/external/tensorflow/tensorflow/python/keras/layers/ |
D | wrappers.py | 140 def _get_shape_tuple(self, init_tuple, tensor, start_idx, int_shape=None): argument 160 if int_shape is None: 161 int_shape = K.int_shape(tensor)[start_idx:] 162 if isinstance(int_shape, tensor_shape.TensorShape): 163 int_shape = int_shape.as_list() 164 if not any(not s for s in int_shape): 165 return init_tuple + tuple(int_shape) 167 int_shape = list(int_shape) 168 for i, s in enumerate(int_shape): 170 int_shape[i] = shape[start_idx + i] [all …]
|
D | lstm_test.py | 262 np.zeros(keras.backend.int_shape(layer.states[0])), 264 state_shapes = [keras.backend.int_shape(state) for state in layer.states] 271 np.ones(keras.backend.int_shape(layer.states[0])),
|
D | recurrent_v2.py | 434 input_shape = K.int_shape(inputs) 584 input_shape = K.int_shape(inputs) 1160 input_shape = K.int_shape(inputs) 1371 input_shape = K.int_shape(inputs)
|
D | lstm_v2_test.py | 210 np.zeros(keras.backend.int_shape(layer.states[0])), 212 state_shapes = [keras.backend.int_shape(state) for state in layer.states] 219 np.ones(keras.backend.int_shape(layer.states[0])),
|
D | recurrent.py | 683 lambda s: InputSpec(shape=K.int_shape(s)), initial_state) 688 InputSpec(shape=K.int_shape(constant)) for constant in constants 758 input_shape = K.int_shape(nest.flatten(inputs)[0]) 760 input_shape = K.int_shape(inputs)
|
D | convolutional_recurrent.py | 307 timesteps = K.int_shape(inputs)[1]
|
/external/tensorflow/tensorflow/compiler/xla/tests/ |
D | outfeed_in_nested_computation_test.cc | 32 Shape int_shape = ShapeUtil::MakeShape(xla::S32, {}); in XLA_TEST_F() local 34 ShapeUtil::MakeTupleShape({int_shape, state_tuple_array_shape}); in XLA_TEST_F() 38 XlaOp num_iter = Infeed(&b, int_shape); in XLA_TEST_F() 46 Outfeed(loop_counter, int_shape, ""); in XLA_TEST_F() 90 local_client_->TransferFromOutfeed(&int_shape)); in XLA_TEST_F() 111 local_client_->TransferFromOutfeed(&int_shape)); in XLA_TEST_F()
|
/external/tensorflow/tensorflow/python/keras/applications/ |
D | mobilenet_v2.py | 208 if backend.int_shape(input_tensor)[1] != input_shape[1]: 213 if backend.int_shape(input_tensor)[2] != input_shape[1]: 234 rows = backend.int_shape(input_tensor)[2] 235 cols = backend.int_shape(input_tensor)[3] 237 rows = backend.int_shape(input_tensor)[1] 238 cols = backend.int_shape(input_tensor)[2] 418 in_channels = backend.int_shape(inputs)[channel_axis]
|
D | mobilenet_v3.py | 187 if backend.int_shape(input_tensor)[1] != input_shape[1]: 192 if backend.int_shape(input_tensor)[2] != input_shape[1]: 211 rows = backend.int_shape(input_tensor)[2] 212 cols = backend.int_shape(input_tensor)[3] 215 rows = backend.int_shape(input_tensor)[1] 216 cols = backend.int_shape(input_tensor)[2] 279 last_conv_ch = _depth(backend.int_shape(x)[channel_axis] * 6) 494 infilters = backend.int_shape(x)[channel_axis]
|
D | inception_resnet_v2.py | 362 backend.int_shape(x)[channel_axis], 370 output_shape=backend.int_shape(x)[1:],
|
D | nasnet.py | 553 ip_shape = backend.int_shape(ip) 556 p_shape = backend.int_shape(p)
|
D | imagenet_utils.py | 399 input_size = backend.int_shape(inputs)[img_dim:(img_dim + 2)]
|
D | densenet.py | 90 int(backend.int_shape(x)[bn_axis] * reduction),
|
/external/tensorflow/tensorflow/python/keras/ |
D | optimizer_v1.py | 191 shapes = [K.int_shape(p) for p in params] 262 accumulators = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params] 335 shapes = [K.int_shape(p) for p in params] 415 shapes = [K.int_shape(p) for p in params] 501 ms = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params] 502 vs = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params] 504 vhats = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params] 596 shapes = [K.int_shape(p) for p in params] 686 shapes = [K.int_shape(p) for p in params]
|
D | callbacks_v1.py | 189 shape = K.int_shape(w_img) 193 shape = K.int_shape(w_img) 200 shape = K.int_shape(w_img) 209 shape = K.int_shape(w_img)
|
D | backend.py | 1096 v._keras_shape = int_shape(value) 1435 def int_shape(x): function 1990 for i, s in zip(int_shape(x), array_ops.unstack(array_ops.shape(x))): 1997 for i, s in zip(int_shape(y), array_ops.unstack(array_ops.shape(y))): 2064 x_shape = int_shape(x) 2065 y_shape = int_shape(y) 3198 original_shape = int_shape(x) 5935 kernel_shape = int_shape(kernel) 6075 bias_shape = int_shape(bias)
|
D | callbacks.py | 2481 shape = K.int_shape(w_img) 2487 shape = K.int_shape(w_img) 2494 shape = K.int_shape(w_img) 2497 shape = K.int_shape(w_img)
|
D | metrics.py | 3380 K.int_shape(y_true)) == len(K.int_shape(y_pred))):
|
D | backend_test.py | 220 self.assertEqual(backend.int_shape(x), (3, 4)) 224 self.assertEqual(backend.int_shape(x), (None, 4))
|
/external/tensorflow/tensorflow/python/keras/engine/ |
D | node.py | 244 input_shapes = nest.map_structure(backend.int_shape, self.input_tensors) 251 return nest.map_structure(backend.int_shape, self.output_tensors)
|
D | functional.py | 268 return nest.map_structure(backend.int_shape, self.input) 328 return nest.map_structure(backend.int_shape, self.output)
|
D | training_v1.py | 2668 self._feed_input_shapes.append(K.int_shape(v)) 2932 return K.int_shape(self.output)
|
/external/tensorflow/tensorflow/python/keras/saving/ |
D | hdf5_format.py | 408 if K.int_shape(layer.weights[0]) != weights[0].shape: 787 if K.int_shape(symbolic_weights[i]) != weight_values[i].shape: 797 ' has shape {}'.format(K.int_shape(
|
/external/tensorflow/tensorflow/tools/api/golden/v2/ |
D | tensorflow.keras.backend.pbtxt | 240 name: "int_shape"
|
/external/tensorflow/tensorflow/tools/api/golden/v1/ |
D | tensorflow.keras.backend.pbtxt | 248 name: "int_shape"
|