInt8>(input_array, &output_array); in Run() 75 CopyArrayBuffer<ArrayDataType::kUint8>(input_array, &output_array); in Run() 78 CopyArrayBuffer<ArrayDataType::kInt16>(input_array, &output_array); in Run() 81 CopyArrayBuffer<ArrayDataType::kUint16>(input_array, &output_array); in Run() [all …]
|
| D | make_initial_dequantize_operator.cc | 56 auto& input_array = model->GetArray(input_name); in AddDequantizeOperatorToInput() local 57 if (input_array.data_type != ArrayDataType::kFloat) { in AddDequantizeOperatorToInput() 61 if (input_array.final_data_type == input_array.data_type || in AddDequantizeOperatorToInput() 62 input_array.final_data_type == ArrayDataType::kNone) { in AddDequantizeOperatorToInput() 84 const auto& input_minmax = input_array.GetMinMax(); in AddDequantizeOperatorToInput() 87 auto& input_qparams = input_array.GetOrCreateQuantizationParams(); in AddDequantizeOperatorToInput() 88 input_array.data_type = input_array.final_data_type; in AddDequantizeOperatorToInput() 90 input_array, input_array.data_type, &input_qparams); in AddDequantizeOperatorToInput() 111 for (auto& input_array : *model->flags.mutable_input_arrays()) { in Run() 112 if (input_array.name() == input) { in Run() [all …]
|
| D | propagate_fixed_sizes.cc | 126 const auto& input_array = model->GetArray(op->inputs[0]); in ProcessConvOperator() local 128 if (!input_array.has_shape()) { in ProcessConvOperator() 131 const auto& input_shape = input_array.shape(); in ProcessConvOperator() 224 const auto& input_array = in ProcessTransposeConvOperator() local 226 if (!input_array.has_shape()) { in ProcessTransposeConvOperator() 230 const auto& input_shape = input_array.shape(); in ProcessTransposeConvOperator() 255 const auto& input_array = model->GetArray(op->inputs[0]); in ProcessDepthwiseConvOperator() local 257 if (!input_array.has_shape()) { in ProcessDepthwiseConvOperator() 260 const auto& input_shape = input_array.shape(); in ProcessDepthwiseConvOperator() 297 const auto& input_array = model->GetArray(op->inputs[0]); in ProcessDepthToSpaceOperator() local [all …]
|
| D | resolve_reorder_axes.cc | 58 const Array& input_array, Array* output_array) { in ReorderAxes() argument 59 DCHECK(input_array.buffer->type == DataType); in ReorderAxes() 61 const auto& input_data = input_array.GetBuffer<DataType>().data; in ReorderAxes() 65 Shape input_shape = input_array.shape(); in ReorderAxes() 73 if (input_array.minmax) { in ReorderAxes() 74 output_array->GetOrCreateMinMax() = input_array.GetMinMax(); in ReorderAxes() 76 if (input_array.narrow_range) { in ReorderAxes() 95 auto& input_array = model->GetArray(input_array_name); in Run() local 97 if (!input_array.buffer) { in Run() 105 if (input_array.buffer->type == ArrayDataType::kFloat) { in Run() [all …]
|
| D | resolve_constant_strided_slice.cc | 28 void StridedSlice(StridedSliceOperator const& op, Array const& input_array, in StridedSlice() argument 35 CHECK(input_array.data_type == Type); in StridedSlice() 51 Shape const& input_shape = input_array.shape(); in StridedSlice() 52 Buffer<Type> const& input_buffer = input_array.GetBuffer<Type>(); in StridedSlice() 62 strided_slice_params, ToRuntimeShape(input_array.shape()), axis); in StridedSlice() 65 strided_slice_params, ToRuntimeShape(input_array.shape()), axis, in StridedSlice() 132 const auto& input_array = model->GetArray(op->inputs[0]); in Run() local 133 if (!input_array.has_shape()) { in Run() 145 StridedSlice<ArrayDataType::kFloat>(*op, input_array, &output_array); in Run() 148 StridedSlice<ArrayDataType::kUint8>(*op, input_array, &output_array); in Run() [all …]
|
| D | resolve_constant_tile.cc | 73 inline void Tile(const Array& input_array, const Array& multiples_array, in Tile() argument 82 input_array.shape(), input_array.GetBuffer<Type>().data.data(), in Tile() 88 input_array.shape(), input_array.GetBuffer<Type>().data.data(), in Tile() 129 const Array& input_array = model->GetArray(op->inputs[0]); in Run() local 135 CopyMinMaxAndQuantizationRelatedFields(input_array, &output_array); in Run() 140 Tile<ArrayDataType::kFloat>(input_array, multiples_array, &output_array); in Run() 143 Tile<ArrayDataType::kUint8>(input_array, multiples_array, &output_array); in Run() 146 Tile<ArrayDataType::kInt16>(input_array, multiples_array, &output_array); in Run() 149 Tile<ArrayDataType::kInt32>(input_array, multiples_array, &output_array); in Run() 152 Tile<ArrayDataType::kInt64>(input_array, multiples_array, &output_array); in Run() [all …]
|
| D | resolve_constant_slice.cc | 27 bool Slice(SliceOperator const& op, Array const& input_array, in Slice() argument 31 CHECK(input_array.data_type == Type); in Slice() 33 const auto& input_data = input_array.GetBuffer<Type>().data; in Slice() 57 dim_size = input_array.shape().dims()[i] - begin[i]; in Slice() 66 Shape padded_shape = input_array.shape(); in Slice() 118 const auto& input_array = model->GetArray(op->inputs[0]); in Run() local 119 if (!input_array.has_shape()) { in Run() 131 if (!Slice<ArrayDataType::kFloat>(*op, input_array, &output_array)) { in Run() 136 if (!Slice<ArrayDataType::kUint8>(*op, input_array, &output_array)) { in Run() 141 if (!Slice<ArrayDataType::kInt32>(*op, input_array, &output_array)) { in Run() [all …]
|
| D | resolve_constant_gather.cc | 28 inline void Gather(const Array& input_array, const Array& coords_array, in Gather() argument 30 const Shape& input_shape = input_array.shape(); in Gather() 32 input_array.GetBuffer<Type>().data; in Gather() 106 const Array& input_array = model->GetArray(op->inputs[0]); in Run() local 114 if (input_array.minmax) { in Run() 115 const auto& input_minmax = input_array.GetMinMax(); in Run() 124 Gather<ArrayDataType::kFloat>(input_array, coords_array, &output_array); in Run() 127 Gather<ArrayDataType::kUint8>(input_array, coords_array, &output_array); in Run() 130 Gather<ArrayDataType::kInt32>(input_array, coords_array, &output_array); in Run() 133 Gather<ArrayDataType::kInt64>(input_array, coords_array, &output_array); in Run() [all …]
|
| D | resolve_constant_unary.cc | 103 const auto& input_array = model->GetArray(op.inputs[0]); in CopyMinMaxFromFirstInput() local 104 if (!input_array.minmax) { in CopyMinMaxFromFirstInput() 107 const auto& input_minmax = input_array.GetMinMax(); in CopyMinMaxFromFirstInput() 181 const auto& input_array = model->GetArray(unary_op->inputs[0]); in Run() local 184 CHECK(input_array.buffer); in Run() 196 if (cast_op->src_data_type != input_array.buffer->type) { in Run() 203 if (input_array.buffer->type != ArrayDataType::kFloat) { in Run() 206 input_float_data = &(input_array.GetBuffer<ArrayDataType::kFloat>().data); in Run() 217 const Shape& input_shape = input_array.shape(); in Run() 222 if (input_array.buffer->type == ArrayDataType::kFloat) { in Run() [all …]
|
| D | dequantize.cc | 58 for (auto& input_array : *model->flags.mutable_input_arrays()) { in ClearArrayQuantizationParams() 59 if (input_array.name() == array_name) { in ClearArrayQuantizationParams() 63 if (input_array.has_std_value()) { in ClearArrayQuantizationParams() 64 CHECK_LE(std::abs(new_std_value - input_array.std_value()), 0.001); in ClearArrayQuantizationParams() 66 input_array.set_std_value(new_std_value); in ClearArrayQuantizationParams() 68 if (input_array.has_mean_value()) { in ClearArrayQuantizationParams() 69 CHECK_LE(std::abs(new_mean_value - input_array.mean_value()), 0.001); in ClearArrayQuantizationParams() 71 input_array.set_mean_value(new_mean_value); in ClearArrayQuantizationParams() 196 auto& input_array = model->GetArray(op->inputs[0]); in Run() local 197 if (input_array.data_type == ArrayDataType::kFloat) { in Run() [all …]
|
| D | hardcode_min_max.cc | 37 const auto& input_array = model->GetArray(op->inputs[0]); in HardcodeMinMaxForIm2colArray() local 38 if (!input_array.minmax) { in HardcodeMinMaxForIm2colArray() 41 const auto& input_minmax = input_array.GetMinMax(); in HardcodeMinMaxForIm2colArray() 54 const auto& input_array = model->GetArray(op->inputs[0]); in HardcodeMinMaxForL2Normalization() local 55 if (!input_array.minmax) { in HardcodeMinMaxForL2Normalization() 58 const auto& input_minmax = input_array.GetMinMax(); in HardcodeMinMaxForL2Normalization() 156 auto& input_array = model->GetArray(op->inputs[1]); in HardcodeMinMaxForSplit() local 157 if (!input_array.minmax) { in HardcodeMinMaxForSplit() 163 if (!array.minmax || !(array.GetMinMax() == input_array.GetMinMax())) { in HardcodeMinMaxForSplit() 165 array.GetOrCreateMinMax() = *input_array.minmax; in HardcodeMinMaxForSplit() [all …]
|
| D | shuffle_fc_weights.cc | 39 const Array& input_array = model->GetArray(fc_op->inputs[0]); in Run() local 46 if (input_array.data_type != ArrayDataType::kUint8 || in Run() 49 !input_array.quantization_params || !weights_array.quantization_params || in Run() 54 if (!input_array.has_shape() || !weights_array.has_shape()) { in Run() 59 const Shape& input_shape = input_array.shape(); in Run() 151 shuffled_input_workspace_array.data_type = input_array.data_type; in Run() 152 *shuffled_input_workspace_array.mutable_shape() = input_array.shape(); in Run() 153 shuffled_input_workspace_array.GetOrCreateMinMax() = input_array.GetMinMax(); in Run() 155 input_array.GetQuantizationParams(); in Run()
|
| D | resolve_constant_transpose.cc | 29 void Transpose(Model* model, const Array& input_array, in Transpose() argument 31 const Shape& input_shape = input_array.shape(); in Transpose() 33 input_array.GetBuffer<Type>().data; in Transpose() 132 const Array& input_array = model->GetArray(op->inputs[0]); in Run() local 134 CopyMinMaxAndQuantizationRelatedFields(input_array, &output_array); in Run() 147 Transpose<ArrayDataType::kFloat>(model, input_array, op->perm, in Run() 151 Transpose<ArrayDataType::kUint8>(model, input_array, op->perm, in Run() 155 Transpose<ArrayDataType::kInt32>(model, input_array, op->perm, in Run() 159 Transpose<ArrayDataType::kInt64>(model, input_array, op->perm, in Run() 163 Transpose<ArrayDataType::kComplex64>(model, input_array, op->perm, in Run()
|
| D | resolve_constant_concatenation.cc | 40 for (Array* input_array : input_arrays) { in CopyTensorSegments() 41 if (!input_array->buffer) { in CopyTensorSegments() 60 for (Array* input_array : input_arrays) { in CopyTensorSegments() 61 src_ptr.push_back(input_array->GetBuffer<A>().data.data()); in CopyTensorSegments() 90 for (Array* input_array : input_arrays) { in ConcatenateTensorBuffers() 91 const Shape array_shape = input_array->shape(); in ConcatenateTensorBuffers() 119 for (Array* input_array : input_arrays) { in SetMinMaxForConcatenedArray() 122 if (!input_array->minmax) return; in SetMinMaxForConcatenedArray() 123 const MinMax& input_minmax = input_array->GetMinMax(); in SetMinMaxForConcatenedArray()
|
| D | propagate_default_min_max.cc | 52 auto& input_array = model->GetArray(input); in Run() local 53 if (!input_array.minmax && !input_array.buffer && in Run() 54 SupportsMinMax(input_array)) { in Run() 55 did_change |= SetArrayMinMax(input, &input_array); in Run()
|
| /external/tensorflow/tensorflow/compiler/xla/tests/ |
| D | convolution_variants_test.cc | 57 const Array4D<float> input_array(1, 1, 1, 1, {2}); in XLA_TEST_F() local 58 auto input = ConstantR4FromArray4D<float>(&builder, input_array); in XLA_TEST_F() 72 const Array4D<float> input_array(5, 1, 1, 1, {1, 2, 3, 4, 5}); in XLA_TEST_F() local 73 auto input = ConstantR4FromArray4D<float>(&builder, input_array); in XLA_TEST_F() 87 Array4D<float> input_array(2, 1, 3, 4); in XLA_TEST_F() local 88 input_array.FillWithMultiples(1); in XLA_TEST_F() 89 auto input = ConstantR4FromArray4D<float>(&builder, input_array); in XLA_TEST_F() 104 Array4D<float> input_array(1, 2, 1, 1, {10, 1}); in XLA_TEST_F() local 105 auto input = ConstantR4FromArray4D<float>(&builder, input_array); in XLA_TEST_F() 119 Array4D<float> input_array(1, 1, 1, 2, {1, 2}); in XLA_TEST_F() local [all …]
|
| D | reduce_window_test.cc | 165 Array4D<float> input_array(1, 0, 2, 1); in XLA_TEST_P() local 166 const auto input = CreateConstantFromArray(input_array, &builder_); in XLA_TEST_P() 170 auto res = ReferenceUtil::ReduceWindow4DAdd(input_array, 0.0f, {1, 1, 2, 1}, in XLA_TEST_P() 178 Array4D<float> input_array(1, 2, 2, 1); in XLA_TEST_P() local 179 input_array.FillRandom(2.f, 2.f); in XLA_TEST_P() 180 const auto input = CreateConstantFromArray(input_array, &builder_); in XLA_TEST_P() 185 auto res = ReferenceUtil::ReduceWindow4DAdd(input_array, 0.0f, {1, 1, 2, 1}, in XLA_TEST_P() 193 Array4D<float> input_array(1, 3, 3, 1); in XLA_TEST_P() local 194 input_array.FillRandom(2.f, 2.f); in XLA_TEST_P() 195 const auto input = CreateConstantFromArray(input_array, &builder_); in XLA_TEST_P() [all …]
|
| /external/tensorflow/tensorflow/python/keras/layers/preprocessing/ |
| D | table_utils_test.py | 90 input_array = sparse_tensor.SparseTensor( 101 output_data = table.lookup(input_array) 109 input_array = sparse_tensor.SparseTensor( 120 output_data = table.lookup(input_array) 128 input_array = ragged_factory_ops.constant( 134 output_data = table.lookup(input_array) 140 input_array = ragged_factory_ops.constant([[10, 11, 13], [13, 12, 10, 42]], 146 output_data = table.lookup(input_array) 167 input_array = sparse_tensor.SparseTensor( 176 output_data = table.lookup(input_array) [all …]
|
| D | text_vectorization_test.py | 462 input_array = np.array([["Earth", "wInD", "aNd", "firE"], 476 output_dataset = model.predict(input_array) 480 input_array = ragged_factory_ops.constant([["Earth", "wInD", "aNd", "firE"], 494 output_dataset = model.predict(input_array) 498 input_array = np.array([["Earth", "wInD", "aNd", "firE"], 514 output_dataset = model.predict(input_array) 518 input_array = np.array([["earth wind and fire"], 532 output_dataset = model.predict(input_array) 536 input_array = np.array([["earth>wind>and fire"], 551 output_dataset = model.predict(input_array) [all …]
|
| D | integer_lookup_test.py | 142 input_array = sparse_tensor.SparseTensor( 156 output_data = model.predict(input_array, steps=1) 163 input_array = ragged_factory_ops.constant([[10, 11, 13], [13, 12, 10, 42]], 172 output_dataset = model.predict(input_array) 183 input_array = sparse_tensor.SparseTensor( 202 output_data = model.predict(input_array, steps=1) 209 input_array = ragged_factory_ops.constant([[10, 11, 13], [13, 12, 10, 133]], 218 output_dataset = model.predict(input_array) 250 input_array = sparse_tensor.SparseTensor( 264 output_data = model.predict(input_array, steps=1) [all …]
|
| D | category_encoding_test.py | 51 input_array = constant_op.constant([[1, 2, 3], [3, 3, 0]]) 67 sp_output_dataset = model.predict(input_array, steps=1) 78 output_dataset = model.predict(input_array, steps=1) 84 input_array = np.array([[1, 2, 3, 0], [0, 3, 1, 0]], dtype=np.int64) 85 sparse_tensor_data = sparse_ops.from_dense(input_array) 106 input_array = np.array([[1, 2, 3, 4], [4, 3, 1, 4]], dtype=np.int64) 108 sparse_tensor_data = sparse_ops.from_dense(input_array) 196 input_array = ragged_factory_ops.constant([[1, 2, 3], [3, 1]]) 214 output_dataset = model.predict(input_array, steps=1) 218 input_array = ragged_factory_ops.constant([[1, 2, 3], [3, 3]]) [all …]
|
| D | string_lookup_test.py | 145 input_array = np.array([["earth", "wind", "and", "fire"], 153 output_data = model.predict(input_array) 158 input_array = np.array([["earth", "wind", "and", "fire"], 166 output_data = model.predict(input_array) 177 input_array = np.array([["earth", "wind", "and", "fire"], 185 output_data = model.predict(input_array) 190 input_array = np.array([["earth", "earth", "fire", "fire"], 198 output_data = model.predict(input_array) 228 input_array = np.array([["earth", "wind", "and", "fire"], 236 output_data = model.predict(input_array) [all …]
|
| D | index_lookup_test.py | 379 input_array = sparse_tensor.SparseTensor( 398 output_data = model.predict(input_array, steps=1) 405 input_array = sparse_tensor.SparseTensor( 424 output_data = model.predict(input_array, steps=1) 431 input_array = ragged_factory_ops.constant( 445 output_dataset = model.predict(input_array) 450 input_array = ragged_factory_ops.constant([[10, 11, 13], [13, 12, 10, 42]], 464 output_dataset = model.predict(input_array) 469 input_array = ragged_factory_ops.constant([[10, 11, 13], [13, 12, 10, 42]], 483 output_dataset = model.predict(input_array) [all …]
|
| D | discretization_test.py | 52 input_array = np.array([[-1.5, 1.0, 3.4, .5], [0.0, 3.0, 1.3, 0.0]]) 63 output_dataset = model.predict(input_array) 67 input_array = np.array([[-1, 1, 3, 0], [0, 3, 1, 0]], dtype=np.int64) 78 output_dataset = model.predict(input_array) 83 input_array = sparse_tensor.SparseTensor( 91 output_dataset = model.predict(input_array, steps=1) 96 input_array = ragged_factory_ops.constant([[-1.5, 1.0, 3.4, .5], 108 output_dataset = model.predict(input_array) 112 input_array = ragged_factory_ops.constant([[-1, 1, 3, 0], [0, 3, 1]], 123 output_dataset = model.predict(input_array) [all …]
|
| /external/tensorflow/tensorflow/python/kernel_tests/ |
| D | reduce_join_op_test.py | 101 input_array, argument 119 inputs=input_array, 128 def _testMultipleReduceJoin(self, input_array, axis, separator=" "): argument 142 inputs=input_array, axis=axis, keep_dims=False, separator=separator) 144 inputs=input_array, axis=axis, keep_dims=True, separator=separator) 146 truth = input_array 163 input_array = ["this", "is", "a", "test"] 166 self._testReduceJoin(input_array, truth, truth_shape, axis=0) 169 input_array = [["this", "is", "a", "test"], 176 input_array, truth_dim_zero, truth_shape_dim_zero, axis=0) [all …]
|