/external/neven/Embedded/common/src/b_TensorEm/ |
D | CompactMat.c | 80 sumL += ( ( int8 ) dpL[ 0 ] * ( int32 )inPtrL[ 0 ] ); in bts_CompactMat_fltDotPrdRow() 81 sumL += ( ( int8 )( dpL[ 0 ] >> 8 ) * ( int32 )inPtrL[ 1 ] ); in bts_CompactMat_fltDotPrdRow() 82 sumL += ( ( int8 ) dpL[ 1 ] * ( int32 )inPtrL[ 2 ] ); in bts_CompactMat_fltDotPrdRow() 83 sumL += ( ( int8 )( dpL[ 1 ] >> 8 ) * ( int32 )inPtrL[ 3 ] ); in bts_CompactMat_fltDotPrdRow() 84 sumL += ( ( int8 ) dpL[ 2 ] * ( int32 )inPtrL[ 4 ] ); in bts_CompactMat_fltDotPrdRow() 85 sumL += ( ( int8 )( dpL[ 2 ] >> 8 ) * ( int32 )inPtrL[ 5 ] ); in bts_CompactMat_fltDotPrdRow() 86 sumL += ( ( int8 ) dpL[ 3 ] * ( int32 )inPtrL[ 6 ] ); in bts_CompactMat_fltDotPrdRow() 87 sumL += ( ( int8 )( dpL[ 3 ] >> 8 ) * ( int32 )inPtrL[ 7 ] ); in bts_CompactMat_fltDotPrdRow() 93 sumL += ( ( int8 ) *dpL * ( int32 )inPtrL[ 0 ] ); in bts_CompactMat_fltDotPrdRow() 94 sumL += ( ( int8 )( *dpL >> 8 ) * ( int32 )inPtrL[ 1 ] ); in bts_CompactMat_fltDotPrdRow() [all …]
|
/external/llvm-project/llvm/test/CodeGen/WebAssembly/ |
D | target-features.ll | 60 ; ATTRS-NEXT: .int8 3 61 ; ATTRS-NEXT: .int8 43 62 ; ATTRS-NEXT: .int8 7 64 ; ATTRS-NEXT: .int8 43 65 ; ATTRS-NEXT: .int8 19 67 ; ATTRS-NEXT: .int8 43 68 ; ATTRS-NEXT: .int8 15 72 ; SIMD128-NEXT: .int8 4 73 ; SIMD128-NEXT: .int8 43 74 ; SIMD128-NEXT: .int8 7 [all …]
|
D | custom-sections.ll | 33 ; CHECK-NEXT: .int8 2 34 ; CHECK-NEXT: .int8 8 36 ; CHECK-NEXT: .int8 1 37 ; CHECK-NEXT: .int8 3 39 ; CHECK-NEXT: .int8 0 40 ; CHECK-NEXT: .int8 12 42 ; CHECK-NEXT: .int8 1 43 ; CHECK-NEXT: .int8 5 45 ; CHECK-NEXT: .int8 3
|
/external/tensorflow/tensorflow/lite/g3doc/performance/ |
D | quantization_spec.md | 21 $$real\_value = (int8\_value - zero\_point) \times scale$$ 24 `int8` two’s complement values in the range `[-127, 127]` with zero-point equal 25 to 0. Per-tensor activations/inputs are represented by `int8` two’s complement 37 `int8` quantization for 8-bit. This is for the convenience of symmetric 66 signed `int8` range `[-128, 127]`. Many activations are asymmetric in nature and 105 ## int8 quantized operator specifications 107 Below we describe the quantization requirements for our int8 tflite kernels: 112 data_type : int8 116 data_type : int8 120 data_type : int8 [all …]
|
/external/llvm-project/clang/test/SemaOpenCL/ |
D | format-strings-fixit.cl | 12 typedef __attribute__((ext_vector_type(8))) int int8; 27 printf("%v4d", (int8) 123); 28 // CHECK: printf("%v8hld", (int8) 123); 30 printf("%v4f", (int8) 123); 31 // CHECK: printf("%v8hld", (int8) 123); 33 printf("%v4ld", (int8) 123); 34 // CHECK: printf("%v8hld", (int8) 123); 42 printf("%v4hld", (int8) 123); 43 // CHECK: printf("%v8hld", (int8) 123); 45 printf("%v4hlf", (int8) 123); [all …]
|
/external/tensorflow/tensorflow/lite/kernels/ |
D | maximum_minimum.cc | 108 void TFLiteOperation<maximum_minimum::kGenericOptimized, int8, MaximumOp>( in TFLiteOperation() 117 GetTensorData<int8>(op_context.input1), in TFLiteOperation() 119 GetTensorData<int8>(op_context.input2), in TFLiteOperation() 121 GetTensorData<int8>(op_context.output), MaximumOp::template op<int8>); in TFLiteOperation() 125 GetTensorShape(op_context.input1), GetTensorData<int8>(op_context.input1), in TFLiteOperation() 126 GetTensorShape(op_context.input2), GetTensorData<int8>(op_context.input2), in TFLiteOperation() 127 GetTensorShape(op_context.output), GetTensorData<int8>(op_context.output), in TFLiteOperation() 128 MaximumOp::template op<int8>); in TFLiteOperation() 133 void TFLiteOperation<maximum_minimum::kGenericOptimized, int8, MinimumOp>( in TFLiteOperation() 142 GetTensorData<int8>(op_context.input1), in TFLiteOperation() [all …]
|
/external/libchrome/mojo/public/tools/fuzzers/ |
D | fuzz.mojom | 11 int8 dummy; 16 int8 fuzz_int8; 27 array<int8> fuzz_primitive_array; 29 map<string, int8> fuzz_primitive_map; 34 array<map<FuzzEnum, map<int8, array<FuzzUnion?>?>>>? fuzz_complex; 39 int8 fuzz_int8; 51 array<int8> fuzz_primitive_array; 52 map<string, int8> fuzz_primitive_map; 57 array<int8>? fuzz_nullable_array; 59 array<map<FuzzEnum, map<int8, array<FuzzStruct?>?>>>? fuzz_complex;
|
/external/tensorflow/tensorflow/lite/kernels/internal/optimized/integer_ops/ |
D | depthwise_conv_3x3_filter.h | 113 const int32* output_shift_ptr, const int8* input_ptr, 114 const int8* filter_ptr, const int32* bias_ptr, 115 int8* output_ptr, int64_t input_depth, 968 const int32* output_shift_ptr, const int8* input_ptr, 969 const int8* filter_ptr, const int32* bias_ptr, 970 int8* output_ptr, int64_t input_depth, 1930 const int32* output_shift_ptr, const int8* input_ptr, 1931 const int8* filter_ptr, const int32* bias_ptr, 1932 int8* output_ptr, 2042 const int32* output_shift_ptr, const int8* input_ptr, [all …]
|
D | pooling.h | 38 const int8* input_data, const RuntimeShape& output_shape, in MaxPool() 39 int8* output_data) { in MaxPool() 62 int8 acc[kPoolingAccTrancheSize]; in MaxPool() 85 const int8* input_ptr = in MaxPool() 90 const int8* input_row_ptr = in MaxPool() 93 const int8* input_channel_ptr = input_row_ptr; in MaxPool() 118 int8* output_ptr = output_data + Offset(output_shape, batch, out_y, in MaxPool() 136 int8 a = acc[channel]; in MaxPool() 137 a = std::max<int8>(a, params.quantized_activation_min); in MaxPool() 138 a = std::min<int8>(a, params.quantized_activation_max); in MaxPool() [all …]
|
D | conv.h | 34 const int8* input_data, const RuntimeShape& filter_shape, in ConvPerChannel() 35 const int8* filter_data, const RuntimeShape& bias_shape, in ConvPerChannel() 36 const int32* bias_data, const RuntimeShape& output_shape, int8* output_data, in ConvPerChannel() 37 const RuntimeShape& im2col_shape, int8* im2col_data, in ConvPerChannel() 53 const int8* gemm_input_data = nullptr; in ConvPerChannel() 61 const int8 input_zero_point = -input_offset; in ConvPerChannel() 97 cpu_backend_gemm::MatrixParams<int8> lhs_params; in ConvPerChannel() 102 cpu_backend_gemm::MatrixParams<int8> rhs_params; in ConvPerChannel() 107 cpu_backend_gemm::MatrixParams<int8> dst_params; in ConvPerChannel() 113 int32, int8, in ConvPerChannel()
|
D | depthwise_conv.h | 49 const int8* input_ptr, int16 input_offset, 50 int input_ptr_increment, const int8* filter_ptr, 95 const int8* input_ptr, int16 input_offset, 96 int input_ptr_increment, const int8* filter_ptr, 162 const int8* input_ptr, int16 input_offset, 163 int input_ptr_increment, const int8* filter_ptr, 230 const int8* input_ptr, int16 input_offset, 231 int input_ptr_increment, const int8* filter_ptr, 304 const int8* input_ptr, int16 input_offset, 305 int input_ptr_increment, const int8* filter_ptr, [all …]
|
D | depthwise_conv_hybrid_3x3_filter.h | 130 const int8* input_ptr, 131 const int8* filter_ptr, const float* bias_ptr, 1064 static inline void Run(const float* input_scale, const int8* input_ptr, 1065 const int8* filter_ptr, const float* bias_ptr, 2072 static inline void Run(const float* input_scale, const int8* input_ptr, 2073 const int8* filter_ptr, const float* bias_ptr, 2188 static inline void Run(const float* input_scale, const int8* input_ptr, 2189 const int8* filter_ptr, const float* bias_ptr, 2358 static inline void Run(const float* input_scale, const int8* input_ptr, 2359 const int8* filter_ptr, const float* bias_ptr, [all …]
|
D | fully_connected.h | 32 const int8* input_data, const RuntimeShape& filter_shape, in FullyConnected() 33 const int8* filter_data, const RuntimeShape& bias_shape, in FullyConnected() 34 const int32* bias_data, const RuntimeShape& output_shape, int8* output_data, in FullyConnected() 64 cpu_backend_gemm::MatrixParams<int8> lhs_params; in FullyConnected() 69 cpu_backend_gemm::MatrixParams<int8> rhs_params; in FullyConnected() 74 cpu_backend_gemm::MatrixParams<int8> dst_params; in FullyConnected() 79 cpu_backend_gemm::GemmParams<int32, int8> gemm_params; in FullyConnected()
|
D | mul.h | 36 const int8* input1_data, const int8* input2_data, in MulElementwise() 37 int8* output_data) { in MulElementwise() 136 output_data[i] = static_cast<int8>(clamped_output); in MulElementwise() 142 const int8 broadcast_value, in MulSimpleBroadcast() 143 const int8* input2_data, int8* output_data) { in MulSimpleBroadcast() 228 output_data[i] = static_cast<int8>(clamped_output); in MulSimpleBroadcast() 233 const RuntimeShape& input1_shape, const int8* input1_data, in Mul() 234 const RuntimeShape& input2_shape, const int8* input2_data, in Mul() 235 const RuntimeShape& output_shape, int8* output_data) { in Mul() 247 const int8* input1_data, in BroadcastMulDispatch() [all …]
|
/external/tensorflow/tensorflow/core/lib/io/ |
D | zlib_compression_options.h | 33 int8 flush_mode; 77 int8 window_bits; 85 int8 compression_level; 88 int8 compression_method; 95 int8 mem_level = 9; 112 int8 compression_strategy;
|
/external/libchrome/mojo/public/interfaces/bindings/tests/ |
D | test_unions.mojom | 19 int8 f_int8; 20 int8 f_int8_other; 36 int8 f_int8; 40 array<int8> f_array_int8; 41 map<string, int8> f_map_int8; 64 int8 f_int8; 83 int8 f_int8; 101 int8 f_int8; 105 int8 f_int8;
|
/external/angle/third_party/vulkan-deps/glslang/src/Test/baseResults/ |
D | spv.8bitstorage_Error-int.frag.out | 2 ERROR: 0:54: 'structure: (u)int8 types can only be in uniform block or buffer storage' : required e… 5 ERROR: 0:58: 'return: can't use with structs containing int8' : required extension not requested: P… 8 ERROR: 0:61: 'int8_t: (u)int8 types can only be in uniform block or buffer storage' : required exte… 11 ERROR: 0:74: '[: does not operate on types containing (u)int8' : required extension not requested: … 14 ERROR: 0:75: '.: can't swizzle types containing (u)int8' : required extension not requested: Possib… 17 ERROR: 0:76: 'built-in function: (u)int8 types can only be in uniform block or buffer storage' : re… 20 ERROR: 0:76: 'built-in function: (u)int8 types can only be in uniform block or buffer storage' : re… 23 ERROR: 0:76: 'built-in function: (u)int8 types can only be in uniform block or buffer storage' : re… 26 ERROR: 0:77: 'built-in function: (u)int8 types can only be in uniform block or buffer storage' : re… 29 ERROR: 0:77: 'built-in function: (u)int8 types can only be in uniform block or buffer storage' : re… [all …]
|
D | spv.8bitstorage_Error-uint.frag.out | 2 ERROR: 0:54: 'structure: (u)int8 types can only be in uniform block or buffer storage' : required e… 8 ERROR: 0:61: 'uint8_t: (u)int8 types can only be in uniform block or buffer storage' : required ext… 11 ERROR: 0:74: '[: does not operate on types containing (u)int8' : required extension not requested: … 14 ERROR: 0:75: '.: can't swizzle types containing (u)int8' : required extension not requested: Possib… 17 ERROR: 0:76: 'built-in function: (u)int8 types can only be in uniform block or buffer storage' : re… 20 ERROR: 0:76: 'built-in function: (u)int8 types can only be in uniform block or buffer storage' : re… 23 ERROR: 0:76: 'built-in function: (u)int8 types can only be in uniform block or buffer storage' : re… 26 ERROR: 0:77: 'built-in function: (u)int8 types can only be in uniform block or buffer storage' : re… 29 ERROR: 0:77: 'built-in function: (u)int8 types can only be in uniform block or buffer storage' : re… 35 ERROR: 0:81: '.: can't swizzle types containing (u)int8' : required extension not requested: Possib… [all …]
|
/external/deqp-deps/glslang/Test/baseResults/ |
D | spv.8bitstorage_Error-int.frag.out | 2 ERROR: 0:54: 'structure: (u)int8 types can only be in uniform block or buffer storage' : required e… 5 ERROR: 0:58: 'return: can't use with structs containing int8' : required extension not requested: P… 8 ERROR: 0:61: 'int8_t: (u)int8 types can only be in uniform block or buffer storage' : required exte… 11 ERROR: 0:74: '[: does not operate on types containing (u)int8' : required extension not requested: … 14 ERROR: 0:75: '.: can't swizzle types containing (u)int8' : required extension not requested: Possib… 17 ERROR: 0:76: 'built-in function: (u)int8 types can only be in uniform block or buffer storage' : re… 20 ERROR: 0:76: 'built-in function: (u)int8 types can only be in uniform block or buffer storage' : re… 23 ERROR: 0:76: 'built-in function: (u)int8 types can only be in uniform block or buffer storage' : re… 26 ERROR: 0:77: 'built-in function: (u)int8 types can only be in uniform block or buffer storage' : re… 29 ERROR: 0:77: 'built-in function: (u)int8 types can only be in uniform block or buffer storage' : re… [all …]
|
D | spv.8bitstorage_Error-uint.frag.out | 2 ERROR: 0:54: 'structure: (u)int8 types can only be in uniform block or buffer storage' : required e… 8 ERROR: 0:61: 'uint8_t: (u)int8 types can only be in uniform block or buffer storage' : required ext… 11 ERROR: 0:74: '[: does not operate on types containing (u)int8' : required extension not requested: … 14 ERROR: 0:75: '.: can't swizzle types containing (u)int8' : required extension not requested: Possib… 17 ERROR: 0:76: 'built-in function: (u)int8 types can only be in uniform block or buffer storage' : re… 20 ERROR: 0:76: 'built-in function: (u)int8 types can only be in uniform block or buffer storage' : re… 23 ERROR: 0:76: 'built-in function: (u)int8 types can only be in uniform block or buffer storage' : re… 26 ERROR: 0:77: 'built-in function: (u)int8 types can only be in uniform block or buffer storage' : re… 29 ERROR: 0:77: 'built-in function: (u)int8 types can only be in uniform block or buffer storage' : re… 35 ERROR: 0:81: '.: can't swizzle types containing (u)int8' : required extension not requested: Possib… [all …]
|
/external/tensorflow/tensorflow/lite/kernels/internal/ |
D | averagepool_quantized_test.cc | 37 const int8* input_data, in RunOneAveragePoolTest() 40 std::vector<int8> optimized_averagePool_output(buffer_size); in RunOneAveragePoolTest() 41 std::vector<int8> reference_averagePool_output(buffer_size); in RunOneAveragePoolTest() 87 std::vector<int8> input_data(buffer_size); in CreateDataAndRunAveragePool() 173 std::vector<int8> input_data(buffer_size); in CreateExtremalDataAndRunAveragePool() 176 int8 min = std::numeric_limits<int8>::min(); in CreateExtremalDataAndRunAveragePool() 177 int8 max = std::numeric_limits<int8>::min() + 10; in CreateExtremalDataAndRunAveragePool() 182 min = std::numeric_limits<int8>::max() - 10; in CreateExtremalDataAndRunAveragePool() 183 max = std::numeric_limits<int8>::max(); in CreateExtremalDataAndRunAveragePool()
|
/external/oboe/samples/RhythmGame/third_party/glm/gtc/ |
D | bitfield.hpp | 97 GLM_FUNC_DECL int16 bitfieldInterleave(int8 x, int8 y); 139 GLM_FUNC_DECL int32 bitfieldInterleave(int8 x, int8 y, int8 z); 181 GLM_FUNC_DECL int32 bitfieldInterleave(int8 x, int8 y, int8 z, int8 w);
|
/external/tensorflow/tensorflow/lite/micro/examples/hello_world/ |
D | hello_world_test.cc | 81 input->data.int8[0] = x_quantized; in TF_LITE_MICRO_TEST() 100 int8_t y_pred_quantized = output->data.int8[0]; in TF_LITE_MICRO_TEST() 111 input->data.int8[0] = x / input_scale + input_zero_point; in TF_LITE_MICRO_TEST() 113 y_pred = (output->data.int8[0] - output_zero_point) * output_scale; in TF_LITE_MICRO_TEST() 118 input->data.int8[0] = x / input_scale + input_zero_point; in TF_LITE_MICRO_TEST() 120 y_pred = (output->data.int8[0] - output_zero_point) * output_scale; in TF_LITE_MICRO_TEST() 125 input->data.int8[0] = x / input_scale + input_zero_point; in TF_LITE_MICRO_TEST() 127 y_pred = (output->data.int8[0] - output_zero_point) * output_scale; in TF_LITE_MICRO_TEST()
|
/external/tensorflow/tensorflow/lite/micro/examples/micro_speech/ |
D | micro_speech_test.cc | 78 input->data.int8[i] = yes_features_data[i]; in TF_LITE_MICRO_TEST() 105 uint8_t yes_score = output->data.int8[kYesIndex] + 128; in TF_LITE_MICRO_TEST() 106 uint8_t no_score = output->data.int8[kNoIndex] + 128; in TF_LITE_MICRO_TEST() 114 input->data.int8[i] = no_features_data[i]; in TF_LITE_MICRO_TEST() 133 silence_score = output->data.int8[kSilenceIndex] + 128; in TF_LITE_MICRO_TEST() 134 unknown_score = output->data.int8[kUnknownIndex] + 128; in TF_LITE_MICRO_TEST() 135 yes_score = output->data.int8[kYesIndex] + 128; in TF_LITE_MICRO_TEST() 136 no_score = output->data.int8[kNoIndex] + 128; in TF_LITE_MICRO_TEST()
|
/external/bc/tests/bc/ |
D | lib2.txt | 302 int8(0) 310 int8(1) 311 int8(-1) 322 int8(127) 323 int8(-127) 334 int8(128) 335 int8(-128) 346 int8(129) 347 int8(-129) 358 int8(255) [all …]
|