/external/tensorflow/tensorflow/lite/testing/nnapi_tflite_zip_tests/ |
D | not_supported.txt | 157 mean/mean_axis=0,const_axis=True,input_dtype=tf.float32,input_shape=[3,3,2,4],keepdims=True 158 mean/mean_axis=0,const_axis=True,input_dtype=tf.float32,input_shape=[3,3,2,4],keepdims=False 159 mean/mean_axis=0,const_axis=False,input_dtype=tf.float32,input_shape=[3,3,2,4],keepdims=True 160 mean/mean_axis=0,const_axis=False,input_dtype=tf.float32,input_shape=[3,3,2,4],keepdims=False 161 mean/mean_axis=0,const_axis=True,input_dtype=tf.int32,input_shape=[3,3,2,4],keepdims=True 162 mean/mean_axis=0,const_axis=True,input_dtype=tf.int32,input_shape=[3,3,2,4],keepdims=False 163 mean/mean_axis=0,const_axis=False,input_dtype=tf.int32,input_shape=[3,3,2,4],keepdims=True 164 mean/mean_axis=0,const_axis=False,input_dtype=tf.int32,input_shape=[3,3,2,4],keepdims=False 165 mean/mean_axis=0,const_axis=True,input_dtype=tf.int64,input_shape=[3,3,2,4],keepdims=True 166 mean/mean_axis=0,const_axis=True,input_dtype=tf.int64,input_shape=[3,3,2,4],keepdims=False [all …]
|
/external/igt-gpu-tools/tests/ |
D | kms_sysfs_edid_timing.c | 49 struct igt_mean mean = {}; variable 63 igt_mean_init(&mean); 73 igt_mean_add(&mean, igt_nsec_elapsed(&ts)); 81 mean.max, mean.max / 1e3, mean.max / 1e6, 82 mean.mean, mean.mean / 1e3, mean.mean / 1e6); 84 if (mean.max > (THRESHOLD_PER_CONNECTOR * 1e6)) { 87 mean.max / 1e6, mean.mean / 1e6); 89 igt_assert_f(mean.mean < (THRESHOLD_TOTAL * 1e6), 92 mean.max / 1e6, mean.mean / 1e6);
|
/external/guava/android/guava-tests/benchmark/com/google/common/math/ |
D | StatsBenchmark.java | 36 double mean(double[] values) { in mean() method 46 double mean(double[] values) { in mean() method 60 double mean(double[] values) { in mean() method 61 double mean = values[0]; in mean() local 63 mean = mean + (values[i] - mean) / (i + 1); in mean() 65 return mean; in mean() 69 abstract double mean(double[] values); in mean() method in StatsBenchmark.MeanAlgorithm 73 private final double mean; field in StatsBenchmark.MeanAndVariance 76 MeanAndVariance(double mean, double variance) { in MeanAndVariance() argument 77 this.mean = mean; in MeanAndVariance() [all …]
|
/external/guava/guava-tests/benchmark/com/google/common/math/ |
D | StatsBenchmark.java | 36 double mean(double[] values) { in mean() method 46 double mean(double[] values) { in mean() method 60 double mean(double[] values) { in mean() method 61 double mean = values[0]; in mean() local 63 mean = mean + (values[i] - mean) / (i + 1); in mean() 65 return mean; in mean() 69 abstract double mean(double[] values); in mean() method in StatsBenchmark.MeanAlgorithm 73 private final double mean; field in StatsBenchmark.MeanAndVariance 76 MeanAndVariance(double mean, double variance) { in MeanAndVariance() argument 77 this.mean = mean; in MeanAndVariance() [all …]
|
/external/guava/android/guava/src/com/google/common/math/ |
D | Stats.java | 66 private final double mean; field in Stats 85 Stats(long count, double mean, double sumOfSquaresOfDeltas, double min, double max) { in Stats() argument 87 this.mean = mean; in Stats() 178 public double mean() { in mean() method in Stats 180 return mean; in mean() 196 return mean * count; in sum() 352 && doubleToLongBits(mean) == doubleToLongBits(other.mean) in equals() 366 return Objects.hashCode(count, mean, sumOfSquaresOfDeltas, min, max); in hashCode() 374 .add("mean", mean) in toString() 415 double mean = values.next().doubleValue(); in meanOf() local [all …]
|
D | StatsAccumulator.java | 42 private double mean = 0.0; // any finite value will do, we only use it to multiply by zero for sum field in StatsAccumulator 51 mean = value; in add() 59 if (isFinite(value) && isFinite(mean)) { in add() 61 double delta = value - mean; in add() 62 mean += delta / count; in add() 63 sumOfSquaresOfDeltas += delta * (value - mean); in add() 65 mean = calculateNewMeanNonFinite(mean, value); in add() 139 merge(values.count(), values.mean(), values.sumOfSquaresOfDeltas(), values.min(), values.max()); in addAll() 152 merge(values.count(), values.mean(), values.sumOfSquaresOfDeltas(), values.min(), values.max()); in addAll() 163 mean = otherMean; in merge() [all …]
|
/external/guava/guava/src/com/google/common/math/ |
D | Stats.java | 70 private final double mean; field in Stats 89 Stats(long count, double mean, double sumOfSquaresOfDeltas, double min, double max) { in Stats() argument 91 this.mean = mean; in Stats() 254 public double mean() { in mean() method 256 return mean; in mean() 272 return mean * count; in sum() 428 && doubleToLongBits(mean) == doubleToLongBits(other.mean) in equals() 442 return Objects.hashCode(count, mean, sumOfSquaresOfDeltas, min, max); in hashCode() 450 .add("mean", mean) in toString() 491 double mean = values.next().doubleValue(); in meanOf() local [all …]
|
D | StatsAccumulator.java | 45 private double mean = 0.0; // any finite value will do, we only use it to multiply by zero for sum field in StatsAccumulator 54 mean = value; in add() 62 if (isFinite(value) && isFinite(mean)) { in add() 64 double delta = value - mean; in add() 65 mean += delta / count; in add() 66 sumOfSquaresOfDeltas += delta * (value - mean); in add() 68 mean = calculateNewMeanNonFinite(mean, value); in add() 173 merge(values.count(), values.mean(), values.sumOfSquaresOfDeltas(), values.min(), values.max()); in addAll() 186 merge(values.count(), values.mean(), values.sumOfSquaresOfDeltas(), values.min(), values.max()); in addAll() 197 mean = otherMean; in merge() [all …]
|
/external/apache-commons-math/src/main/java/org/apache/commons/math/distribution/ |
D | ExponentialDistributionImpl.java | 44 private double mean; field in ExponentialDistributionImpl 53 public ExponentialDistributionImpl(double mean) { in ExponentialDistributionImpl() argument 54 this(mean, DEFAULT_INVERSE_ABSOLUTE_ACCURACY); in ExponentialDistributionImpl() 64 public ExponentialDistributionImpl(double mean, double inverseCumAccuracy) { in ExponentialDistributionImpl() argument 66 setMeanInternal(mean); in ExponentialDistributionImpl() 77 public void setMean(double mean) { in setMean() argument 78 setMeanInternal(mean); in setMean() 90 this.mean = newMean; in setMeanInternal() 98 return mean; in getMean() 125 return FastMath.exp(-x / mean) / mean; in density() [all …]
|
D | NormalDistributionImpl.java | 50 private double mean = 0; field in NormalDistributionImpl 63 public NormalDistributionImpl(double mean, double sd){ in NormalDistributionImpl() argument 64 this(mean, sd, DEFAULT_INVERSE_ABSOLUTE_ACCURACY); in NormalDistributionImpl() 76 public NormalDistributionImpl(double mean, double sd, double inverseCumAccuracy) { in NormalDistributionImpl() argument 78 setMeanInternal(mean); in NormalDistributionImpl() 96 return mean; in getMean() 105 public void setMean(double mean) { in setMean() argument 106 setMeanInternal(mean); in setMean() 114 this.mean = newMean; in setMeanInternal() 171 double x0 = x - mean; in density() [all …]
|
/external/tflite-support/tensorflow_lite_support/java/src/java/org/tensorflow/lite/support/common/ops/ |
D | NormalizeOp.java | 31 private final float[] mean; field in NormalizeOp 60 public NormalizeOp(float mean, float stddev) { in NormalizeOp() argument 69 if (mean == 0.0f && (stddev == 0.0f || Float.isInfinite(stddev))) { in NormalizeOp() 75 if (mean == 0.0f && stddev == 1.0f) { in NormalizeOp() 80 this.mean = new float[] {mean}; in NormalizeOp() 106 public NormalizeOp(@NonNull float[] mean, @NonNull float[] stddev) { in NormalizeOp() argument 107 SupportPreconditions.checkNotNull(mean, "Mean cannot be null"); in NormalizeOp() 110 mean.length == stddev.length, in NormalizeOp() 112 SupportPreconditions.checkArgument(mean.length > 0, "Means and stddevs are empty."); in NormalizeOp() 113 this.mean = mean.clone(); in NormalizeOp() [all …]
|
/external/ImageMagick/filters/ |
D | analyze.c | 87 mean, member 220 brightness.mean=brightness.sum[1]/area; in analyzeImage() 221 (void) FormatLocaleString(text,MagickPathExtent,"%g",brightness.mean); in analyzeImage() 230 brightness.kurtosis=(brightness.sum[4]/area-4.0*brightness.mean* in analyzeImage() 231 brightness.sum[3]/area+6.0*brightness.mean*brightness.mean* in analyzeImage() 232 brightness.sum[2]/area-3.0*brightness.mean*brightness.mean* in analyzeImage() 233 brightness.mean*brightness.mean)/(brightness.standard_deviation* in analyzeImage() 239 brightness.skewness=(brightness.sum[3]/area-3.0*brightness.mean* in analyzeImage() 240 brightness.sum[2]/area+2.0*brightness.mean*brightness.mean* in analyzeImage() 241 brightness.mean)/(brightness.standard_deviation* in analyzeImage() [all …]
|
/external/tensorflow/tensorflow/python/framework/testdata/ |
D | metrics_export_meta_graph.pb | 764 name: "mean/total/Initializer/zeros" 770 s: "loc:@mean/total" 802 name: "mean/total" 809 s: "loc:@mean/total" 849 name: "mean/total/Assign" 851 input: "mean/total" 852 input: "mean/total/Initializer/zeros" 864 s: "loc:@mean/total" 891 name: "mean/total/read" 893 input: "mean/total" [all …]
|
/external/rust/crates/criterion/src/ |
D | estimate.rs | 65 mean: to_estimate(points.mean, &distributions.mean), in build_estimates() 93 mean: to_estimate(points.mean, &distributions.mean), in build_change_estimates() 99 pub mean: f64, field 107 pub mean: Estimate, field 115 self.slope.as_ref().unwrap_or(&self.mean) in typical() 119 Statistic::Mean => Some(&self.mean), in get() 130 pub mean: Distribution<f64>, field 138 self.slope.as_ref().unwrap_or(&self.mean) in typical() 142 Statistic::Mean => Some(&self.mean), in get() 153 pub mean: f64, field [all …]
|
/external/apache-commons-math/src/main/java/org/apache/commons/math/random/ |
D | UncorrelatedRandomVectorGenerator.java | 40 private final double[] mean; field in UncorrelatedRandomVectorGenerator 53 public UncorrelatedRandomVectorGenerator(double[] mean, in UncorrelatedRandomVectorGenerator() argument 56 if (mean.length != standardDeviation.length) { in UncorrelatedRandomVectorGenerator() 57 throw new DimensionMismatchException(mean.length, standardDeviation.length); in UncorrelatedRandomVectorGenerator() 59 this.mean = mean.clone(); in UncorrelatedRandomVectorGenerator() 73 mean = new double[dimension]; in UncorrelatedRandomVectorGenerator() 84 double[] random = new double[mean.length]; in nextVector() 86 random[i] = mean[i] + standardDeviation[i] * generator.nextNormalizedDouble(); in nextVector()
|
/external/tensorflow/tensorflow/python/keras/layers/preprocessing/ |
D | normalization.py | 91 def __init__(self, axis=-1, mean=None, variance=None, **kwargs): argument 107 if isinstance(mean, variables.Variable): 113 if mean is not None and variance is not None: 114 mean = convert_to_ndarray(mean) 116 elif mean is not None or variance is not None: 119 'must be set. Got mean: {} and variance: {}'.format(mean, variance)) 120 self.mean_val = mean 150 self.mean = self.add_weight( 174 self.mean.assign(mean_val) 196 total_mean = self.mean * existing_weight + batch_mean * batch_weight [all …]
|
/external/abseil-cpp/absl/random/ |
D | poisson_distribution_test.cc | 112 const double mean = std::min(kMax, m); in TYPED_TEST() local 113 const param_type param(mean); in TYPED_TEST() 116 absl::poisson_distribution<TypeParam> before(mean); in TYPED_TEST() 117 EXPECT_EQ(before.mean(), param.mean()); in TYPED_TEST() 136 ABSL_INTERNAL_LOG(INFO, absl::StrCat("Range {", param.mean(), "}: ", in TYPED_TEST() 145 EXPECT_NE(before.mean(), after.mean()); in TYPED_TEST() 151 EXPECT_EQ(before.mean(), after.mean()) // in TYPED_TEST() 164 explicit PoissonModel(double mean) : mean_(mean) {} in PoissonModel() argument 166 double mean() const { return mean_; } in mean() function in __anon3b9c9a850111::PoissonModel 216 const size_t max_i = 50 * stddev() + mean(); in InitCDF() [all …]
|
/external/angle/third_party/abseil-cpp/absl/random/ |
D | poisson_distribution_test.cc | 113 const double mean = std::min(kMax, m); in TYPED_TEST() local 114 const param_type param(mean); in TYPED_TEST() 117 absl::poisson_distribution<TypeParam> before(mean); in TYPED_TEST() 118 EXPECT_EQ(before.mean(), param.mean()); in TYPED_TEST() 137 ABSL_INTERNAL_LOG(INFO, absl::StrCat("Range {", param.mean(), "}: ", in TYPED_TEST() 146 EXPECT_NE(before.mean(), after.mean()); in TYPED_TEST() 152 EXPECT_EQ(before.mean(), after.mean()) // in TYPED_TEST() 165 explicit PoissonModel(double mean) : mean_(mean) {} in PoissonModel() argument 167 double mean() const { return mean_; } in mean() function in __anon6b4cbfd40111::PoissonModel 217 const size_t max_i = 50 * stddev() + mean(); in InitCDF() [all …]
|
/external/rust/crates/grpcio-sys/grpc/third_party/abseil-cpp/absl/random/ |
D | poisson_distribution_test.cc | 113 const double mean = std::min(kMax, m); in TYPED_TEST() local 114 const param_type param(mean); in TYPED_TEST() 117 absl::poisson_distribution<TypeParam> before(mean); in TYPED_TEST() 118 EXPECT_EQ(before.mean(), param.mean()); in TYPED_TEST() 137 ABSL_INTERNAL_LOG(INFO, absl::StrCat("Range {", param.mean(), "}: ", in TYPED_TEST() 146 EXPECT_NE(before.mean(), after.mean()); in TYPED_TEST() 152 EXPECT_EQ(before.mean(), after.mean()) // in TYPED_TEST() 165 explicit PoissonModel(double mean) : mean_(mean) {} in PoissonModel() argument 167 double mean() const { return mean_; } in mean() function in __anonbd44bce60111::PoissonModel 217 const size_t max_i = 50 * stddev() + mean(); in InitCDF() [all …]
|
D | gaussian_distribution_test.cc | 84 const TypeParam mean = (mod & 0x1) ? -x : x; in TYPED_TEST() local 86 const param_type param(mean, stddev); in TYPED_TEST() 88 absl::gaussian_distribution<TypeParam> before(mean, stddev); in TYPED_TEST() 89 EXPECT_EQ(before.mean(), param.mean()); in TYPED_TEST() 110 INFO, absl::StrFormat("Range{%f, %f}: %f, %f", mean, stddev, in TYPED_TEST() 117 if (!std::isfinite(mean) || !std::isfinite(stddev)) { in TYPED_TEST() 125 EXPECT_NE(before.mean(), after.mean()); in TYPED_TEST() 142 if (mean <= std::numeric_limits<double>::max() && in TYPED_TEST() 143 mean >= std::numeric_limits<double>::lowest()) { in TYPED_TEST() 144 EXPECT_EQ(static_cast<double>(before.mean()), in TYPED_TEST() [all …]
|
/external/libtextclassifier/abseil-cpp/absl/random/ |
D | poisson_distribution_test.cc | 113 const double mean = std::min(kMax, m); in TYPED_TEST() local 114 const param_type param(mean); in TYPED_TEST() 117 absl::poisson_distribution<TypeParam> before(mean); in TYPED_TEST() 118 EXPECT_EQ(before.mean(), param.mean()); in TYPED_TEST() 137 ABSL_INTERNAL_LOG(INFO, absl::StrCat("Range {", param.mean(), "}: ", in TYPED_TEST() 146 EXPECT_NE(before.mean(), after.mean()); in TYPED_TEST() 152 EXPECT_EQ(before.mean(), after.mean()) // in TYPED_TEST() 165 explicit PoissonModel(double mean) : mean_(mean) {} in PoissonModel() argument 167 double mean() const { return mean_; } in mean() function in __anon8683c0550111::PoissonModel 217 const size_t max_i = 50 * stddev() + mean(); in InitCDF() [all …]
|
D | gaussian_distribution_test.cc | 84 const TypeParam mean = (mod & 0x1) ? -x : x; in TYPED_TEST() local 86 const param_type param(mean, stddev); in TYPED_TEST() 88 absl::gaussian_distribution<TypeParam> before(mean, stddev); in TYPED_TEST() 89 EXPECT_EQ(before.mean(), param.mean()); in TYPED_TEST() 110 INFO, absl::StrFormat("Range{%f, %f}: %f, %f", mean, stddev, in TYPED_TEST() 117 if (!std::isfinite(mean) || !std::isfinite(stddev)) { in TYPED_TEST() 125 EXPECT_NE(before.mean(), after.mean()); in TYPED_TEST() 142 if (mean <= std::numeric_limits<double>::max() && in TYPED_TEST() 143 mean >= std::numeric_limits<double>::lowest()) { in TYPED_TEST() 144 EXPECT_EQ(static_cast<double>(before.mean()), in TYPED_TEST() [all …]
|
/external/openscreen/third_party/abseil/src/absl/random/ |
D | poisson_distribution_test.cc | 113 const double mean = std::min(kMax, m); in TYPED_TEST() local 114 const param_type param(mean); in TYPED_TEST() 117 absl::poisson_distribution<TypeParam> before(mean); in TYPED_TEST() 118 EXPECT_EQ(before.mean(), param.mean()); in TYPED_TEST() 137 ABSL_INTERNAL_LOG(INFO, absl::StrCat("Range {", param.mean(), "}: ", in TYPED_TEST() 146 EXPECT_NE(before.mean(), after.mean()); in TYPED_TEST() 152 EXPECT_EQ(before.mean(), after.mean()) // in TYPED_TEST() 165 explicit PoissonModel(double mean) : mean_(mean) {} in PoissonModel() argument 167 double mean() const { return mean_; } in mean() function in __anon1c6796a60111::PoissonModel 217 const size_t max_i = 50 * stddev() + mean(); in InitCDF() [all …]
|
D | gaussian_distribution_test.cc | 84 const TypeParam mean = (mod & 0x1) ? -x : x; in TYPED_TEST() local 86 const param_type param(mean, stddev); in TYPED_TEST() 88 absl::gaussian_distribution<TypeParam> before(mean, stddev); in TYPED_TEST() 89 EXPECT_EQ(before.mean(), param.mean()); in TYPED_TEST() 110 INFO, absl::StrFormat("Range{%f, %f}: %f, %f", mean, stddev, in TYPED_TEST() 117 if (!std::isfinite(mean) || !std::isfinite(stddev)) { in TYPED_TEST() 125 EXPECT_NE(before.mean(), after.mean()); in TYPED_TEST() 142 if (mean <= std::numeric_limits<double>::max() && in TYPED_TEST() 143 mean >= std::numeric_limits<double>::lowest()) { in TYPED_TEST() 144 EXPECT_EQ(static_cast<double>(before.mean()), in TYPED_TEST() [all …]
|
/external/webrtc/third_party/abseil-cpp/absl/random/ |
D | poisson_distribution_test.cc | 112 const double mean = std::min(kMax, m); in TYPED_TEST() local 113 const param_type param(mean); in TYPED_TEST() 116 absl::poisson_distribution<TypeParam> before(mean); in TYPED_TEST() 117 EXPECT_EQ(before.mean(), param.mean()); in TYPED_TEST() 136 ABSL_INTERNAL_LOG(INFO, absl::StrCat("Range {", param.mean(), "}: ", in TYPED_TEST() 145 EXPECT_NE(before.mean(), after.mean()); in TYPED_TEST() 151 EXPECT_EQ(before.mean(), after.mean()) // in TYPED_TEST() 164 explicit PoissonModel(double mean) : mean_(mean) {} in PoissonModel() argument 166 double mean() const { return mean_; } in mean() function in __anon7df3b2f40111::PoissonModel 216 const size_t max_i = 50 * stddev() + mean(); in InitCDF() [all …]
|