/external/tensorflow/tensorflow/python/ops/ |
D | nn_fused_batchnorm_test.py | 91 is_training=False) 174 is_training=True) 230 is_training=True): argument 240 if is_training and exponential_avg_factor == 1.0: 254 is_training=is_training) 271 is_training=is_training) 293 is_training=True, argument 306 if is_training and exponential_avg_factor == 1.0: 320 is_training=is_training) 324 if is_training: [all …]
|
/external/tensorflow/tensorflow/examples/speech_commands/ |
D | models.py | 96 is_training, runtime_settings=None): argument 131 is_training) 133 return create_conv_model(fingerprint_input, model_settings, is_training) 136 is_training) 139 is_training, runtime_settings) 142 is_training) 145 is_training) 164 def create_single_fc_model(fingerprint_input, model_settings, is_training): argument 189 if is_training: 201 if is_training: [all …]
|
/external/tensorflow/tensorflow/core/kernels/ |
D | fused_batch_norm_ex_op_test.cc | 140 const TensorFormat data_format, bool is_training, in RunFusedBatchNorm() argument 164 ops::FusedBatchNormV3::IsTraining(is_training) in RunFusedBatchNorm() 198 ops::FusedBatchNormGradV3::IsTraining(is_training) in RunFusedBatchNorm() 229 const TensorFormat data_format, bool is_training, in RunFusedBatchNormEx() argument 279 .Attr("is_training", is_training) in RunFusedBatchNormEx() 308 .Attr("is_training", is_training) in RunFusedBatchNormEx() 337 TensorFormat data_format, bool is_training, in VerifyTensorsNear() argument 380 run_default(y_backprop, input, scale, offset, is_training ? empty : mean, in VerifyTensorsNear() 381 is_training ? empty : var, side_input, &fbn_forward, in VerifyTensorsNear() 387 is_training ? empty : mean, is_training ? empty : var, input, in VerifyTensorsNear() [all …]
|
D | fused_batch_norm_op_test.cc | 204 bool is_training, in FusedBatchNormInference() argument 227 .Input(is_training ? empty : other) // mean in FusedBatchNormInference() 228 .Input(is_training ? empty : other) // variance in FusedBatchNormInference() 232 .Attr("is_training", is_training) in FusedBatchNormInference() 240 static Graph* FusedBatchNormGrad(int n, int h, int w, int c, bool is_training, in FusedBatchNormGrad() argument 273 .Attr("is_training", is_training) in FusedBatchNormGrad()
|
/external/tensorflow/tensorflow/core/kernels/mkl/ |
D | mkl_fused_batch_norm_op_test.cc | 47 const float exponential_avg_factor, const bool is_training, Tensor* output, 80 const bool is_training, const GraphRunner& run, in VerifyTensorsClose() argument 95 if (is_training && (exponential_avg_factor == 1.0)) { in VerifyTensorsClose() 112 is_training, &output, &batch_mean, &batch_var); in VerifyTensorsClose() 114 is_training, &mkl_output, &mkl_batch_mean, &mkl_batch_var); in VerifyTensorsClose() 225 const bool is_training) { in VerifyFusedBatchNorm() argument 230 const bool is_training, Tensor* output, in VerifyFusedBatchNorm() 245 attr = attr.IsTraining(is_training); in VerifyFusedBatchNorm() 276 const bool is_training, Tensor* output, in VerifyFusedBatchNorm() 293 .Attr("is_training", is_training) in VerifyFusedBatchNorm() [all …]
|
/external/tensorflow/tensorflow/core/api_def/base_api/ |
D | api_def_FusedBatchNormGradV3.pbtxt | 24 When is_training is True, a 1D Tensor for the computed batch 25 mean to be reused in gradient computation. When is_training is 33 When is_training is True, a 1D Tensor for the computed batch 35 gradient computation. When is_training is False, a 1D Tensor 43 When is_training is True, a 1D Tensor for some intermediate results to be reused 44 in gradient computation. When is_training is False, a dummy empty Tensor will be 105 name: "is_training"
|
D | api_def_FusedBatchNormGrad.pbtxt | 24 When is_training is True, a 1D Tensor for the computed batch 25 mean to be reused in gradient computation. When is_training is 33 When is_training is True, a 1D Tensor for the computed batch 35 gradient computation. When is_training is False, a 1D Tensor 91 name: "is_training"
|
D | api_def_FusedBatchNormGradV2.pbtxt | 24 When is_training is True, a 1D Tensor for the computed batch 25 mean to be reused in gradient computation. When is_training is 33 When is_training is True, a 1D Tensor for the computed batch 35 gradient computation. When is_training is False, a 1D Tensor 97 name: "is_training"
|
D | api_def_CudnnRNNV2.pbtxt | 32 is_training: Indicates whether this operation is used for inference or 35 is only produced if is_training is true. 37 only produced if is_training is true. It is output on host memory rather than
|
D | api_def_CudnnRNN.pbtxt | 31 is_training: Indicates whether this operation is used for inference or 34 is only produced if is_training is false.
|
/external/tensorflow/tensorflow/python/compiler/tensorrt/test/ |
D | quantization_mnist_test.py | 165 def _Run(self, is_training, use_trt, batch_size, num_epochs, model_dir): argument 211 if is_training: 242 model_dir=model_dir if is_training else None, 245 if is_training: 268 is_training=False, 280 is_training=False,
|
/external/tensorflow/tensorflow/compiler/mlir/tensorflow/tests/ |
D | gpu_fusion.mlir | 9 … {T = "tfdtype$DT_FLOAT", data_format = "NHWC", epsilon = 0.001 : f32, is_training = false} : (ten… 18 … {T = "tfdtype$DT_FLOAT", data_format = "NHWC", epsilon = 0.001 : f32, is_training = false} : (ten… 31 … {T = "tfdtype$DT_FLOAT", data_format = "NHWC", epsilon = 0.001 : f32, is_training = false} : (ten… 43 … {T = "tfdtype$DT_FLOAT", data_format = "NHWC", epsilon = 0.001 : f32, is_training = true} : (tens…
|
D | layout_optimization_layout_assignment_gpu_cc_60.mlir | 80 is_training = true 105 is_training = true 131 is_training = true 157 is_training = true
|
D | layout_optimization_layout_assignment_gpu_cc_70.mlir | 161 is_training = true 186 is_training = true 212 is_training = true 238 is_training = true
|
/external/tensorflow/tensorflow/core/grappler/optimizers/ |
D | remapper_test.cc | 116 for (bool is_training : {true, false}) { in TEST_F() 120 if (is_training) { in TEST_F() 122 << "[is_training=" << is_training << "] " in TEST_F() 129 if (!is_training) { in TEST_F() 131 << "[is_training=" << is_training << "]"; in TEST_F() 152 ops::FusedBatchNormV3::IsTraining(is_training) in TEST_F() 161 auto mean_t = GenerateRandomTensor<DT_FLOAT>(is_training ? empty_shape in TEST_F() 163 auto var_t = GenerateRandomTensor<DT_FLOAT>(is_training ? empty_shape in TEST_F() 222 for (bool is_training : {true, false}) { in TEST_F() 226 if (is_training) { in TEST_F() [all …]
|
/external/tensorflow/tensorflow/core/ops/compat/ops_history_v1/ |
D | FusedBatchNorm.pbtxt | 73 name: "is_training" 159 name: "is_training"
|
D | FusedBatchNormV2.pbtxt | 84 name: "is_training" 181 name: "is_training"
|
D | FusedBatchNormV3.pbtxt | 88 name: "is_training" 189 name: "is_training"
|
D | CudnnRNNV3.pbtxt | 118 name: "is_training" 243 name: "is_training" 382 name: "is_training"
|
/external/tensorflow/tensorflow/core/ops/compat/ops_history_v2/ |
D | FusedBatchNorm.pbtxt | 73 name: "is_training" 159 name: "is_training"
|
D | FusedBatchNormV2.pbtxt | 84 name: "is_training" 181 name: "is_training"
|
D | FusedBatchNormGradV3.pbtxt | 88 name: "is_training" 184 name: "is_training"
|
D | FusedBatchNormV3.pbtxt | 95 name: "is_training" 198 name: "is_training"
|
/external/tensorflow/tensorflow/compiler/tests/ |
D | fused_batchnorm_test.py | 123 is_training=False) 179 is_training=True) 273 is_training=True) 323 is_training=False) 327 grad, x, scale, mean, var, data_format=data_format, is_training=False)
|
/external/tensorflow/tensorflow/compiler/mlir/tensorflow/transforms/ |
D | tpu_update_embedding_enqueue_op_inputs.cc | 112 bool is_training = send_gradient_op_map.count(embedding_attr); in UpdateEmbeddingEnqueueOpInput() local 120 mode_string_value.emplace_back(is_training ? "train" : "inference"); in UpdateEmbeddingEnqueueOpInput()
|