/external/tensorflow/tensorflow/lite/testing/nnapi_tflite_zip_tests/ |
D | not_supported.txt | 9 arg_min_max/arg_min_max_input_dtype=tf.float32,input_shape=[1,1,1,3],is_arg_max=True,output_type=tf… 10 arg_min_max/arg_min_max_input_dtype=tf.float32,input_shape=[1,1,1,3],is_arg_max=True,output_type=tf… 11 arg_min_max/arg_min_max_input_dtype=tf.int32,input_shape=[1,1,1,3],is_arg_max=True,output_type=tf.i… 12 arg_min_max/arg_min_max_input_dtype=tf.int32,input_shape=[1,1,1,3],is_arg_max=True,output_type=tf.i… 13 arg_min_max/arg_min_max_input_dtype=tf.float32,input_shape=[2,3,4,5],is_arg_max=True,output_type=tf… 14 arg_min_max/arg_min_max_input_dtype=tf.float32,input_shape=[2,3,4,5],is_arg_max=True,output_type=tf… 15 arg_min_max/arg_min_max_input_dtype=tf.int32,input_shape=[2,3,4,5],is_arg_max=True,output_type=tf.i… 16 arg_min_max/arg_min_max_input_dtype=tf.int32,input_shape=[2,3,4,5],is_arg_max=True,output_type=tf.i… 17 arg_min_max/arg_min_max_input_dtype=tf.float32,input_shape=[2,3,3],is_arg_max=True,output_type=tf.i… 18 arg_min_max/arg_min_max_input_dtype=tf.float32,input_shape=[2,3,3],is_arg_max=True,output_type=tf.i… [all …]
|
D | test_manifest.txt | 17 avg_pool/avg_pool_data_format='NHWC',input_shape=[1,1,1,1],ksize=[1,1,1,1],padding='SAME',strides=[… 18 avg_pool/avg_pool_data_format='NHWC',input_shape=[1,1,1,1],ksize=[1,1,1,1],padding='SAME',strides=[… 19 avg_pool/avg_pool_data_format='NHWC',input_shape=[1,1,1,1],ksize=[1,1,1,1],padding='SAME',strides=[… 20 avg_pool/avg_pool_data_format='NHWC',input_shape=[1,15,14,1],ksize=[1,1,1,1],padding='SAME',strides… 21 avg_pool/avg_pool_data_format='NHWC',input_shape=[1,15,14,1],ksize=[1,1,1,1],padding='SAME',strides… 22 avg_pool/avg_pool_data_format='NHWC',input_shape=[1,15,14,1],ksize=[1,1,1,1],padding='SAME',strides… 23 avg_pool/avg_pool_data_format='NHWC',input_shape=[3,15,14,3],ksize=[1,1,1,1],padding='SAME',strides… 24 avg_pool/avg_pool_data_format='NHWC',input_shape=[3,15,14,3],ksize=[1,1,1,1],padding='SAME',strides… 25 avg_pool/avg_pool_data_format='NHWC',input_shape=[3,15,14,3],ksize=[1,1,1,1],padding='SAME',strides… 26 avg_pool/avg_pool_data_format='NHWC',input_shape=[1,1,1,1],ksize=[1,1,1,1],padding='VALID',strides=… [all …]
|
/external/tensorflow/tensorflow/python/keras/utils/ |
D | conv_utils_test.py | 30 def _get_const_output_shape(input_shape, dim): argument 31 return tuple([min(d, dim) for d in input_shape]) 166 def test_conv_kernel_mask_fc(self, *input_shape): argument 168 kernel_shape = input_shape 169 ndims = len(input_shape) 171 output_shape = _get_const_output_shape(input_shape, dim=1) 172 mask = np.ones(input_shape + output_shape, np.bool) 176 input_shape, 183 def test_conv_kernel_mask_diag(self, *input_shape): argument 184 ndims = len(input_shape) [all …]
|
/external/tensorflow/tensorflow/lite/kernels/internal/ |
D | transpose_utils_test.cc | 24 RuntimeShape input_shape({9}); in TEST() local 31 transpose_utils::RemoveOneSizeDimensions(&input_shape, &output_shape, in TEST() 34 EXPECT_EQ(input_shape, RuntimeShape({9})); in TEST() 42 RuntimeShape input_shape({9, 3}); in TEST() local 50 transpose_utils::RemoveOneSizeDimensions(&input_shape, &output_shape, in TEST() 53 EXPECT_EQ(input_shape, RuntimeShape({9, 3})); in TEST() 62 RuntimeShape input_shape({9, 1}); in TEST() local 70 transpose_utils::RemoveOneSizeDimensions(&input_shape, &output_shape, in TEST() 73 EXPECT_EQ(input_shape, RuntimeShape({9})); in TEST() 81 RuntimeShape input_shape({4, 3, 8}); in TEST() local [all …]
|
D | resize_nearest_neighbor_test.cc | 30 const RuntimeShape& input_shape, const std::vector<T>& input_data, in TestReferenceResizeNearestNeighbor() argument 40 op_params, input_shape, input_data.data(), output_size_shape, in TestReferenceResizeNearestNeighbor() 49 RuntimeShape input_shape = {1, 2, 2, 1}; in TEST() local 55 TestReferenceResizeNearestNeighbor(input_shape, input_data, output_size_data, in TEST() 60 RuntimeShape input_shape = {1, 2, 2, 1}; in TEST() local 66 TestReferenceResizeNearestNeighbor(input_shape, input_data, output_size_data, in TEST() 72 RuntimeShape input_shape = {1, 2, 2, 1}; in TEST() local 79 input_shape, input_data, output_size_data, output_shape, output_data, in TEST() 84 RuntimeShape input_shape = {1, 2, 2, 1}; in TEST() local 90 TestReferenceResizeNearestNeighbor(input_shape, input_data, output_size_data, in TEST() [all …]
|
D | transpose_utils.cc | 21 const RuntimeShape& input_shape, int* dim0, in IsTranspose2DApplicable() argument 23 const int dims_cnt = input_shape.DimensionsCount(); in IsTranspose2DApplicable() 26 *dim0 = input_shape.Dims(0); in IsTranspose2DApplicable() 27 *dim1 = input_shape.Dims(1); in IsTranspose2DApplicable() 45 *dim0 *= input_shape.Dims(i); in IsTranspose2DApplicable() 47 *dim1 *= input_shape.Dims(i); in IsTranspose2DApplicable() 53 void RemoveOneSizeDimensions(RuntimeShape* input_shape, in RemoveOneSizeDimensions() argument 56 const int dims_cnt = input_shape->DimensionsCount(); in RemoveOneSizeDimensions() 61 if (input_shape->Dims(i) == 1) { in RemoveOneSizeDimensions() 71 if (input_shape->FlatSize() == 1) { in RemoveOneSizeDimensions() [all …]
|
/external/tensorflow/tensorflow/python/keras/applications/ |
D | imagenet_utils.py | 296 def obtain_input_shape(input_shape, argument 322 if weights != 'imagenet' and input_shape and len(input_shape) == 3: 324 if input_shape[0] not in {1, 3}: 327 str(input_shape[0]) + ' input channels.') 328 default_shape = (input_shape[0], default_size, default_size) 330 if input_shape[-1] not in {1, 3}: 333 str(input_shape[-1]) + ' input channels.') 334 default_shape = (default_size, default_size, input_shape[-1]) 341 if input_shape is not None: 342 if input_shape != default_shape: [all …]
|
/external/tensorflow/tensorflow/python/kernel_tests/ |
D | pool_test.py | 148 def _test(self, input_shape, **kwargs): argument 152 np.prod(input_shape), dtype=np.float32).reshape(input_shape) - 1 162 input_shape=[1, 1, 10, 1], 173 for input_shape in [[2, 9, 2], [2, 10, 2]]: 178 input_shape=input_shape, 188 input_shape=input_shape, 199 for input_shape in [[2, 9, 10, 2], [2, 10, 9, 2]]: 204 input_shape=input_shape, 214 input_shape=input_shape, 225 for input_shape in [[2, 9, 10, 11, 2], [2, 10, 9, 11, 2]]: [all …]
|
/external/tensorflow/tensorflow/lite/micro/kernels/ |
D | strided_slice_test.cc | 59 void TestStridedSliceFloat(const int* input_shape, const int* begin_shape, in TestStridedSliceFloat() argument 67 TfLiteIntArray* input_dims = IntArrayFromInts(input_shape); in TestStridedSliceFloat() 91 const int* input_shape, const int* begin_shape, const int* end_shape, in TestStridedSliceQuantized() argument 96 TfLiteIntArray* input_dims = IntArrayFromInts(input_shape); in TestStridedSliceQuantized() 127 const int input_shape[] = {5, 2, 2, 2, 2, 2}; in TF_LITE_MICRO_TEST() local 142 input_shape, begin_shape, end_shape, strides_shape, &builtin_data, in TF_LITE_MICRO_TEST() 148 const int input_shape[] = {1, 4}; in TF_LITE_MICRO_TEST() local 163 input_shape, begin_shape, end_shape, strides_shape, &builtin_data, in TF_LITE_MICRO_TEST() 169 const int input_shape[] = {1, 4}; in TF_LITE_MICRO_TEST() local 184 input_shape, begin_shape, end_shape, strides_shape, &builtin_data, in TF_LITE_MICRO_TEST() [all …]
|
D | pooling_test.cc | 185 const int input_shape[] = {4, 1, 2, 4, 1}; in TF_LITE_MICRO_TEST() local 195 input_shape, input_values, filter_height, filter_width, stride_height, in TF_LITE_MICRO_TEST() 201 const int input_shape[] = {4, 1, 2, 4, 1}; in TF_LITE_MICRO_TEST() local 216 input_shape, input_values, input_scale, input_zero_point, filter_height, in TF_LITE_MICRO_TEST() 223 const int input_shape[] = {4, 1, 2, 4, 1}; in TF_LITE_MICRO_TEST() local 238 input_shape, input_values, input_scale, input_zero_point, filter_height, in TF_LITE_MICRO_TEST() 245 const int input_shape[] = {4, 1, 2, 4, 1}; in TF_LITE_MICRO_TEST() local 260 input_shape, input_values, input_scale, input_zero_point, filter_height, in TF_LITE_MICRO_TEST() 268 const int input_shape[] = {4, 1, 2, 4, 1}; in TF_LITE_MICRO_TEST() local 283 input_shape, input_values, input_scale, input_zero_point, filter_height, in TF_LITE_MICRO_TEST() [all …]
|
/external/tensorflow/tensorflow/lite/kernels/internal/reference/ |
D | strided_slice.h | 45 const RuntimeShape input_shape = in StridedSlice() local 54 const int start_0 = StartForAxis(params_copy, input_shape, 0); in StridedSlice() 55 const int stop_0 = StopForAxis(params_copy, input_shape, 0, start_0); in StridedSlice() 56 const int start_1 = StartForAxis(params_copy, input_shape, 1); in StridedSlice() 57 const int stop_1 = StopForAxis(params_copy, input_shape, 1, start_1); in StridedSlice() 58 const int start_2 = StartForAxis(params_copy, input_shape, 2); in StridedSlice() 59 const int stop_2 = StopForAxis(params_copy, input_shape, 2, start_2); in StridedSlice() 60 const int start_3 = StartForAxis(params_copy, input_shape, 3); in StridedSlice() 61 const int stop_3 = StopForAxis(params_copy, input_shape, 3, start_3); in StridedSlice() 62 const int start_4 = StartForAxis(params_copy, input_shape, 4); in StridedSlice() [all …]
|
D | pooling.h | 27 const RuntimeShape& input_shape, in AveragePool() argument 30 TFLITE_DCHECK_EQ(input_shape.DimensionsCount(), 4); in AveragePool() 32 const int batches = MatchingDim(input_shape, 0, output_shape, 0); in AveragePool() 33 const int depth = MatchingDim(input_shape, 3, output_shape, 3); in AveragePool() 34 const int input_height = input_shape.Dims(1); in AveragePool() 35 const int input_width = input_shape.Dims(2); in AveragePool() 65 input_data[Offset(input_shape, batch, in_y, in_x, channel)]; in AveragePool() 80 const RuntimeShape& input_shape, in AveragePool() argument 86 TFLITE_DCHECK_EQ(input_shape.DimensionsCount(), 4); in AveragePool() 88 const int batches = MatchingDim(input_shape, 0, output_shape, 0); in AveragePool() [all …]
|
/external/tensorflow/tensorflow/compiler/tf2xla/kernels/ |
D | split_op.cc | 39 const TensorShape input_shape = ctx->InputShape(1); in Compile() local 48 int32 split_dim = split_dim_orig < 0 ? split_dim_orig + input_shape.dims() in Compile() 50 OP_REQUIRES(ctx, 0 <= split_dim && split_dim < input_shape.dims(), in Compile() 51 errors::InvalidArgument("-input rank(-", input_shape.dims(), in Compile() 53 input_shape.dims(), "), but got ", in Compile() 62 ctx, input_shape.dim_size(split_dim) % num_split == 0, in Compile() 66 split_dim_orig, " (size = ", input_shape.dim_size(split_dim), ") ", in Compile() 71 const int32 slice_size = input_shape.dim_size(split_dim) / num_split; in Compile() 75 std::vector<int64> begin(input_shape.dims(), 0); in Compile() 76 std::vector<int64> limits(input_shape.dims()); in Compile() [all …]
|
D | unpack_op.cc | 47 const TensorShape input_shape = ctx->InputShape(0); in Compile() local 50 if (axis < 0) axis += input_shape.dims(); in Compile() 52 OP_REQUIRES(ctx, 0 <= axis && axis < input_shape.dims(), in Compile() 54 -input_shape.dims(), ", ", in Compile() 55 input_shape.dims(), ")")); in Compile() 58 ctx, input_shape.dims() > 0 && input_shape.dim_size(axis) == num, in Compile() 60 ", got shape ", input_shape.DebugString())); in Compile() 62 auto output_shape = input_shape; in Compile() 67 std::vector<int64> start_indices(input_shape.dims(), 0); in Compile() 68 std::vector<int64> limit_indices(input_shape.dims()); in Compile() [all …]
|
D | shape_op.cc | 45 const TensorShape input_shape = ctx->InputShape(0); in Compile() local 47 const int rank = input_shape.dims(); in Compile() 59 Tensor shape_constant(out_dtype_, TensorShape({input_shape.dims()})); in Compile() 60 OP_REQUIRES_OK(ctx, TensorShapeToConstant(input_shape, &shape_constant)); in Compile() 77 const TensorShape input_shape = ctx->InputShape("input"); in Compile() local 86 input_shape.DebugString())); in Compile() 89 ctx, input_shape.dims() == 0, in Compile() 92 input_shape.DebugString())); in Compile() 153 const TensorShape input_shape = ctx->InputShape(i); in Compile() local 156 const int rank = input_shape.dims(); in Compile() [all …]
|
D | spacetodepth_op.cc | 60 absl::Span<const int64> input_shape = in Compile() local 62 int input_rank = input_shape.size(); in Compile() 81 OP_REQUIRES(ctx, input_shape[1 + i] % block_size_ == 0, in Compile() 83 "input shape[", 1 + i, "]=", input_shape[1 + i], in Compile() 88 reshaped_shape.push_back(input_shape[0]); in Compile() 90 reshaped_shape.push_back(input_shape[1 + i] / block_size_); in Compile() 93 reshaped_shape.push_back(input_shape[feature_dim]); in Compile() 104 output_shape.push_back(input_shape[0]); in Compile() 106 output_shape.push_back(input_shape[1 + i] / block_size_); in Compile() 108 output_shape.push_back(input_shape[feature_dim] * block_elems); in Compile() [all …]
|
/external/tensorflow/tensorflow/python/keras/layers/ |
D | convolutional.py | 187 def build(self, input_shape): argument 188 input_shape = tensor_shape.TensorShape(input_shape) 189 input_channel = self._get_input_channel(input_shape) 195 input_shape)) 246 input_shape = inputs.shape 274 out_shape = self.compute_output_shape(input_shape) 292 def compute_output_shape(self, input_shape): argument 293 input_shape = tensor_shape.TensorShape(input_shape).as_list() 294 batch_rank = len(input_shape) - self.rank - 1 297 input_shape[:batch_rank] [all …]
|
D | pooling.py | 83 def compute_output_shape(self, input_shape): argument 84 input_shape = tensor_shape.TensorShape(input_shape).as_list() 86 steps = input_shape[2] 87 features = input_shape[1] 89 steps = input_shape[1] 90 features = input_shape[2] 96 return tensor_shape.TensorShape([input_shape[0], features, length]) 98 return tensor_shape.TensorShape([input_shape[0], length, features]) 303 def compute_output_shape(self, input_shape): argument 304 input_shape = tensor_shape.TensorShape(input_shape).as_list() [all …]
|
D | pooling_test.py | 38 keras.layers.pooling.GlobalMaxPooling1D, input_shape=(3, 4, 5)) 42 input_shape=(3, 4, 5)) 44 keras.layers.pooling.GlobalAveragePooling1D, input_shape=(3, 4, 5)) 48 input_shape=(3, 4, 5)) 52 model.add(keras.layers.Masking(mask_value=0., input_shape=(None, 4))) 73 masking = keras.layers.Masking(mask_value=0., input_shape=(3, 2))(inputs) 118 input_shape=(3, 4, 5, 6)) 122 input_shape=(3, 5, 6, 4)) 126 input_shape=(3, 4, 5, 6)) 130 input_shape=(3, 5, 6, 4)) [all …]
|
D | merge.py | 90 def build(self, input_shape): argument 92 if not isinstance(input_shape[0], tuple): 94 if len(input_shape) < 2: 97 'Got ' + str(len(input_shape)) + ' inputs.') 98 batch_sizes = {s[0] for s in input_shape if s} - {None} 102 'batch sizes. Got tensors with shapes : ' + str(input_shape)) 103 if input_shape[0] is None: 106 output_shape = input_shape[0][1:] 107 for i in range(1, len(input_shape)): 108 if input_shape[i] is None: [all …]
|
/external/tensorflow/tensorflow/lite/delegates/xnnpack/ |
D | reshape_test.cc | 38 const std::vector<int32_t> input_shape{ variable 40 std::vector<int32_t> output_shape(input_shape.cbegin(), input_shape.cend()); 44 .InputShape(input_shape) 59 const std::vector<int32_t> input_shape{ variable 61 std::vector<int32_t> output_shape(input_shape.cbegin(), input_shape.cend()); 65 .InputShape(input_shape) 80 const std::vector<int32_t> input_shape{ variable 82 std::vector<int32_t> output_shape(input_shape.cbegin(), input_shape.cend()); 86 .InputShape(input_shape) 101 const std::vector<int32_t> input_shape{ variable [all …]
|
/external/tensorflow/tensorflow/lite/delegates/hexagon/builders/tests/ |
D | transpose_test.cc | 75 const RuntimeShape input_shape = ::tflite::GetTensorShape(shape); in ComputeExpectedTransposeResult() local 78 output_shape.SetDim(i, input_shape.Dims(perms[i])); in ComputeExpectedTransposeResult() 87 reference_ops::Transpose<integer_type>(params, input_shape, input->data(), in ComputeExpectedTransposeResult() 95 std::vector<int> input_shape = {3}; in TEST() local 96 ComputeExpectedTransposeResult(input_shape, {0}, &input, &expected_output); in TEST() 98 TransposeOpModel model({TensorType_UINT8, input_shape, -10, 10}, {1}, {0}, in TEST() 108 std::vector<int> input_shape = {3}; in TEST() local 109 ComputeExpectedTransposeResult(input_shape, {0}, &input, &expected_output); in TEST() 111 TransposeOpModel model({TensorType_INT8, input_shape, -10, 10}, {1}, {0}, in TEST() 120 std::vector<int> input_shape = {3, 2}; in TEST() local [all …]
|
/external/tensorflow/tensorflow/compiler/xla/client/lib/ |
D | sorting.cc | 31 TF_ASSIGN_OR_RETURN(Shape input_shape, builder->GetShape(input)); in TopK() 32 int last_dim = input_shape.dimensions_size() - 1; in TopK() 33 int64 last_dim_size = input_shape.dimensions(last_dim); in TopK() 49 ShapeUtil::MakeShape(S32, AsInt64Slice(input_shape.dimensions())); in TopK() 51 for (int64 i = 0; i < input_shape.rank(); ++i) { in TopK() 52 if (input_shape.is_dynamic_dimension(i)) { in TopK() 57 auto input_dims = input_shape.dimensions(); in TopK() 60 CreateScalarGtComputation({input_shape.element_type(), S32}, in TopK() 63 std::vector<int64> start_indices(input_shape.dimensions_size(), 0); in TopK() 66 std::vector<int64> strides(input_shape.dimensions_size(), 1); in TopK() [all …]
|
/external/tensorflow/tensorflow/lite/kernels/internal/reference/integer_ops/ |
D | pooling.h | 25 const RuntimeShape& input_shape, in AveragePool() argument 30 TFLITE_DCHECK_EQ(input_shape.DimensionsCount(), 4); in AveragePool() 32 const int batches = MatchingDim(input_shape, 0, output_shape, 0); in AveragePool() 33 const int depth = MatchingDim(input_shape, 3, output_shape, 3); in AveragePool() 34 const int input_height = input_shape.Dims(1); in AveragePool() 35 const int input_width = input_shape.Dims(2); in AveragePool() 65 input_data[Offset(input_shape, batch, in_y, in_x, channel)]; in AveragePool() 82 inline void MaxPool(const PoolParams& params, const RuntimeShape& input_shape, in MaxPool() argument 91 TFLITE_DCHECK_EQ(input_shape.DimensionsCount(), 4); in MaxPool() 93 const int batches = MatchingDim(input_shape, 0, output_shape, 0); in MaxPool() [all …]
|
/external/tensorflow/tensorflow/python/ops/ |
D | concat_benchmark.py | 35 def build_graph(device, input_shape, variable, num_inputs, axis, grad): argument 51 inputs = [array_ops.zeros(input_shape) for _ in range(num_inputs)] 56 input_shape[0], 57 random.randint(max(1, input_shape[1] - 5), input_shape[1] + 5) 63 random.randint(max(1, input_shape[0] - 5), input_shape[0] + 5), 64 input_shape[1] 81 def _run_graph(self, device, input_shape, variable, num_inputs, axis, grad, argument 99 outputs = build_graph(device, input_shape, variable, num_inputs, axis, 112 "GB/sec" % (device, input_shape[0], input_shape[1], variable, 114 num_inputs * input_shape[0] * input_shape[1] * 4 * 2 * [all …]
|