Home
last modified time | relevance | path

Searched refs:matrix1 (Results 1 – 25 of 30) sorted by relevance

12

/external/tensorflow/tensorflow/python/kernel_tests/
Dmatrix_square_root_op_test.py52 def _makeBatch(self, matrix1, matrix2): argument
54 [np.expand_dims(matrix1, 0),
59 def _testMatrices(self, matrix1, matrix2): argument
61 self._verifySquareRootReal(matrix1)
63 self._verifySquareRootReal(self._makeBatch(matrix1, matrix2))
64 matrix1 = matrix1.astype(np.complex64)
66 matrix1 += 1j * matrix1
68 self._verifySquareRootComplex(matrix1)
70 self._verifySquareRootComplex(self._makeBatch(matrix1, matrix2))
73 matrix1 = np.array([[2., 1.], [1., 2.]])
[all …]
Dmatrix_inverse_op_test.py61 def _makeBatch(self, matrix1, matrix2): argument
63 [np.expand_dims(matrix1, 0),
70 matrix1 = np.array([[1., 2.], [3., 4.]])
72 self._verifyInverseReal(matrix1)
75 self._verifyInverseReal(self._makeBatch(matrix1, matrix2))
76 matrix1 = matrix1.astype(np.complex64)
77 matrix1 += 1j * matrix1
80 self._verifyInverseComplex(matrix1)
83 self._verifyInverseComplex(self._makeBatch(matrix1, matrix2))
87 matrix1 = np.array([[2., 1.], [1., 2.]])
[all …]
Dmatrix_exponential_op_test.py76 def _makeBatch(self, matrix1, matrix2): argument
78 [np.expand_dims(matrix1, 0),
85 matrix1 = np.array([[1., 2.], [3., 4.]])
87 self._verifyExponentialReal(matrix1)
90 self._verifyExponentialReal(self._makeBatch(matrix1, matrix2))
94 matrix1 = np.array([[1., 2.], [3., 4.]])
96 matrix1 = matrix1.astype(np.complex64)
97 matrix1 += 1j * matrix1
100 self._verifyExponentialComplex(matrix1)
103 self._verifyExponentialComplex(self._makeBatch(matrix1, matrix2))
[all …]
Dmatrix_logarithm_op_test.py54 def _makeBatch(self, matrix1, matrix2): argument
56 [np.expand_dims(matrix1, 0),
64 matrix1 = np.array([[1., 2.], [3., 4.]])
66 matrix1 = matrix1.astype(np.complex64)
67 matrix1 += 1j * matrix1
70 self._verifyLogarithmComplex(matrix1)
73 self._verifyLogarithmComplex(self._makeBatch(matrix1, matrix2))
78 matrix1 = np.array([[2., 1.], [1., 2.]])
80 matrix1 = matrix1.astype(np.complex64)
81 matrix1 += 1j * matrix1
[all …]
Dcholesky_op_test.py187 matrix1 = stateless_random_ops.stateless_random_normal(matrix_shape, seed)
189 matrix1 = math_ops.matmul(matrix1, matrix1, adjoint_a=True)
191 c1 = linalg_ops.cholesky(matrix1)
Dself_adjoint_eig_op_test.py60 matrix1 = random_ops.random_normal([5, 5], seed=42)
63 e1, v1 = linalg_ops.self_adjoint_eig(matrix1)
67 e1 = linalg_ops.self_adjoint_eigvals(matrix1)
Deig_op_test.py60 matrix1 = random_ops.random_normal([5, 5], seed=42)
63 e1, v1 = linalg_ops.eig(matrix1)
67 e1 = linalg_ops.eigvals(matrix1)
Dqr_op_test.py69 matrix1 = stateless_random_ops.stateless_random_normal(
73 self.assertAllEqual(matrix1, matrix2)
74 q1, r1 = linalg_ops.qr(matrix1, full_matrices=full_matrices_)
Dlu_op_test.py226 matrix1 = stateless_random_ops.stateless_random_normal(
230 self.assertAllEqual(matrix1, matrix2)
231 lu1, p1 = linalg_ops.lu(matrix1)
Dsvd_op_test.py70 matrix1 = stateless_random_ops.stateless_random_normal(shape, seed)
72 self.assertAllEqual(matrix1, matrix2)
75 matrix1, compute_uv=compute_uv_, full_matrices=full_matrices_)
81 matrix1, compute_uv=compute_uv_, full_matrices=full_matrices_)
Dbasic_gpu_test.py213 matrix1 = variables.Variable(
217 x1 = math_ops.multiply(data, matrix1, name='x1')
218 x3 = math_ops.matmul(x1, math_ops.matmul(matrix2, matrix1))
Ddeterminant_op_test.py158 matrix1 = random_ops.random_normal([5, 5], seed=42)
160 det1 = linalg_ops.matrix_determinant(matrix1)
/external/robolectric-shadows/robolectric/src/test/java/org/robolectric/shadows/
DShadowMatrixTest.java85 final Matrix matrix1 = new Matrix(); in set_shouldOverrideValues() local
86 matrix1.setScale(1, 2); in set_shouldOverrideValues()
90 matrix2.set(matrix1); in set_shouldOverrideValues()
98 final Matrix matrix1 = new Matrix(); in set_whenNull_shouldReset() local
99 matrix1.setScale(1, 2); in set_whenNull_shouldReset()
102 matrix2.set(matrix1); in set_whenNull_shouldReset()
179 final Matrix matrix1 = new Matrix(); in testSet() local
180 matrix1.postScale(2.0f, 2.0f); in testSet()
181 matrix1.postTranslate(1.0f, 2.0f); in testSet()
182 matrix1.postRotate(45.0f); in testSet()
[all …]
DShadowOpenGLMatrixTest.java336 float[] matrix1 = new float[]{ in testMultiplyMM() local
356 Matrix.multiplyMM(output, 0, matrix1, 0, matrix2, 0); in testMultiplyMM()
/external/eigen/demos/mix_eigen_and_c/
Dexample.c15 struct C_MatrixXd *matrix1, *matrix2, *result; in demo_MatrixXd() local
18 matrix1 = MatrixXd_new(3, 3); in demo_MatrixXd()
19 MatrixXd_set_zero(matrix1); in demo_MatrixXd()
20 MatrixXd_set_coeff(matrix1, 0, 1, 2.5); in demo_MatrixXd()
21 MatrixXd_set_coeff(matrix1, 1, 0, 1.4); in demo_MatrixXd()
23 MatrixXd_print(matrix1); in demo_MatrixXd()
26 MatrixXd_multiply(matrix1, matrix1, matrix2); in demo_MatrixXd()
30 MatrixXd_delete(matrix1); in demo_MatrixXd()
/external/tensorflow/tensorflow/python/kernel_tests/linalg/
Dlinear_operator_adjoint_test.py122 matrix1 = np.random.randn(4, 4)
124 full_matrix1 = linalg.LinearOperatorFullMatrix(matrix1)
128 np.matmul(matrix1, matrix2.T),
133 np.matmul(matrix1.T, matrix2),
138 np.matmul(matrix1.T, matrix2.T),
144 matrix1 = np.random.randn(4, 4) + 1j * np.random.randn(4, 4)
146 full_matrix1 = linalg.LinearOperatorFullMatrix(matrix1)
150 np.matmul(matrix1, matrix2.conj().T),
155 np.matmul(matrix1.conj().T, matrix2),
160 np.matmul(matrix1.conj().T, matrix2.conj().T),
[all …]
Dlinear_operator_test.py285 matrix1 = array_ops.placeholder_with_default(
288 matrix1,
330 matrix1 = array_ops.placeholder_with_default(
337 operator1 = LinearOperatorMatmulSolve(matrix1, is_square=False)
/external/tensorflow/tensorflow/compiler/tests/
Dmatrix_inverse_op_test.py55 def _makeBatch(self, matrix1, matrix2): argument
57 [np.expand_dims(matrix1, 0),
64 matrix1 = np.array([[1., 2.], [3., 4.]])
66 self._verifyInverseReal(matrix1)
69 self._verifyInverseReal(self._makeBatch(matrix1, matrix2))
73 matrix1 = np.array([[2., 1.], [1., 2.]])
75 self._verifyInverseReal(matrix1)
78 self._verifyInverseReal(self._makeBatch(matrix1, matrix2))
/external/webrtc/modules/audio_coding/codecs/isac/fix/source/
Dentropy_coding.h102 const int32_t matrix1[],
113 const int32_t matrix1[],
122 const int32_t matrix1[],
133 const int32_t matrix1[],
140 const int32_t matrix1[],
151 const int32_t matrix1[],
159 const int32_t matrix1[],
171 const int32_t matrix1[],
Dentropy_coding_mips.c18 const int32_t matrix1[], in WebRtcIsacfix_MatrixProduct1MIPS() argument
39 const int32_t* matrix1_start = matrix1; in WebRtcIsacfix_MatrixProduct1MIPS()
91 : [product_step] "r" (product_step), [matrix1] "r" (matrix1), in WebRtcIsacfix_MatrixProduct1MIPS()
109 const int32_t* matrix1_start = matrix1; in WebRtcIsacfix_MatrixProduct1MIPS()
175 const int32_t matrix1[], in WebRtcIsacfix_MatrixProduct2MIPS() argument
245 [matrix1] "r" (matrix1), [matrix0_step] "r" (matrix0_step), in WebRtcIsacfix_MatrixProduct2MIPS()
Dentropy_coding_neon.c25 const int32_t matrix1[], in WebRtcIsacfix_MatrixProduct1Neon() argument
62 vshlq_s32(vld1q_s32(&matrix1[matrix1_index]), shift32x4); in WebRtcIsacfix_MatrixProduct1Neon()
80 vshl_s32(vld1_s32(&matrix1[matrix1_index]), shift32x2); in WebRtcIsacfix_MatrixProduct1Neon()
101 int32x4_t matrix1_32x4 = vdupq_n_s32(matrix1[matrix1_index] << shift); in WebRtcIsacfix_MatrixProduct1Neon()
117 int32x2_t matrix1_32x2 = vdup_n_s32(matrix1[matrix1_index] << shift); in WebRtcIsacfix_MatrixProduct1Neon()
146 vshlq_s32(vld1q_s32(&matrix1[matrix1_index]), shift32x4); in WebRtcIsacfix_MatrixProduct1Neon()
157 vshl_s32(vld1_s32(&matrix1[matrix1_index]), shift32x2); in WebRtcIsacfix_MatrixProduct1Neon()
181 matrix1[matrix1_index] << shift)); in WebRtcIsacfix_MatrixProduct1Neon()
193 const int32_t matrix1[], in WebRtcIsacfix_MatrixProduct2Neon() argument
207 int32x2_t matrix1_32x2 = vld1_s32(&matrix1[matrix1_index]); in WebRtcIsacfix_MatrixProduct2Neon()
/external/libchrome/ui/gfx/geometry/
Dmatrix3_unittest.cc164 Matrix3F matrix1 = Matrix3F::Zeros(); in TEST() local
165 matrix1.set(1, 2, 3, 4, 5, 6, 7, 8, 9); in TEST()
166 EXPECT_EQ(matrix1 + Matrix3F::Zeros(), matrix1); in TEST()
170 EXPECT_EQ(matrix1 + matrix2, Matrix3F::Zeros()); in TEST()
172 EXPECT_EQ(Matrix3F::Zeros() - matrix1, matrix2); in TEST()
176 EXPECT_EQ(matrix1 - matrix2, result); in TEST()
178 EXPECT_EQ(matrix2 - matrix1, result); in TEST()
/external/eigen/doc/
DTopicLazyEvaluation.dox27 \code matrix1 = matrix2 + matrix3; \endcode
31 \code matrix1 = (matrix2 + matrix3).eval(); \endcode
35 \code matrix1 = -matrix2 + matrix3 + 5 * matrix4; \endcode
47 \code matrix1.noalias() = matrix2 * matrix2; \endcode
49 Here, since we know that matrix2 is not the same matrix as matrix1, we know that lazy evaluation is…
53 \code matrix1 = matrix2 + matrix3 * matrix4; \endcode
59 \code matrix1 = matrix2 * (matrix3 + matrix4); \endcode
/external/pdfium/core/fxge/agg/
Dfx_agg_driver.cpp1374 CFX_Matrix matrix1; in DrawPath() local
1377 matrix1.a = std::max(fabs(pObject2Device->a), fabs(pObject2Device->b)); in DrawPath()
1378 matrix1.d = matrix1.a; in DrawPath()
1380 pObject2Device->a / matrix1.a, pObject2Device->b / matrix1.a, in DrawPath()
1381 pObject2Device->c / matrix1.d, pObject2Device->d / matrix1.d, 0, 0); in DrawPath()
1383 matrix1 = *pObject2Device * matrix2.GetInverse(); in DrawPath()
1387 path_data.BuildPath(pPathData, &matrix1); in DrawPath()
1393 matrix1.a, !!(fill_mode & FX_STROKE_TEXT_MODE)); in DrawPath()
/external/llvm-project/flang/test/Semantics/
Dfinal02.f9050 type(t1) :: matrix1(2,2) local

12