/external/XNNPACK/test/ |
D | convolution-nhwc.cc | 17 .kernel_size(1, 1) 27 .kernel_size(1, 1) 38 .kernel_size(1, 1) 49 .kernel_size(1, 1) 60 .kernel_size(1, 1) 72 .kernel_size(1, 1) 83 .kernel_size(1, 1) 93 .kernel_size(1, 1) in TEST() 104 .kernel_size(1, 1) in TEST() 116 .kernel_size(1, 1) in TEST() [all …]
|
D | convolution-nchw.cc | 17 .kernel_size(1, 1) 29 .kernel_size(1, 1) 42 .kernel_size(1, 1) 56 .kernel_size(1, 1) 70 .kernel_size(1, 1) 84 .kernel_size(1, 1) 96 .kernel_size(1, 1) 108 .kernel_size(1, 1) 121 .kernel_size(1, 1) 136 .kernel_size(1, 1) in TEST() [all …]
|
D | deconvolution-nhwc.cc | 25 .kernel_size(1, 1) 37 .kernel_size(1, 1) 50 .kernel_size(1, 1) 63 .kernel_size(1, 1) 76 .kernel_size(1, 1) 88 .kernel_size(1, 1) 100 .kernel_size(1, 1) 112 .kernel_size(1, 1) 124 .kernel_size(1, 1) 137 .kernel_size(1, 1) [all …]
|
D | f32-conv-hwc.cc | 19 .kernel_size(3) in TEST() 34 .kernel_size(3) in TEST() 50 .kernel_size(3) in TEST() 66 .kernel_size(3) in TEST() 83 .kernel_size(3) in TEST() 101 .kernel_size(3) in TEST() 119 .kernel_size(3) in TEST() 138 .kernel_size(3) in TEST() 158 .kernel_size(3) in TEST() 178 .kernel_size(3) in TEST() [all …]
|
D | f32-conv-hwc2chw.cc | 19 .kernel_size(3) in TEST() 34 .kernel_size(3) in TEST() 50 .kernel_size(3) in TEST() 66 .kernel_size(3) in TEST() 83 .kernel_size(3) in TEST() 101 .kernel_size(3) in TEST() 119 .kernel_size(3) in TEST() 138 .kernel_size(3) in TEST() 158 .kernel_size(3) in TEST() 178 .kernel_size(3) in TEST() [all …]
|
/external/tensorflow/tensorflow/compiler/xla/client/lib/ |
D | pooling_test.cc | 35 XlaOp input, absl::Span<const int64> kernel_size, in MakeGeneralPadding() argument 42 return MakeSpatialPadding(input_size, kernel_size, stride, padding, in MakeGeneralPadding() 71 auto kernel_size = ExpandWithBatchAndFeatureDimensions({2, 2}, data_format); in XLA_TEST_F() local 72 auto stride = kernel_size; in XLA_TEST_F() 73 MaxPool(input, kernel_size, stride, Padding::kValid, data_format); in XLA_TEST_F() 84 auto kernel_size = ExpandWithBatchAndFeatureDimensions({2, 2}, data_format); in XLA_TEST_F() local 85 auto stride = kernel_size; in XLA_TEST_F() 86 MaxPool(input, kernel_size, stride, Padding::kSame, data_format); in XLA_TEST_F() 97 auto kernel_size = ExpandWithBatchAndFeatureDimensions({2, 2}, data_format); in XLA_TEST_F() local 99 MaxPool(input, kernel_size, stride, Padding::kSame, data_format); in XLA_TEST_F() [all …]
|
D | pooling.cc | 74 absl::Span<const int64> kernel_size, in ComputeSums() argument 83 return ReduceWindow(operand, init_value, add_computation, kernel_size, in ComputeSums() 134 XlaOp MaxPool(XlaOp operand, absl::Span<const int64> kernel_size, in MaxPool() argument 143 return ReduceWindow(operand, init_value, max_computation, kernel_size, in MaxPool() 148 XlaOp AvgPool(XlaOp operand, absl::Span<const int64> kernel_size, in AvgPool() argument 160 const int num_dims = kernel_size.size(); in AvgPool() 165 auto pooled = ComputeSums(padded_operand, init_value, kernel_size, stride, in AvgPool() 167 return AvgPoolDivideByCount(pooled, input_size, kernel_size, stride, in AvgPool() 174 absl::Span<const int64> input_size, absl::Span<const int64> kernel_size, in MakeSpatialPadding() argument 177 const int num_spatial_dims = kernel_size.size() - 2; in MakeSpatialPadding() [all …]
|
D | pooling.h | 52 XlaOp MaxPool(XlaOp operand, absl::Span<const int64> kernel_size, 57 XlaOp AvgPool(XlaOp operand, absl::Span<const int64> kernel_size, 66 absl::Span<const int64> input_size, absl::Span<const int64> kernel_size, 72 absl::Span<const int64> kernel_size,
|
/external/gemmlowp/meta/ |
D | single_thread_transform.h | 24 template <typename Params, int kernel_size> 31 template <typename P, int kernel_size, int leftovers> 34 typename P::Kernel, kernel_size, in ExecuteDispatch1D() 40 template <typename E, typename P, int kernel_size, int variable_leftovers> 45 std::cout << "Dispatch(1): " << kernel_size << ":" << variable_leftovers in Execute() 51 E::template ExecuteDispatch1D<P, kernel_size, variable_leftovers>(params); in Execute() 53 Dispatch1D<E, P, kernel_size, variable_leftovers - 1>::Execute(params, in Execute() 59 template <typename E, typename P, int kernel_size> 60 struct Dispatch1D<E, P, kernel_size, 0> { 64 std::cout << "Dispatch(1): " << kernel_size << ": 0" << std::endl [all …]
|
D | transform_kernels.h | 70 template <typename InType, typename OutType, int kernel_size, int leftovers> 71 class Transform1DKernel<InType, OutType, Quantize, kernel_size, leftovers> { 79 << kernel_size << "x" << leftovers << std::endl; in Transform() 88 template <typename InType, typename OutType, int kernel_size, int leftovers> 89 class Transform1DKernel<InType, OutType, Dequantize, kernel_size, leftovers> { 97 << kernel_size << "x" << leftovers << std::endl; in Transform() 106 template <typename InType, typename OutType, int kernel_size, int leftovers> 107 class Transform1DKernel<InType, OutType, Requantize, kernel_size, leftovers> { 115 << kernel_size << "x" << leftovers << std::endl; in Transform() 124 template <typename InType, typename OutType, int kernel_size, int leftovers, [all …]
|
D | multi_thread_transform.h | 30 const Params& params, int kernel_size, in PrepareTransform1DTasks() argument 64 template <typename Params, int kernel_size> 68 void Run() override { Transform1D<Params, kernel_size>(params); } in Run() 75 template <typename MultiThreadingContext, typename Params, int kernel_size> 78 typedef internal::Transform1DTaskRunner<Params, kernel_size> TaskRunnerType; in MultiThreadTransform1D() 82 context, params, kernel_size, &task_params)) { in MultiThreadTransform1D() 83 Transform1D<Params, kernel_size>(params); in MultiThreadTransform1D()
|
/external/tensorflow/tensorflow/compiler/tf2xla/kernels/ |
D | image_resize_ops.cc | 81 std::vector<int64> kernel_size; // k member 92 dims.kernel_size.resize(num_spatial_dims); in ComputeResizeConvolutionParameters() 98 dims.stride[i] = dims.kernel_size[i] = 1; in ComputeResizeConvolutionParameters() 102 dims.stride[i] = dims.kernel_size[i] = 1; in ComputeResizeConvolutionParameters() 112 dims.kernel_size[i] = out_size_factor / gcd; in ComputeResizeConvolutionParameters() 124 int64 CalculateUpperPadding(int64 in_size, int64 out_size, int64 kernel_size, in CalculateUpperPadding() argument 126 int64 padding = (2 * kernel_size - 1) + (out_size - 1) * stride - in CalculateUpperPadding() 127 (kernel_size - 1) - 1 - (kernel_size * (in_size - 1)); in CalculateUpperPadding() 177 absl::Span<const int64> kernel_size, in MakeGeneralResizeKernel() argument 183 (2 * kernel_size[0] - 1), (2 * kernel_size[1] - 1), channels, 1}; in MakeGeneralResizeKernel() [all …]
|
D | extract_image_patches_op.cc | 108 int64 kernel_size = 1; in Compile() local 113 kernel_size *= ksizes_[input_dim]; in Compile() 116 kernel_shape[num_spatial_dims + 1] = kernel_size * depth; in Compile() 118 xla::ShapeUtil::MakeShape(xla::S32, {kernel_size, depth, kernel_size}); in Compile() 163 conv_dims.push_back(kernel_size); in Compile() 166 conv_dims.back() *= kernel_size; in Compile()
|
/external/tensorflow/tensorflow/python/keras/legacy_tf_layers/ |
D | convolutional.py | 85 kernel_size, argument 104 kernel_size=kernel_size, 125 kernel_size, argument 207 kernel_size=kernel_size, 290 kernel_size, argument 309 kernel_size=kernel_size, 330 kernel_size, argument 419 kernel_size=kernel_size, 503 kernel_size, argument 522 kernel_size=kernel_size, [all …]
|
/external/tensorflow/tensorflow/compiler/xla/tests/ |
D | conv_depthwise_test.cc | 47 int64 kernel_size = option[2]; in GetConv2DTestCases() local 53 config.window = kernel_size; in GetConv2DTestCases() 58 config.kernel_dims = {kernel_size, kernel_size, 1, feature}; in GetConv2DTestCases() 62 if (activation_size == 1 && kernel_size == 2) { in GetConv2DTestCases() 65 config.output_dims = {batch, activation_size + kernel_size - 1, in GetConv2DTestCases() 66 activation_size + kernel_size, feature}; in GetConv2DTestCases() 73 activation_size - kernel_size + 1, feature}; in GetConv2DTestCases() 76 config.output_dims = {batch, activation_size - kernel_size + 1, in GetConv2DTestCases() 77 activation_size - kernel_size + 1, feature}; in GetConv2DTestCases()
|
D | conv_depthwise_backprop_filter_test.cc | 65 int64 kernel_size = option[2]; in GetConv2DTestCases() local 71 config.window = kernel_size; in GetConv2DTestCases() 76 config.kernel_dims = {batch, kernel_size, kernel_size, in GetConv2DTestCases() 82 int64 output_space_size = 3 + activation_size - kernel_size; in GetConv2DTestCases() 95 if (activation_size % 2 == 0 && activation_size == kernel_size) { in GetConv2DTestCases() 99 config.window = kernel_size / 2; in GetConv2DTestCases() 102 config.kernel_dims = {batch, kernel_size / 2, kernel_size / 2, feature}; in GetConv2DTestCases()
|
D | grouped_convolution_test.cc | 68 int64 kernel_size = option[2]; in GetConv2DTestCases() local 78 config.window = kernel_size; in GetConv2DTestCases() 84 config.kernel_dims = {kernel_size, kernel_size, group_size, output_feature}; in GetConv2DTestCases() 87 if (activation_size == 1 && kernel_size == 2) { in GetConv2DTestCases() 90 config.output_dims = {batch, activation_size + kernel_size - 1, in GetConv2DTestCases() 91 activation_size + kernel_size, output_feature}; in GetConv2DTestCases() 98 activation_size - kernel_size + 1, output_feature}; in GetConv2DTestCases() 101 config.output_dims = {batch, activation_size - kernel_size + 1, in GetConv2DTestCases() 102 activation_size - kernel_size + 1, output_feature}; in GetConv2DTestCases() 110 if (kernel_size % 2 == 0) { in GetConv2DTestCases()
|
/external/XNNPACK/bench/ |
D | f32-conv-hwc2chw.cc | 44 const size_t kernel_size = 3; in DConvHWC2CHW3X3S2P1Benchmark() local 48 const size_t output_height = (input_height + 2 * padding - kernel_size) / subsampling + 1; in DConvHWC2CHW3X3S2P1Benchmark() 49 const size_t output_width = (input_width + 2 * padding - kernel_size) / subsampling + 1; in DConvHWC2CHW3X3S2P1Benchmark() 53 std::vector<float> kernel(output_channels * kernel_size * kernel_size * input_channels); in DConvHWC2CHW3X3S2P1Benchmark() 60 const size_t weights_elements = (kernel_size * kernel_size * input_channels + 1) * in DConvHWC2CHW3X3S2P1Benchmark() 71 kernel_size /* kernel height */, kernel_size /* kernel width */, in DConvHWC2CHW3X3S2P1Benchmark() 113 kernel_size * kernel_size, in DConvHWC2CHW3X3S2P1Benchmark()
|
D | f32-conv-hwc.cc | 42 const size_t kernel_size = 3; in DConv3X3S2P1Benchmark() local 46 const size_t output_height = (input_height + 2 * padding - kernel_size) / subsampling + 1; in DConv3X3S2P1Benchmark() 47 const size_t output_width = (input_width + 2 * padding - kernel_size) / subsampling + 1; in DConv3X3S2P1Benchmark() 51 std::vector<float> kernel(output_channels * kernel_size * kernel_size * input_channels); in DConv3X3S2P1Benchmark() 58 const size_t weights_elements = (kernel_size * kernel_size * input_channels + 1) * in DConv3X3S2P1Benchmark() 69 kernel_size /* kernel height */, kernel_size /* kernel width */, in DConv3X3S2P1Benchmark() 111 kernel_size * kernel_size, in DConv3X3S2P1Benchmark()
|
D | f32-im2col-gemm.cc | 38 const size_t kernel_size = kernel_height * kernel_width; in Im2ColGEMMBenchmark() local 68 const size_t w_elements = (kernel_size * kc_stride + 1) * nc_stride; in Im2ColGEMMBenchmark() 76 xnn_pack_f32_gemm_goi_w(1 /* groups */, group_output_channels, group_input_channels * kernel_size, in Im2ColGEMMBenchmark() 82 …std::vector<float> im2col_buffer(output_size * group_input_channels * kernel_size * group_output_c… in Im2ColGEMMBenchmark() 98 if (kernel_size != 1 || subsampling != 1) { in Im2ColGEMMBenchmark() 116 mb, nb, kernel_size * group_input_channels * sizeof(float), in Im2ColGEMMBenchmark() 117 …inputData + m * kernel_size * group_input_channels, kernel_size * group_input_channels * sizeof(fl… in Im2ColGEMMBenchmark() 118 w.data() + (buffer_index * nc_stride + n) * (kernel_size * kc_stride + 1), in Im2ColGEMMBenchmark()
|
/external/tensorflow/tensorflow/lite/delegates/gpu/common/tasks/ |
D | convolution_transposed_thin.cc | 54 const int2& kernel_size) { in GenerateConvolutionTransposedCode() argument 91 c += " " + accum_type + " r[" + std::to_string(kernel_size.y) + "][" + in GenerateConvolutionTransposedCode() 92 std::to_string(kernel_size.x) + "];\n"; in GenerateConvolutionTransposedCode() 96 for (int y = 0; y < kernel_size.y; ++y) { in GenerateConvolutionTransposedCode() 97 for (int x = 0; x < kernel_size.x; ++x) { in GenerateConvolutionTransposedCode() 113 for (int y = 0; y < kernel_size.y; ++y) { in GenerateConvolutionTransposedCode() 114 for (int x = 0; x < kernel_size.x; ++x) { in GenerateConvolutionTransposedCode() 126 c += " X *= " + std::to_string(kernel_size.x) + ";\n"; in GenerateConvolutionTransposedCode() 127 c += " Y *= " + std::to_string(kernel_size.y) + ";\n"; in GenerateConvolutionTransposedCode() 128 for (int y = 0; y < kernel_size.y; ++y) { in GenerateConvolutionTransposedCode() [all …]
|
/external/tensorflow/tensorflow/python/keras/layers/ |
D | local.py | 121 kernel_size, argument 138 self.kernel_size = conv_utils.normalize_tuple(kernel_size, 1, 'kernel_size') 170 self.kernel_size[0], 175 self.kernel_shape = (self.output_length, self.kernel_size[0] * input_dim, 202 kernel_shape=self.kernel_size, 215 kernel_shape=self.kernel_size, 256 length = conv_utils.conv_output_length(input_length, self.kernel_size[0], 266 output = K.local_conv(inputs, self.kernel, self.kernel_size, self.strides, 293 self.kernel_size, 423 kernel_size, argument [all …]
|
D | convolutional.py | 116 kernel_size, argument 146 self.kernel_size = conv_utils.normalize_tuple( 147 kernel_size, rank, 'kernel_size') 178 if not all(self.kernel_size): 180 'Received: %s' % (self.kernel_size,)) 196 kernel_shape = self.kernel_size + (input_channel // self.groups, 285 self.kernel_size[i], 313 self.kernel_size, 348 left_pad = self.dilation_rate[0] * (self.kernel_size[0] - 1) 486 kernel_size, argument [all …]
|
/external/gemmlowp/meta/generators/ |
D | transform_kernels_common.py | 38 def Check(self, in_type, out_type, kernel_size, leftovers): argument 41 assert kernel_size is 16 82 def Check(self, in_type, out_type, kernel_size, leftovers): argument 85 assert kernel_size is 16 151 def Check(self, in_type, out_type, kernel_size, leftovers): argument 154 assert kernel_size is 16 220 def Check(self, in_type, out_type, kernel_size, leftovers): argument 223 assert kernel_size is 16 313 def EmitTransform(self, in_type, out_type, kernel_size, leftovers): argument 315 self.transformation.Check(in_type, out_type, kernel_size, leftovers) [all …]
|
/external/tensorflow/tensorflow/python/keras/applications/ |
D | imagenet_utils.py | 388 def correct_pad(inputs, kernel_size): argument 400 if isinstance(kernel_size, int): 401 kernel_size = (kernel_size, kernel_size) 406 correct = (kernel_size[0] // 2, kernel_size[1] // 2)
|