/external/tflite-support/tensorflow_lite_support/custom_ops/python/ |
D | sentencepiece_tokenizer.py | 52 input_tensor = ragged_tensor.convert_to_tensor_or_ragged_tensor(inputs) 53 if input_tensor.shape.ndims is None: 55 if ragged_tensor.is_ragged(input_tensor): 57 input_tensor = input_tensor.with_row_splits_dtype(tf.int32) 59 tokens = self.tokenize(input_tensor.flat_values) 60 return input_tensor.with_flat_values(tokens) 62 if input_tensor.shape.ndims > 1: 66 input_tensor, row_splits_dtype=tf.int32)) 67 elif input_tensor.shape.ndims == 0: 68 tokens = self.tokenize(tf.stack([input_tensor])) [all …]
|
/external/tflite-support/tensorflow_lite_support/custom_ops/kernel/ |
D | ngrams_test.py | 75 input_tensor = tf.RaggedTensor.from_nested_row_splits( 78 input_tensor, width, reduction_type=tf_text.Reduction.STRING_JOIN) 92 def __call__(self, input_tensor): argument 94 input_tensor, width, reduction_type=tf_text.Reduction.STRING_JOIN) 112 input_tensor = tf.ragged.constant(test_case).to_tensor() 114 input_tensor, 2, reduction_type=tf_text.Reduction.STRING_JOIN) 116 rank = input_tensor.shape.rank 120 interpreter.resize_tensor_input(0, input_tensor.shape) 123 input_tensor.numpy()) 132 input_tensor = tf.ragged.constant(test_case).to_tensor() [all …]
|
/external/tensorflow/tensorflow/python/keras/layers/preprocessing/ |
D | reduction_test.py | 60 input_tensor = keras.Input(shape=(None, None), ragged=True) 62 output_tensor = reduction.Reduction(reduction=reduction_str)(input_tensor) 63 model = keras.Model(input_tensor, output_tensor) 98 input_tensor = keras.Input(shape=(None, None), ragged=True) 105 input_tensor, weights=weight_input_tensor) 106 model = keras.Model([input_tensor, weight_input_tensor], output_tensor) 114 input_tensor = keras.Input(shape=(None, None), ragged=True) 120 input_tensor, weights=weight_input_tensor) 121 model = keras.Model([input_tensor, weight_input_tensor], output_tensor) 152 input_tensor = keras.Input(shape=(None, None)) [all …]
|
/external/tensorflow/tensorflow/python/keras/engine/ |
D | input_layer.py | 105 input_tensor=None, argument 147 if input_tensor is None: 150 dtype = backend.dtype(input_tensor) 151 elif input_tensor is not None and input_tensor.dtype != dtype: 153 (input_tensor.dtype, dtype)) 171 ('input_tensor', input_tensor), 180 input_tensor = keras_tensor.keras_tensor_from_type_spec(type_spec) 181 if isinstance(input_tensor, keras_tensor.SparseKerasTensor): 183 if isinstance(input_tensor, keras_tensor.RaggedKerasTensor): 187 self._batch_input_shape = tuple(input_tensor.shape.as_list()) [all …]
|
/external/tensorflow/tensorflow/python/ops/signal/ |
D | fft_ops.py | 33 def _infer_fft_length_for_rfft(input_tensor, fft_rank): argument 36 fft_shape = input_tensor.get_shape()[-fft_rank:] 40 return _array_ops.shape(input_tensor)[-fft_rank:] 46 def _infer_fft_length_for_irfft(input_tensor, fft_rank): argument 49 fft_shape = input_tensor.get_shape()[-fft_rank:] 53 fft_length = _array_ops.unstack(_array_ops.shape(input_tensor)[-fft_rank:]) 64 def _maybe_pad_for_rfft(input_tensor, fft_rank, fft_length, is_reverse=False): argument 69 if (input_tensor.shape.ndims is not None and 70 any(dim.value == 0 for dim in input_tensor.shape.dims)): 71 return input_tensor [all …]
|
/external/tensorflow/tensorflow/python/kernel_tests/ |
D | regex_full_match_op_test.py | 40 input_tensor = constant_op.constant(values, dtypes.string) 41 matched = op(input_tensor, "a.*a").eval() 48 input_tensor = constant_op.constant(values, dtypes.string) 49 matched = op(input_tensor, "a.*a").eval() 56 input_tensor = constant_op.constant(values, dtypes.string) 57 matched = op(input_tensor, "").eval() 64 input_tensor = constant_op.constant(values, dtypes.string) 66 matched = op(input_tensor, invalid_pattern) 76 input_tensor = constant_op.constant("foo", dtypes.string) 78 op = string_ops.regex_full_match(input_tensor, pattern) [all …]
|
D | fractional_max_pool_op_test.py | 83 def _GetExpectedFractionalMaxPoolResult(self, input_tensor, row_seq, col_seq, argument 101 input_shape = input_tensor.shape 104 output_tensor = np.zeros(shape=output_shape, dtype=input_tensor.dtype) 107 two_dim_slice = input_tensor[batch, :, :, channel] 114 def _ValidateFractionalMaxPoolResult(self, input_tensor, pooling_ratio, argument 132 input_tensor, 138 expected = self._GetExpectedFractionalMaxPoolResult(input_tensor, row_seq, 372 input_tensor = constant_op.constant( 377 output_tensor = nn_ops.max_pool(input_tensor, window_size, 382 input_tensor, output_tensor, output_backprop, window_size, [all …]
|
D | fractional_avg_pool_op_test.py | 83 def _GetExpectedFractionalAvgPoolResult(self, input_tensor, row_seq, col_seq, argument 101 input_shape = input_tensor.shape 104 output_tensor = np.zeros(shape=output_shape, dtype=input_tensor.dtype) 107 two_dim_slice = input_tensor[batch, :, :, channel] 114 def _ValidateFractionalAvgPoolResult(self, input_tensor, pooling_ratio, argument 132 input_tensor, 138 expected = self._GetExpectedFractionalAvgPoolResult(input_tensor, row_seq, 361 input_tensor = constant_op.constant( 367 output_tensor = nn_ops.avg_pool(input_tensor, window_size, 376 input_tensor.get_shape(), output_backprop, window_size, [all …]
|
/external/tensorflow/tensorflow/python/keras/applications/ |
D | efficientnet.py | 206 input_tensor=None, argument 291 if input_tensor is None: 294 if not backend.is_keras_tensor(input_tensor): 295 img_input = layers.Input(tensor=input_tensor, shape=input_shape) 297 img_input = input_tensor 385 if input_tensor is not None: 386 inputs = layer_utils.get_source_inputs(input_tensor) 525 input_tensor=None, argument 539 input_tensor=input_tensor, 551 input_tensor=None, argument [all …]
|
D | mobilenet_v2.py | 101 input_tensor=None, argument 196 if input_shape is not None and input_tensor is not None: 198 is_input_t_tensor = backend.is_keras_tensor(input_tensor) 202 layer_utils.get_source_inputs(input_tensor)) 204 raise ValueError('input_tensor: ', input_tensor, 208 if backend.int_shape(input_tensor)[1] != input_shape[1]: 210 input_tensor, 213 if backend.int_shape(input_tensor)[2] != input_shape[1]: 215 input_tensor, 218 raise ValueError('input_tensor specified: ', input_tensor, [all …]
|
D | mobilenet_v3.py | 158 input_tensor=None, argument 175 if input_shape is not None and input_tensor is not None: 177 is_input_t_tensor = backend.is_keras_tensor(input_tensor) 181 layer_utils.get_source_inputs(input_tensor)) 183 raise ValueError('input_tensor: ', input_tensor, 187 if backend.int_shape(input_tensor)[1] != input_shape[1]: 189 input_tensor, 192 if backend.int_shape(input_tensor)[2] != input_shape[1]: 194 input_tensor, 197 raise ValueError('input_tensor specified: ', input_tensor, [all …]
|
/external/tensorflow/tensorflow/tools/api/golden/v2/ |
D | tensorflow.keras.applications.pbtxt | 65 …argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'cl… 69 …argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'cl… 73 …argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'cl… 77 …argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'cl… 81 …argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'cl… 85 …argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'cl… 89 …argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'cl… 93 …argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'cl… 97 …argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'cl… 101 …argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'cl… [all …]
|
D | tensorflow.keras.applications.efficientnet.pbtxt | 5 …argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'cl… 9 …argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'cl… 13 …argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'cl… 17 …argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'cl… 21 …argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'cl… 25 …argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'cl… 29 …argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'cl… 33 …argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'cl…
|
/external/tensorflow/tensorflow/tools/api/golden/v1/ |
D | tensorflow.keras.applications.pbtxt | 65 …argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'cl… 69 …argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'cl… 73 …argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'cl… 77 …argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'cl… 81 …argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'cl… 85 …argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'cl… 89 …argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'cl… 93 …argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'cl… 97 …argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'cl… 101 …argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'cl… [all …]
|
D | tensorflow.keras.applications.efficientnet.pbtxt | 5 …argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'cl… 9 …argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'cl… 13 …argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'cl… 17 …argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'cl… 21 …argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'cl… 25 …argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'cl… 29 …argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'cl… 33 …argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'cl…
|
/external/tensorflow/tensorflow/core/kernels/ |
D | quantized_instance_norm_test.cc | 125 Tensor input_tensor(DT_QUINT8, {1, 4, 4, 32}); in TestBasic() local 126 auto input = input_tensor.flat<quint8>(); in TestBasic() 130 Expect(input_tensor, 0.0f, 1.0f, false, 0.0f, 0.0f); in TestBasic() 134 Tensor input_tensor(DT_QUINT8, {1, 4, 4, 32}); in TestZeroInput() local 135 auto input = input_tensor.flat<quint8>(); in TestZeroInput() 140 Expect(input_tensor, 2.0f, 3.0f, false, 0.0f, 0.0f); in TestZeroInput() 144 Tensor input_tensor(DT_QUINT8, {1, 1, 2, 16}); in TestMaxInput() local 145 auto input = input_tensor.flat<quint8>(); in TestMaxInput() 149 Expect(input_tensor, 0.0f, in TestMaxInput() 155 Tensor input_tensor(DT_QUINT8, {1, 4, 4, 32}); in TestOutputRangeGiven() local [all …]
|
D | broadcast_to_op.h | 51 const Tensor &input_tensor, const BCast &bcast) const { in ReshapeAndBCast() 54 input_tensor.NumElements() < kint32max; in ReshapeAndBCast() 58 input_tensor.template shaped<T, NDIMS>(bcast.x_reshape()), in ReshapeAndBCast() 63 input_tensor.template shaped<T, NDIMS>(bcast.x_reshape()), in ReshapeAndBCast() 73 const Tensor &input_tensor, const TensorShape &input_shape, in operator() 78 ReshapeAndBCast<1>(device, output_tensor, input_tensor, bcast); in operator() 81 ReshapeAndBCast<2>(device, output_tensor, input_tensor, bcast); in operator() 84 ReshapeAndBCast<3>(device, output_tensor, input_tensor, bcast); in operator() 87 ReshapeAndBCast<4>(device, output_tensor, input_tensor, bcast); in operator() 90 ReshapeAndBCast<5>(device, output_tensor, input_tensor, bcast); in operator()
|
/external/tensorflow/tensorflow/python/ops/ |
D | image_grad_test_base.py | 50 input_tensor = constant_op.constant(x, shape=in_shape) 51 resize_out = image_ops.resize_nearest_neighbor(input_tensor, 69 input_tensor = constant_op.constant(x, shape=in_shape) 72 resize_nn, [input_tensor], delta=1 / 8)) 86 input_tensor = constant_op.constant(x, shape=in_shape) 89 resize_nn, [input_tensor], delta=1 / 8)) 105 input_tensor = constant_op.constant(x, shape=in_shape) 107 resize_nn, [input_tensor], delta=1 / 8) 110 input_tensor = constant_op.constant(x, shape=in_shape) 112 resize_nn, [input_tensor], delta=1 / 8) [all …]
|
/external/tensorflow/tensorflow/lite/tools/benchmark/ |
D | benchmark_test.cc | 104 void CheckInputTensorValue(const TfLiteTensor* input_tensor, in CheckInputTensorValue() argument 106 ASSERT_THAT(input_tensor, testing::NotNull()); in CheckInputTensorValue() 108 input_tensor->data.raw, input_tensor->data.raw + input_tensor->bytes, in CheckInputTensorValue() 112 void CheckInputTensorValue(const TfLiteTensor* input_tensor, in CheckInputTensorValue() argument 115 StringRef tensor_value = GetString(input_tensor, tensor_dim_index); in CheckInputTensorValue() 135 : interpreter_->input_tensor(index); in GetInputTensor() 233 auto input_tensor = benchmark.GetInputTensor(0); in TEST() local 234 ASSERT_THAT(input_tensor, testing::NotNull()); in TEST() 236 input_tensor->data.raw, input_tensor->data.raw + input_tensor->bytes, in TEST() 310 auto input_tensor = benchmark.GetInputTensor(0); in TEST() local [all …]
|
/external/tensorflow/tensorflow/core/tpu/kernels/ |
D | infeed_ops.cc | 76 const Tensor& input_tensor, in TransposeTensor() argument 96 input_tensor, input_tensor.dtype(), shape)); in TransposeTensor() 102 TF_RETURN_IF_ERROR(ctx->allocate_temp(input_tensor.dtype(), in TransposeTensor() 106 if (input_tensor.NumElements() > 0) { in TransposeTensor() 108 input_tensor, permutation, in TransposeTensor() 196 const Tensor& input_tensor, in AutoTransposeAndLinearize() argument 200 const Tensor* tensor = &input_tensor; in AutoTransposeAndLinearize() 207 TransposeTensor(ctx, input_tensor, shape)); in AutoTransposeAndLinearize() 251 const Tensor& input_tensor = ctx->input(0); in Compute() local 254 ctx, input_tensor.dtype() == dtype_, in Compute() [all …]
|
/external/tensorflow/tensorflow/lite/c/ |
D | c_test.c | 89 TfLiteTensor* input_tensor = TfLiteInterpreterGetInputTensor(interpreter, 0); in TestSmokeTest() local 90 ASSERT_NE(input_tensor, NULL); in TestSmokeTest() 91 ASSERT_EQ(TfLiteTensorType(input_tensor), kTfLiteFloat32); in TestSmokeTest() 92 ASSERT_EQ(TfLiteTensorNumDims(input_tensor), 1); in TestSmokeTest() 93 ASSERT_EQ(TfLiteTensorDim(input_tensor, 0), 2); in TestSmokeTest() 94 ASSERT_EQ(TfLiteTensorByteSize(input_tensor), sizeof(float) * 2); in TestSmokeTest() 95 ASSERT_NE(TfLiteTensorData(input_tensor), NULL); in TestSmokeTest() 96 ASSERT_STREQ(TfLiteTensorName(input_tensor), "input"); in TestSmokeTest() 99 TfLiteTensorQuantizationParams(input_tensor); in TestSmokeTest() 104 ASSERT_EQ(TfLiteTensorCopyFromBuffer(input_tensor, input, in TestSmokeTest()
|
D | c_api_test.cc | 59 TfLiteTensor* input_tensor = TfLiteInterpreterGetInputTensor(interpreter, 0); in TEST() local 60 ASSERT_NE(input_tensor, nullptr); in TEST() 61 EXPECT_EQ(TfLiteTensorType(input_tensor), kTfLiteFloat32); in TEST() 62 EXPECT_EQ(TfLiteTensorNumDims(input_tensor), 1); in TEST() 63 EXPECT_EQ(TfLiteTensorDim(input_tensor, 0), 2); in TEST() 64 EXPECT_EQ(TfLiteTensorByteSize(input_tensor), sizeof(float) * 2); in TEST() 65 EXPECT_NE(TfLiteTensorData(input_tensor), nullptr); in TEST() 66 EXPECT_STREQ(TfLiteTensorName(input_tensor), "input"); in TEST() 69 TfLiteTensorQuantizationParams(input_tensor); in TEST() 74 ASSERT_EQ(TfLiteTensorCopyFromBuffer(input_tensor, input.data(), in TEST() [all …]
|
/external/tensorflow/tensorflow/python/keras/layers/ |
D | einsum_dense_test.py | 244 input_tensor = keras.Input(shape=non_batch_input_shape) 247 output_tensor = layer(input_tensor) 282 input_tensor = keras.Input(shape=(32,)) 287 _ = layer(input_tensor) 290 input_tensor = keras.Input(shape=(32, 64)) 296 _ = layer(input_tensor) 299 input_tensor = keras.Input(shape=(32,)) 304 _ = layer(input_tensor) 307 input_tensor = keras.Input(shape=(32,)) 311 _ = layer(input_tensor)
|
/external/tensorflow/tensorflow/compiler/mlir/tensorflow/utils/ |
D | convert_tensor.cc | 61 static TensorProto ConvertToProto(const Tensor& input_tensor, in ConvertToProto() argument 71 input_tensor.AsProtoTensorContent(&tensor_proto); in ConvertToProto() 73 input_tensor.AsProtoField(&tensor_proto); in ConvertToProto() 83 StatusOr<ElementsAttr> ConvertFlatTensor(const Tensor& input_tensor, in ConvertFlatTensor() argument 85 auto arr = input_tensor.flat<T>(); in ConvertFlatTensor() 90 ElementsAttr ConvertBf16Tensor(const Tensor& input_tensor, in ConvertBf16Tensor() argument 92 auto buffer = llvm::makeArrayRef(static_cast<char*>(input_tensor.data()), in ConvertBf16Tensor() 93 input_tensor.TotalBytes()); in ConvertBf16Tensor() 107 StatusOr<ElementsAttr> ConvertStringTensor(const Tensor& input_tensor, in ConvertStringTensor() argument 110 auto arr = input_tensor.flat<tstring>(); in ConvertStringTensor() [all …]
|
/external/tensorflow/tensorflow/python/ops/ragged/ |
D | ragged_math_ops.py | 567 def reduce_sum(input_tensor, axis=None, keepdims=None, name=None): argument 573 rt_input=input_tensor, 579 def reduce_prod(input_tensor, axis=None, keepdims=None, name=None): argument 584 rt_input=input_tensor, 590 def reduce_min(input_tensor, axis=None, keepdims=None, name=None): argument 595 rt_input=input_tensor, 601 def reduce_max(input_tensor, axis=None, keepdims=None, name=None): argument 606 rt_input=input_tensor, 612 def reduce_mean(input_tensor, axis=None, keepdims=None, name=None): argument 614 with ops.name_scope(name, 'RaggedReduceMean', [input_tensor, axis]): [all …]
|