/external/tensorflow/tensorflow/python/keras/tests/ |
D | model_subclassing_compiled_test.py | 44 input_dim = 50 54 x = np.ones((num_samples, input_dim)) 63 input_dim = 50 73 x1 = np.ones((num_samples, input_dim)) 74 x2 = np.ones((num_samples, input_dim)) 84 input_dim = 50 94 x = np.ones((num_samples, input_dim), dtype=np.float32) 108 input_dim = 50 113 x1 = np.ones((num_samples, input_dim)) 114 x2 = np.ones((num_samples, input_dim)) [all …]
|
D | model_subclassing_test.py | 135 input_dim = 50 145 model.build(input_shape=tensor_shape.Dimension(input_dim)) 211 input_dim = 50 220 model.build(input_shape=(batch_size, input_dim)) 224 model(array_ops.ones((32, input_dim))) 228 input_dim = tensor_shape.Dimension(50) 237 model.build(input_shape=(batch_size, input_dim)) 241 model(array_ops.ones((32, input_dim))) 314 input_dim = 50 319 batch_input_shape = tensor_shape.TensorShape((batch_size, input_dim)) [all …]
|
D | model_subclassing_test_util.py | 94 def get_functional_graph_model(input_dim, num_classes): argument 96 inputs = keras.Input(shape=(input_dim,)) 109 def get_nested_model_3(input_dim, num_classes): argument 113 inputs = keras.Input(shape=(input_dim,))
|
/external/tensorflow/tensorflow/python/keras/saving/ |
D | save_weights_test.py | 89 input_dim = 3 105 [np.random.random((output_dim, input_dim, size, 1))], 106 (None, 4, input_dim), 111 [np.random.random((output_dim, input_dim, size, size))], 112 (None, input_dim, 4, 4), 118 [np.random.random((output_dim, input_dim, size, size))], 119 (None, input_dim, 4, 4), 125 [np.random.random((size, size, input_dim, output_dim))], 126 (None, 4, 4, input_dim), 131 [np.random.random((output_dim, input_dim, size, size, size))], [all …]
|
D | saving_utils_test.py | 69 input_dim = 5 if testing_utils.get_model_type() == 'functional' else None 70 model = testing_utils.get_small_mlp(10, 3, input_dim) 73 if input_dim is None: 90 input_dim = 5 if testing_utils.get_model_type() == 'functional' else None 91 model = testing_utils.get_small_mlp(10, 3, input_dim) 115 input_dim = 5 118 input_a = keras.layers.Input(shape=(input_dim,), name='input_a') 119 input_b = keras.layers.Input(shape=(input_dim,), name='input_b') 129 input_a_np = np.random.random((10, input_dim)).astype(np.float32) 130 input_b_np = np.random.random((10, input_dim)).astype(np.float32) [all …]
|
/external/tensorflow/tensorflow/compiler/tf2xla/kernels/ |
D | extract_image_patches_op.cc | 78 int input_dim = GetTensorSpatialDimIndex(num_dims, data_format, i); in Compile() local 80 ctx, ksizes_[input_dim] >= 0, in Compile() 83 dilations_[input_dim])); in Compile() 84 OP_REQUIRES(ctx, strides_[input_dim] >= 1, in Compile() 87 dilations_[input_dim])); in Compile() 88 OP_REQUIRES(ctx, dilations_[input_dim] >= 1, in Compile() 91 dilations_[input_dim])); in Compile() 111 int input_dim = GetTensorSpatialDimIndex(num_dims, data_format, i); in Compile() local 112 kernel_shape[i] = ksizes_[input_dim]; in Compile() 113 kernel_size *= ksizes_[input_dim]; in Compile()
|
/external/tensorflow/tensorflow/python/keras/layers/ |
D | embeddings.py | 92 input_dim, argument 106 if input_dim <= 0 or output_dim <= 0: 109 input_dim, output_dim)) 122 self.input_dim = input_dim 143 shape=(self.input_dim, self.output_dim), 151 shape=(self.input_dim, self.output_dim), 205 'input_dim': self.input_dim,
|
D | embeddings_test.py | 84 layer = keras.layers.Embedding(output_dim=2, input_dim=2) 94 keras.layers.Embedding(input_dim=0, output_dim=1) 97 keras.layers.Embedding(input_dim=1, output_dim=0) 101 l = keras.layers.Embedding(output_dim=2, input_dim=2) 114 input_dim=3, 138 layer = keras.layers.Embedding(input_dim=5, output_dim=2) 154 layer = keras.layers.Embedding(input_dim=5, output_dim=2)
|
D | kernelized.py | 190 input_dim = input_shape.dims[1].value 193 self.kernel_initializer, shape=(input_dim, self.output_dim)) 197 shape=(input_dim, self.output_dim), 211 self.scale = _get_default_scale(self.kernel_initializer, input_dim) 274 def _get_default_scale(initializer, input_dim): argument 277 return np.sqrt(input_dim / 2.0)
|
D | local.py | 161 input_dim, input_length = input_shape[1], input_shape[2] 163 input_dim, input_length = input_shape[2], input_shape[1] 165 if input_dim is None: 175 self.kernel_shape = (self.output_length, self.kernel_size[0] * input_dim, 187 self.kernel_shape = (input_dim, input_length, self.filters, 190 self.kernel_shape = (input_length, input_dim, self.output_length, 210 input_length * input_dim) 218 filters_in=input_dim, 244 self.input_spec = InputSpec(ndim=3, axes={1: input_dim}) 246 self.input_spec = InputSpec(ndim=3, axes={-1: input_dim})
|
D | local_test.py | 95 input_dim = 5 118 input_shape=(num_samples, num_steps, input_dim)) 125 input_dim = 5 144 layer.build((num_samples, num_steps, input_dim)) 148 np.ones((num_samples, num_steps, input_dim)))) 161 layer.build((num_samples, num_steps, input_dim))
|
D | convolutional.py | 973 input_dim = int(input_shape[channel_axis]) 974 self.input_spec = InputSpec(ndim=3, axes={channel_axis: input_dim}) 975 kernel_shape = self.kernel_size + (self.filters, input_dim) 1244 input_dim = int(input_shape[channel_axis]) 1245 self.input_spec = InputSpec(ndim=4, axes={channel_axis: input_dim}) 1246 kernel_shape = self.kernel_size + (self.filters, input_dim) 1554 input_dim = int(input_shape[channel_axis]) 1555 kernel_shape = self.kernel_size + (self.filters, input_dim) 1556 self.input_spec = InputSpec(ndim=5, axes={channel_axis: input_dim}) 1818 input_dim = int(input_shape[channel_axis]) [all …]
|
/external/tensorflow/tensorflow/python/keras/engine/ |
D | sequential_test.py | 46 model.add(keras.layers.Dense(1, input_dim=2)) 74 input_dim = 3 79 num_hidden, num_classes, input_dim) 84 x = np.random.random((batch_size, input_dim)) 99 model.add(keras.layers.Dense(num_hidden, input_dim=input_dim)) 112 input_dim = 3 128 x = np.random.random((batch_size, input_dim)) 137 input_dim = 3 154 x = array_ops.ones((num_samples, input_dim)) 173 model = testing_utils.get_small_sequential_mlp(10, 4, input_dim=3) [all …]
|
D | training_generator_test.py | 102 num_hidden=3, num_classes=4, input_dim=2) 140 num_hidden=3, num_classes=4, input_dim=2) 168 num_hidden=3, num_classes=4, input_dim=2) 203 num_hidden=3, num_classes=4, input_dim=2) 241 num_hidden=3, num_classes=4, input_dim=2) 284 num_hidden=10, num_classes=1, input_dim=10) 300 num_hidden=3, num_classes=4, input_dim=2) 373 layers_module.Embedding(input_dim=len(vocab) + 1, output_dim=4), 399 num_hidden=3, num_classes=4, input_dim=2) 442 num_hidden=10, num_classes=1, input_dim=10)
|
D | training_dataset_test.py | 57 model = testing_utils.get_small_mlp(1, 4, input_dim=3) 92 model = testing_utils.get_small_mlp(1, 4, input_dim=3) 208 model = testing_utils.get_small_mlp(1, 4, input_dim=3) 258 model = testing_utils.get_small_mlp(1, 4, input_dim=3) 328 model = testing_utils.get_small_functional_mlp(1, 4, input_dim=3) 357 model = testing_utils.get_small_mlp(1, 4, input_dim=3) 378 model = testing_utils.get_small_mlp(1, 4, input_dim=3) 416 model = testing_utils.get_small_mlp(1, 4, input_dim=3) 450 model = testing_utils.get_small_mlp(1, 4, input_dim=3) 545 8, activation='relu', input_dim=4, kernel_initializer='ones'),
|
/external/XNNPACK/src/operators/ |
D | constant-pad-nd.c | 125 const size_t input_dim = input_shape[num_dims - 1 - i]; in setup_constant_pad_nd() local 130 normalized_input_shape[XNN_MAX_TENSOR_DIMS - 1 - num_squeezed_dims] = input_dim; in setup_constant_pad_nd() 131 …output_shape[XNN_MAX_TENSOR_DIMS - 1 - num_squeezed_dims] = pre_padding + input_dim + post_padding; in setup_constant_pad_nd() 141 normalized_input_shape[XNN_MAX_TENSOR_DIMS - num_squeezed_dims] *= input_dim; in setup_constant_pad_nd() 142 normalized_output_shape[XNN_MAX_TENSOR_DIMS - num_squeezed_dims] *= input_dim; in setup_constant_pad_nd()
|
/external/tensorflow/tensorflow/python/keras/utils/ |
D | multi_gpu_utils_test.py | 58 input_dim = 10 70 input_shape=(input_dim,))) 73 x = np.random.random((num_samples, input_dim)) 157 input_dim = 10 158 shape = (input_dim,) 186 input_shape=(input_dim,)))
|
/external/tensorflow/tensorflow/python/keras/optimizer_v2/ |
D | optimizer_v2_test.py | 589 input_dim = 1 594 input_shape=(input_dim,), 712 input_dim = 3 717 input_shape=(input_dim,), 723 num_hidden=num_hidden, num_classes=num_classes, input_dim=input_dim) 732 num_hidden=num_hidden, num_classes=num_classes, input_dim=input_dim) 798 input_dim = 3 803 input_shape=(input_dim,), 809 num_hidden=num_hidden, num_classes=num_classes, input_dim=input_dim) 811 num_hidden=num_hidden, num_classes=num_classes, input_dim=input_dim) [all …]
|
/external/tensorflow/tensorflow/python/keras/premade/ |
D | wide_deep_test.py | 44 dnn_model = sequential.Sequential([core.Dense(units=1, input_dim=3)]) 86 dnn_model = sequential.Sequential([core.Dense(units=1, input_dim=3)]) 123 dnn_model = sequential.Sequential([core.Dense(units=1, input_dim=3)]) 162 dnn_model = sequential.Sequential([core.Dense(units=1, input_dim=3)]) 165 sequential.Sequential([core.Dense(units=1, input_dim=3)])) 252 dnn_model = sequential.Sequential([core.Dense(units=1, input_dim=3)]) 267 dnn_model = sequential.Sequential([core.Dense(units=1, input_dim=3)])
|
/external/tensorflow/tensorflow/lite/kernels/internal/ |
D | batch_to_space_nd_test.cc | 25 int input_dim, int output_dim) { in GetIndexRange() argument 28 optimized_ops::GetIndexRange(spatial_index_dim, block_shape_dim, input_dim, in GetIndexRange()
|
/external/tensorflow/tensorflow/compiler/xla/service/ |
D | dynamic_padder.cc | 341 HloInstruction* reshape, int64 input_dim, in RewriteDynamicReshapeSplitInput() argument 345 VLOG(2) << "Reshaping input dim " << input_dim << "to " in RewriteDynamicReshapeSplitInput() 352 ShapeUtil::MakeShape(xla::S32, {operand_shape.dimensions(input_dim)}); in RewriteDynamicReshapeSplitInput() 414 dim->set_size(operand_shape.dimensions(input_dim)); in RewriteDynamicReshapeSplitInput() 416 dim->set_padding_low(operand_shape.dimensions(input_dim) - 1); in RewriteDynamicReshapeSplitInput() 434 if (i != input_dim) { in RewriteDynamicReshapeSplitInput() 439 gather_dim_numbers.add_start_index_map(input_dim); in RewriteDynamicReshapeSplitInput() 441 gather_dim_numbers.add_collapsed_slice_dims(input_dim); in RewriteDynamicReshapeSplitInput() 449 LiteralUtil::CreateR0<int32>(operand_shape.dimensions(input_dim)))); in RewriteDynamicReshapeSplitInput() 453 input_dim)); in RewriteDynamicReshapeSplitInput() [all …]
|
/external/tensorflow/tensorflow/lite/delegates/xnnpack/ |
D | reshape_tester.h | 35 for (int32_t input_dim : input_shape) { in InputShape() local 36 EXPECT_GT(input_dim, 0); in InputShape()
|
/external/tensorflow/tensorflow/python/keras/ |
D | testing_utils.py | 450 def get_small_sequential_mlp(num_hidden, num_classes, input_dim=None): argument 452 if input_dim: 453 model.add(layers.Dense(num_hidden, activation='relu', input_dim=input_dim)) 461 def get_small_functional_mlp(num_hidden, num_classes, input_dim): argument 462 inputs = layers.Input(shape=(input_dim,)) 522 def get_small_mlp(num_hidden, num_classes, input_dim): argument 530 return get_small_sequential_mlp(num_hidden, num_classes, input_dim) 532 return get_small_functional_mlp(num_hidden, num_classes, input_dim)
|
/external/XNNPACK/test/ |
D | constant-pad-operator-tester.h | 35 inline size_t input_dim(size_t i) const { in input_dim() function 85 return pre_padding(i) + input_dim(i) + post_padding(i); in output_dim() 123 input_dims[XNN_MAX_TENSOR_DIMS - num_dims() + i] = input_dim(i); in TestX32()
|
/external/tensorflow/tensorflow/python/kernel_tests/ |
D | broadcast_to_ops_test.py | 57 for input_dim in range(1, 6): 58 for output_dim in range(input_dim, 6): 60 input_shape = [2] * input_dim
|