/external/XNNPACK/src/subgraph/ |
D | depthwise-convolution-2d.c | 18 uint32_t input_padding_top, in xnn_define_depthwise_convolution_2d() argument 109 …const bool any_padding = (input_padding_left | input_padding_top | input_padding_right | input_pad… in xnn_define_depthwise_convolution_2d() 115 input_padding_top, input_padding_left, input_padding_bottom, input_padding_right); in xnn_define_depthwise_convolution_2d() 125 input_padding_top = padding_height / 2; in xnn_define_depthwise_convolution_2d() 127 input_padding_bottom = padding_height - input_padding_top; in xnn_define_depthwise_convolution_2d() 164 node->params.depthwise_convolution_2d.input_padding_top = input_padding_top; in xnn_define_depthwise_convolution_2d()
|
D | convolution-2d.c | 18 uint32_t input_padding_top, in xnn_define_convolution_2d() argument 117 …const bool any_padding = (input_padding_left | input_padding_top | input_padding_right | input_pad… in xnn_define_convolution_2d() 123 input_padding_top, input_padding_left, input_padding_bottom, input_padding_right); in xnn_define_convolution_2d() 133 input_padding_top = padding_height / 2; in xnn_define_convolution_2d() 135 input_padding_bottom = padding_height - input_padding_top; in xnn_define_convolution_2d() 172 node->params.convolution_2d.input_padding_top = input_padding_top; in xnn_define_convolution_2d()
|
D | average-pooling-2d.c | 18 uint32_t input_padding_top, in xnn_define_average_pooling_2d() argument 83 …const bool any_padding = (input_padding_left | input_padding_top | input_padding_right | input_pad… in xnn_define_average_pooling_2d() 90 input_padding_top, input_padding_left, input_padding_bottom, input_padding_right); in xnn_define_average_pooling_2d() 115 node->params.pooling_2d.padding_top = input_padding_top; in xnn_define_average_pooling_2d()
|
D | max-pooling-2d.c | 18 uint32_t input_padding_top, in xnn_define_max_pooling_2d() argument 91 …const bool any_padding = (input_padding_left | input_padding_top | input_padding_right | input_pad… in xnn_define_max_pooling_2d() 98 input_padding_top, input_padding_left, input_padding_bottom, input_padding_right); in xnn_define_max_pooling_2d() 123 node->params.pooling_2d.padding_top = input_padding_top; in xnn_define_max_pooling_2d()
|
D | argmax-pooling-2d.c | 18 uint32_t input_padding_top, in xnn_define_argmax_pooling_2d() argument 78 node->params.pooling_2d.padding_top = input_padding_top; in xnn_define_argmax_pooling_2d()
|
/external/XNNPACK/src/operators/ |
D | max-pooling-nhwc.c | 46 uint32_t input_padding_top, in create_max_pooling2d_nhwc() argument 140 …const bool any_padding = (input_padding_left | input_padding_top | input_padding_right | input_pad… in create_max_pooling2d_nhwc() 147 input_padding_top, input_padding_left, input_padding_bottom, input_padding_right); in create_max_pooling2d_nhwc() 162 max_pooling_op->padding_top = input_padding_top; in create_max_pooling2d_nhwc() 325 uint32_t input_padding_top, in xnn_create_max_pooling2d_nhwc_u8() argument 352 input_padding_top, input_padding_right, input_padding_bottom, input_padding_left, in xnn_create_max_pooling2d_nhwc_u8() 364 uint32_t input_padding_top, in xnn_create_max_pooling2d_nhwc_f32() argument 405 input_padding_top, input_padding_right, input_padding_bottom, input_padding_left, in xnn_create_max_pooling2d_nhwc_f32()
|
D | convolution-nchw.c | 38 uint32_t input_padding_top, in xnn_create_convolution2d_nchw_f32() argument 173 …const bool any_padding = (input_padding_left | input_padding_top | input_padding_right | input_pad… in xnn_create_convolution2d_nchw_f32() 181 …input_padding_top == 1 && input_padding_left == 1 && input_padding_bottom == 1 && input_padding_ri… in xnn_create_convolution2d_nchw_f32() 186 …input_padding_top == 1 && input_padding_left == 1 && input_padding_bottom == 1 && input_padding_ri… in xnn_create_convolution2d_nchw_f32() 192 …(input_padding_top == 0 || input_padding_top == 1) && input_padding_left == 1 && input_padding_bot… in xnn_create_convolution2d_nchw_f32() 198 …input_padding_top == 2 && input_padding_left == 2 && input_padding_bottom == 2 && input_padding_ri… in xnn_create_convolution2d_nchw_f32() 204 …(input_padding_top == 1 || input_padding_top == 2) && input_padding_left == 2 && input_padding_bot… in xnn_create_convolution2d_nchw_f32() 216 input_padding_top, input_padding_left, input_padding_bottom, input_padding_right, in xnn_create_convolution2d_nchw_f32() 477 convolution_op->padding_top = input_padding_top; in xnn_create_convolution2d_nchw_f32() 650 .input_padding_top = convolution_op->padding_top, in setup_convolution2d_nchw() [all …]
|
D | argmax-pooling-nhwc.c | 43 uint32_t input_padding_top, in xnn_create_argmax_pooling2d_nhwc_f32() argument 105 …const bool any_padding = (input_padding_left | input_padding_top | input_padding_right | input_pad… in xnn_create_argmax_pooling2d_nhwc_f32() 112 input_padding_top, input_padding_left, input_padding_bottom, input_padding_right); in xnn_create_argmax_pooling2d_nhwc_f32() 127 argmax_pooling_op->padding_top = input_padding_top; in xnn_create_argmax_pooling2d_nhwc_f32()
|
D | average-pooling-nhwc.c | 44 uint32_t input_padding_top, in xnn_create_average_pooling2d_nhwc_qu8() argument 142 …const bool any_padding = (input_padding_left | input_padding_top | input_padding_right | input_pad… in xnn_create_average_pooling2d_nhwc_qu8() 149 input_padding_top, input_padding_left, input_padding_bottom, input_padding_right); in xnn_create_average_pooling2d_nhwc_qu8() 196 average_pooling_op->padding_top = input_padding_top; in xnn_create_average_pooling2d_nhwc_qu8() 240 uint32_t input_padding_top, in xnn_create_average_pooling2d_nhwc_f32() argument 334 …const bool any_padding = (input_padding_left | input_padding_top | input_padding_right | input_pad… in xnn_create_average_pooling2d_nhwc_f32() 341 input_padding_top, input_padding_left, input_padding_bottom, input_padding_right); in xnn_create_average_pooling2d_nhwc_f32() 366 average_pooling_op->padding_top = input_padding_top; in xnn_create_average_pooling2d_nhwc_f32()
|
D | convolution-nhwc.c | 62 uint32_t input_padding_top, in create_convolution2d_nhwc() argument 195 …const bool any_padding = (input_padding_left | input_padding_top | input_padding_right | input_pad… in create_convolution2d_nhwc() 202 input_padding_top, input_padding_left, input_padding_bottom, input_padding_right); in create_convolution2d_nhwc() 384 convolution_op->padding_top = input_padding_top; in create_convolution2d_nhwc() 419 uint32_t input_padding_top, in xnn_create_convolution2d_nhwc_qu8() argument 492 input_padding_top, input_padding_right, input_padding_bottom, input_padding_left, in xnn_create_convolution2d_nhwc_qu8() 517 uint32_t input_padding_top, in xnn_create_convolution2d_nhwc_qs8() argument 586 input_padding_top, input_padding_right, input_padding_bottom, input_padding_left, in xnn_create_convolution2d_nhwc_qs8() 611 uint32_t input_padding_top, in xnn_create_convolution2d_nhwc_f16() argument 667 input_padding_top, input_padding_right, input_padding_bottom, input_padding_left, in xnn_create_convolution2d_nhwc_f16() [all …]
|
/external/XNNPACK/test/ |
D | subgraph-tester.h | 75 uint32_t input_padding_top, uint32_t input_padding_right, in add_conv() argument 85 subgraph_.get(), input_padding_top, input_padding_right, in add_conv() 98 uint32_t input_padding_top, uint32_t input_padding_right, in add_depthwise_conv() argument 107 subgraph_.get(), input_padding_top, input_padding_right, in add_depthwise_conv()
|
/external/XNNPACK/src/ |
D | im2col.c | 23 size_t input_padding_top, in xnn_im2col_conv2d() argument 33 …st size_t input_y = output_y * subsampling_height + kernel_y * dilation_height - input_padding_top; in xnn_im2col_conv2d()
|
D | indirection.c | 37 const size_t input_padding_top = op->padding_top; in xnn_indirection_init_conv2d() local 53 … const size_t input_y = output_y * stride_height + kernel_y * dilation_height - input_padding_top; in xnn_indirection_init_conv2d() 218 const size_t input_padding_top = op->padding_top; in xnn_indirection_init_dwconv2d() local 223 … const size_t input_y = output_y * stride_height + kernel_y * dilation_height - input_padding_top; in xnn_indirection_init_dwconv2d() 268 const size_t input_padding_top = op->padding_top; in xnn_indirection_init_maxpool2d() local 275 const size_t adjusted_padding_top = input_padding_top % dilation_height; in xnn_indirection_init_maxpool2d() 285 size_t input_y = output_y * stride_height + pooling_y * dilation_height - input_padding_top; in xnn_indirection_init_maxpool2d() 314 …y = min(doz(output_y * stride_height + pooling_y * dilation_height, input_padding_top), input_y_ma… in xnn_indirection_init_maxpool2d()
|
D | subgraph.c | 143 …if ((node->params.convolution_2d.input_padding_top | node->params.convolution_2d.input_padding_rig… in xnn_check_nchw_compatibility() 153 …if (node->params.convolution_2d.input_padding_top != 1 || node->params.convolution_2d.input_paddin… in xnn_check_nchw_compatibility() 197 return node->params.depthwise_convolution_2d.input_padding_top == 1 && in xnn_check_nchw_compatibility() 202 return node->params.depthwise_convolution_2d.input_padding_top == 2 && in xnn_check_nchw_compatibility() 613 …consumer->params.convolution_2d.input_padding_top += producer->params.static_pad.pre_paddings[1… in xnn_subgraph_optimize() 637 consumer->params.depthwise_convolution_2d.input_padding_top += in xnn_subgraph_optimize()
|
/external/XNNPACK/include/ |
D | xnnpack.h | 239 uint32_t input_padding_top, 348 uint32_t input_padding_top, 434 uint32_t input_padding_top, 526 uint32_t input_padding_top, 561 uint32_t input_padding_top, 1134 uint32_t input_padding_top, 1157 uint32_t input_padding_top, 1227 uint32_t input_padding_top, 1404 uint32_t input_padding_top, 1648 uint32_t input_padding_top, [all …]
|
/external/XNNPACK/src/xnnpack/ |
D | conv.h | 32 size_t input_padding_top, \ 69 size_t input_padding_top, \
|
D | im2col.h | 26 size_t input_padding_top,
|
D | subgraph.h | 124 uint32_t input_padding_top; member 156 uint32_t input_padding_top; member
|
/external/XNNPACK/src/f32-conv-hwc2chw/ |
D | 3x3s2p1c3x4-sse-1x1.c | 23 size_t input_padding_top, in xnn_f32_conv_hwc2chw_ukernel_3x3s2p1c3x4__sse_1x1() argument 31 assert(input_padding_top <= 1); in xnn_f32_conv_hwc2chw_ukernel_3x3s2p1c3x4__sse_1x1() 40 …const float*) ((uintptr_t) input + input_height_stride * (output_y_start * 2 - input_padding_top)); in xnn_f32_conv_hwc2chw_ukernel_3x3s2p1c3x4__sse_1x1() 45 if XNN_UNPREDICTABLE(output_y_start < input_padding_top) { in xnn_f32_conv_hwc2chw_ukernel_3x3s2p1c3x4__sse_1x1() 53 const size_t input_y2 = output_y * 2 + 2 - input_padding_top; in xnn_f32_conv_hwc2chw_ukernel_3x3s2p1c3x4__sse_1x1()
|
D | 3x3s2p1c3x4-scalar-1x1.c | 21 size_t input_padding_top, in xnn_f32_conv_hwc2chw_ukernel_3x3s2p1c3x4__scalar_1x1() argument 29 assert(input_padding_top <= 1); in xnn_f32_conv_hwc2chw_ukernel_3x3s2p1c3x4__scalar_1x1() 38 …const float*) ((uintptr_t) input + input_height_stride * (output_y_start * 2 - input_padding_top)); in xnn_f32_conv_hwc2chw_ukernel_3x3s2p1c3x4__scalar_1x1() 43 if XNN_UNPREDICTABLE(output_y_start < input_padding_top) { in xnn_f32_conv_hwc2chw_ukernel_3x3s2p1c3x4__scalar_1x1() 51 const size_t input_y2 = output_y * 2 + 2 - input_padding_top; in xnn_f32_conv_hwc2chw_ukernel_3x3s2p1c3x4__scalar_1x1()
|
/external/XNNPACK/src/f32-conv-hwc/gen/ |
D | 3x3s2p0p1c3x4-neon-2x1.c | 28 size_t input_padding_top, in xnn_f32_conv_hwc_ukernel_3x3s2p0p1c3x4__neon_2x1() argument 36 assert(input_padding_top <= 1); in xnn_f32_conv_hwc_ukernel_3x3s2p0p1c3x4__neon_2x1() 47 input_height_stride * (output_y_start * 2 /* vertical stride */ - input_padding_top)); in xnn_f32_conv_hwc_ukernel_3x3s2p0p1c3x4__neon_2x1() 55 if XNN_UNPREDICTABLE(output_y_start < input_padding_top) { in xnn_f32_conv_hwc_ukernel_3x3s2p0p1c3x4__neon_2x1() 61 const size_t input_y2 = output_y * 2 + 2 - input_padding_top; in xnn_f32_conv_hwc_ukernel_3x3s2p0p1c3x4__neon_2x1()
|
D | 3x3s2p0p1c3x4-neonfma-2x1.c | 28 size_t input_padding_top, in xnn_f32_conv_hwc_ukernel_3x3s2p0p1c3x4__neonfma_2x1() argument 36 assert(input_padding_top <= 1); in xnn_f32_conv_hwc_ukernel_3x3s2p0p1c3x4__neonfma_2x1() 47 input_height_stride * (output_y_start * 2 /* vertical stride */ - input_padding_top)); in xnn_f32_conv_hwc_ukernel_3x3s2p0p1c3x4__neonfma_2x1() 55 if XNN_UNPREDICTABLE(output_y_start < input_padding_top) { in xnn_f32_conv_hwc_ukernel_3x3s2p0p1c3x4__neonfma_2x1() 63 const size_t input_y2 = output_y * 2 + 2 - input_padding_top; in xnn_f32_conv_hwc_ukernel_3x3s2p0p1c3x4__neonfma_2x1()
|
D | 3x3s2p1c3x4-neonfma-2x1.c | 28 size_t input_padding_top, in xnn_f32_conv_hwc_ukernel_3x3s2p1c3x4__neonfma_2x1() argument 36 assert(input_padding_top <= 1); in xnn_f32_conv_hwc_ukernel_3x3s2p1c3x4__neonfma_2x1() 47 input_height_stride * (output_y_start * 2 /* vertical stride */ - input_padding_top)); in xnn_f32_conv_hwc_ukernel_3x3s2p1c3x4__neonfma_2x1() 55 if XNN_UNPREDICTABLE(output_y_start < input_padding_top) { in xnn_f32_conv_hwc_ukernel_3x3s2p1c3x4__neonfma_2x1() 63 const size_t input_y2 = output_y * 2 + 2 - input_padding_top; in xnn_f32_conv_hwc_ukernel_3x3s2p1c3x4__neonfma_2x1()
|
/external/XNNPACK/src/f32-conv-hwc/ |
D | 3x3s2p1c3x4-scalar-1x1.c | 21 size_t input_padding_top, in xnn_f32_conv_hwc_ukernel_3x3s2p1c3x4__scalar_1x1() argument 29 assert(input_padding_top <= 1); in xnn_f32_conv_hwc_ukernel_3x3s2p1c3x4__scalar_1x1() 39 …const float*) ((uintptr_t) input + input_height_stride * (output_y_start * 2 - input_padding_top)); in xnn_f32_conv_hwc_ukernel_3x3s2p1c3x4__scalar_1x1() 44 if XNN_UNPREDICTABLE(output_y_start < input_padding_top) { in xnn_f32_conv_hwc_ukernel_3x3s2p1c3x4__scalar_1x1() 52 const size_t input_y2 = output_y * 2 + 2 - input_padding_top; in xnn_f32_conv_hwc_ukernel_3x3s2p1c3x4__scalar_1x1()
|
D | 3x3s2p0p1c3x4-scalar-1x1.c | 21 size_t input_padding_top, in xnn_f32_conv_hwc_ukernel_3x3s2p0p1c3x4__scalar_1x1() argument 29 assert(input_padding_top <= 1); in xnn_f32_conv_hwc_ukernel_3x3s2p0p1c3x4__scalar_1x1() 39 …const float*) ((uintptr_t) input + input_height_stride * (output_y_start * 2 - input_padding_top)); in xnn_f32_conv_hwc_ukernel_3x3s2p0p1c3x4__scalar_1x1() 44 if XNN_UNPREDICTABLE(output_y_start < input_padding_top) { in xnn_f32_conv_hwc_ukernel_3x3s2p0p1c3x4__scalar_1x1() 52 const size_t input_y2 = output_y * 2 + 2 - input_padding_top; in xnn_f32_conv_hwc_ukernel_3x3s2p0p1c3x4__scalar_1x1()
|