/external/tensorflow/tensorflow/python/keras/layers/preprocessing/benchmarks/ |
D | image_preproc_benchmark.py | 47 inputs_shape = array_ops.shape(inputs) 48 batch_size = inputs_shape[0] 49 img_hd = math_ops.cast(inputs_shape[1], dtypes.float32) 50 img_wd = math_ops.cast(inputs_shape[2], dtypes.float32) 61 inputs_shape = array_ops.shape(inputs) 62 batch_size = inputs_shape[0] 63 img_hd = math_ops.cast(inputs_shape[1], dtypes.float32) 64 img_wd = math_ops.cast(inputs_shape[2], dtypes.float32)
|
/external/tensorflow/tensorflow/core/kernels/ |
D | ctc_decoder_ops.cc | 68 const TensorShape& inputs_shape = (*inputs)->shape(); in ValidateInputsGenerateOutputs() local 70 if (inputs_shape.dims() != 3) { in ValidateInputsGenerateOutputs() 74 const int64 max_time = inputs_shape.dim_size(0); in ValidateInputsGenerateOutputs() 75 const int64 batch_size = inputs_shape.dim_size(1); in ValidateInputsGenerateOutputs() 200 const TensorShape& inputs_shape = inputs->shape(); in Compute() local 203 const int64 max_time = inputs_shape.dim_size(0); in Compute() 204 const int64 batch_size = inputs_shape.dim_size(1); in Compute() 205 const int64 num_classes_raw = inputs_shape.dim_size(2); in Compute() 302 const TensorShape& inputs_shape = inputs->shape(); in Compute() local 304 const int64 max_time = inputs_shape.dim_size(0); in Compute() [all …]
|
D | ctc_loss_op.cc | 106 const TensorShape& inputs_shape = inputs->shape(); in Compute() local 107 const int64 max_time = inputs_shape.dim_size(0); in Compute() 108 const int64 batch_size = inputs_shape.dim_size(1); in Compute() 109 const int64 num_classes_raw = inputs_shape.dim_size(2); in Compute() 182 ctx->allocate_output("gradient", inputs_shape, &gradient)); in Compute() 274 const TensorShape& inputs_shape = inputs->shape(); in Compute() local 275 const int64 max_time_raw = inputs_shape.dim_size(0); in Compute() 276 const int64 batch_size_raw = inputs_shape.dim_size(1); in Compute() 277 const int64 num_classes_raw = inputs_shape.dim_size(2); in Compute() 313 ctx->allocate_output("gradient", inputs_shape, &gradient)); in Compute()
|
/external/tensorflow/tensorflow/lite/experimental/examples/lstm/ |
D | rnn_cell.py | 98 def build(self, inputs_shape): argument 107 if inputs_shape[-1] is None: 109 (inputs_shape,)) 111 input_depth = inputs_shape[-1] 296 def build(self, inputs_shape): argument 306 if len(inputs_shape) != 2: 308 "inputs_shape must be 2-dimensional, saw shape: %s" % inputs_shape) 310 inputs_shape[1] 311 if isinstance(inputs_shape[1], int) else inputs_shape[1].value) 313 raise ValueError("Invalid inputs_shape, saw shape: %s" % inputs_shape)
|
/external/tensorflow/tensorflow/python/keras/layers/preprocessing/ |
D | image_preprocessing.py | 152 inputs_shape = array_ops.shape(inputs) 153 img_hd = inputs_shape[H_AXIS] 154 img_wd = inputs_shape[W_AXIS] 537 inputs_shape = array_ops.shape(inputs) 538 batch_size = inputs_shape[0] 540 img_hd = math_ops.cast(inputs_shape[h_axis], dtypes.float32) 541 img_wd = math_ops.cast(inputs_shape[w_axis], dtypes.float32) 826 inputs_shape = array_ops.shape(inputs) 827 batch_size = inputs_shape[0] 828 img_hd = math_ops.cast(inputs_shape[H_AXIS], dtypes.float32) [all …]
|
/external/tensorflow/tensorflow/lite/micro/kernels/ |
D | concatenation.cc | 89 RuntimeShape inputs_shape[kMaxInputNum]; in EvalUnquantized() local 92 GetAllInputTensorShapes(context, node, inputs_shape); in EvalUnquantized() 93 GetShapesPointers(inputs_shape, node->inputs->size, inputs_shape_ptr); in EvalUnquantized() 109 RuntimeShape inputs_shape[kMaxInputNum]; in EvalQuantizedUInt8() local 112 GetAllInputTensorShapes(context, node, inputs_shape); in EvalQuantizedUInt8() 113 GetShapesPointers(inputs_shape, node->inputs->size, inputs_shape_ptr); in EvalQuantizedUInt8()
|
/external/tensorflow/tensorflow/python/keras/layers/legacy_rnn/ |
D | rnn_cell_impl.py | 458 def build(self, inputs_shape): argument 459 if inputs_shape[-1] is None: 461 str(inputs_shape)) 464 input_depth = inputs_shape[-1] 568 def build(self, inputs_shape): argument 569 if inputs_shape[-1] is None: 571 str(inputs_shape)) 573 input_depth = inputs_shape[-1] 746 def build(self, inputs_shape): argument 747 if inputs_shape[-1] is None: [all …]
|
D | rnn_cell_wrapper_impl.py | 197 def build(self, inputs_shape): argument 198 self.cell.build(inputs_shape)
|
/external/tensorflow/tensorflow/python/keras/layers/ |
D | rnn_cell_wrapper_v2.py | 74 def build(self, inputs_shape): argument 76 self.cell.build(inputs_shape)
|
D | convolutional.py | 999 inputs_shape = array_ops.shape(inputs) 1000 batch_size = inputs_shape[0] 1006 length = inputs_shape[t_axis] 1270 inputs_shape = array_ops.shape(inputs) 1271 batch_size = inputs_shape[0] 1286 height = height if height is not None else inputs_shape[h_axis] 1287 width = width if width is not None else inputs_shape[w_axis] 1580 inputs_shape = array_ops.shape(inputs) 1581 batch_size = inputs_shape[0] 1587 depth = inputs_shape[d_axis] [all …]
|
D | recurrent_test.py | 1859 def build(self, inputs_shape): argument 1862 input_1 = inputs_shape.t1[1] 1863 input_2, input_3 = inputs_shape.t2[1:] 1865 input_1 = inputs_shape[0][1] 1866 input_2, input_3 = inputs_shape[1][1:]
|
/external/tensorflow/tensorflow/tools/api/golden/v2/ |
D | tensorflow.nn.-r-n-n-cell-device-wrapper.pbtxt | 171 argspec: "args=[\'self\', \'inputs_shape\'], varargs=None, keywords=None, defaults=None"
|
D | tensorflow.nn.-r-n-n-cell-residual-wrapper.pbtxt | 171 argspec: "args=[\'self\', \'inputs_shape\'], varargs=None, keywords=None, defaults=None"
|
D | tensorflow.nn.-r-n-n-cell-dropout-wrapper.pbtxt | 175 argspec: "args=[\'self\', \'inputs_shape\'], varargs=None, keywords=None, defaults=None"
|
/external/tensorflow/tensorflow/core/grappler/optimizers/ |
D | arithmetic_optimizer_test.cc | 837 Output inputs_shape = ops::Shape(s, inputs); in TEST_F() local 840 Output batch_size = ops::Slice(s, inputs_shape, ops::Const(s, {0}, {1}), in TEST_F() 879 Output inputs_shape = ops::Shape(s, inputs); in TEST_F() local 882 Output batch_size = ops::Slice(s, inputs_shape, ops::Const(s, {0}, {1}), in TEST_F() 884 Output height = ops::Slice(s, inputs_shape, ops::Const(s, {2}, {1}), in TEST_F() 886 Output width = ops::Slice(s, inputs_shape, ops::Const(s, {3}, {1}), in TEST_F() 1342 Output inputs_shape = in TEST_F() local 1345 ops::RandomUniform(s.WithOpName("inputs"), inputs_shape, DT_FLOAT); in TEST_F() 1406 Output inputs_shape = in TEST_F() local 1484 Output inputs_shape = in TEST_F() local [all …]
|
/external/tensorflow/tensorflow/tools/api/golden/v1/ |
D | tensorflow.nn.rnn_cell.-dropout-wrapper.pbtxt | 184 argspec: "args=[\'self\', \'inputs_shape\'], varargs=None, keywords=None, defaults=None"
|
D | tensorflow.lite.experimental.nn.-tf-lite-r-n-n-cell.pbtxt | 179 argspec: "args=[\'self\', \'inputs_shape\'], varargs=None, keywords=None, defaults=None"
|
D | tensorflow.lite.experimental.nn.-t-f-lite-l-s-t-m-cell.pbtxt | 179 argspec: "args=[\'self\', \'inputs_shape\'], varargs=None, keywords=None, defaults=None"
|