/external/tensorflow/tensorflow/lite/kernels/ |
D | select_test.cc | 87 SelectOpModel model({1, 1, 1, 4}, {1, 1, 1, 4}, {1, 1, 1, 4}, in TEST() local 90 model.PopulateTensor<bool>(model.input1(), {true, false, true, false}); in TEST() 91 model.PopulateTensor<bool>(model.input2(), {false, false, false, false}); in TEST() 92 model.PopulateTensor<bool>(model.input3(), {true, true, true, true}); in TEST() 93 model.Invoke(); in TEST() 95 EXPECT_THAT(model.GetOutput<bool>(), in TEST() 97 EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({1, 1, 1, 4})); in TEST() 101 SelectOpModel model({1, 1, 1, 4}, {1, 1, 1, 4}, {1, 1, 1, 4}, in TEST() local 104 model.PopulateTensor<bool>(model.input1(), {true, false, true, false}); in TEST() 105 model.PopulateTensor<float>(model.input2(), {0.1, 0.2, 0.3, 0.4}); in TEST() [all …]
|
D | comparisons_test.cc | 103 ComparisonOpModel model({1, 1, 1, 4}, {1, 1, 1, 4}, TensorType_BOOL, in TEST() local 105 model.PopulateTensor<bool>(model.input1(), {true, false, true, false}); in TEST() 106 model.PopulateTensor<bool>(model.input2(), {true, true, false, false}); in TEST() 107 model.Invoke(); in TEST() 109 EXPECT_THAT(model.GetOutput(), ElementsAre(true, false, false, true)); in TEST() 110 EXPECT_THAT(model.GetOutputShape(), ElementsAre(1, 1, 1, 4)); in TEST() 114 ComparisonOpModel model({1, 1, 1, 4}, {1, 1, 1, 4}, TensorType_FLOAT32, in TEST() local 116 model.PopulateTensor<float>(model.input1(), {0.1, 0.9, 0.7, 0.3}); in TEST() 117 model.PopulateTensor<float>(model.input2(), {0.1, 0.2, 0.6, 0.5}); in TEST() 118 model.Invoke(); in TEST() [all …]
|
D | mirror_pad_test.cc | 54 BaseMirrorPadOpModel<int> model( in TEST() local 57 model.PopulateTensor<int>(model.input_tensor_id(), {1, 2, 3, 4, 5, 6}); in TEST() 58 model.PopulateTensor<int>(model.padding_matrix_tensor_id(), {0, 0, 0, 0}); in TEST() 59 model.Invoke(); in TEST() 60 EXPECT_THAT(model.GetOutput(), ElementsAreArray({1, 2, 3, 4, 5, 6})); in TEST() 64 BaseMirrorPadOpModel<int> model( in TEST() local 67 model.PopulateTensor<int>(model.input_tensor_id(), {1, 2, 3, 4, 5, 6}); in TEST() 68 model.PopulateTensor<int>(model.padding_matrix_tensor_id(), {0, 1, 0, 1}); in TEST() 69 model.Invoke(); in TEST() 70 EXPECT_THAT(model.GetOutput(), in TEST() [all …]
|
D | pack_test.cc | 61 PackOpModel<float> model({TensorType_FLOAT32, {2}}, 0, 3); in TEST() local 62 model.SetInput(0, {1, 4}); in TEST() 63 model.SetInput(1, {2, 5}); in TEST() 64 model.SetInput(2, {3, 6}); in TEST() 65 model.Invoke(); in TEST() 66 EXPECT_THAT(model.GetOutputShape(), ElementsAre(3, 2)); in TEST() 67 EXPECT_THAT(model.GetOutput(), ElementsAreArray({1, 4, 2, 5, 3, 6})); in TEST() 71 PackOpModel<float> model({TensorType_FLOAT32, {2}}, 1, 3); in TEST() local 72 model.SetInput(0, {1, 4}); in TEST() 73 model.SetInput(1, {2, 5}); in TEST() [all …]
|
D | reverse_test.cc | 57 ReverseOpModel<float> model({TensorType_FLOAT32, {4}}, in TEST() local 59 model.PopulateTensor<float>(model.input(), {1, 2, 3, 4}); in TEST() 60 model.PopulateTensor<int32_t>(model.axis(), {0}); in TEST() 61 model.Invoke(); in TEST() 63 EXPECT_THAT(model.GetOutputShape(), ElementsAre(4)); in TEST() 64 EXPECT_THAT(model.GetOutput(), ElementsAreArray({4, 3, 2, 1})); in TEST() 68 ReverseOpModel<float> model({TensorType_FLOAT32, {4, 3, 2}}, in TEST() local 70 model.PopulateTensor<float>(model.input(), in TEST() 73 model.PopulateTensor<int32_t>(model.axis(), {1}); in TEST() 74 model.Invoke(); in TEST() [all …]
|
D | reverse_sequence_test.cc | 59 ReverseSequenceOpModel<float> model({TensorType_FLOAT32, {4, 3, 2}}, in TEST() local 61 model.PopulateTensor<float>(model.input(), in TEST() 64 model.PopulateTensor<int32_t>(model.seq_lengths(), {3, 2, 3, 3}); in TEST() 65 model.Invoke(); in TEST() 66 EXPECT_THAT(model.GetOutputShape(), ElementsAre(4, 3, 2)); in TEST() 68 model.GetOutput(), in TEST() 74 ReverseSequenceOpModel<float> model({TensorType_FLOAT32, {4, 3, 2}}, in TEST() local 76 model.PopulateTensor<float>(model.input(), in TEST() 79 model.PopulateTensor<int32_t>(model.seq_lengths(), {3, 4}); in TEST() 80 model.Invoke(); in TEST() [all …]
|
D | range_test.cc | 56 RangeOpModel<int32_t> model(TensorType_INT32); in TEST() local 57 model.PopulateTensor<int32_t>(model.start(), {0}); in TEST() 58 model.PopulateTensor<int32_t>(model.limit(), {4}); in TEST() 59 model.PopulateTensor<int32_t>(model.delta(), {1}); in TEST() 60 model.Invoke(); in TEST() 61 EXPECT_THAT(model.GetOutputShape(), ElementsAre(4)); in TEST() 62 EXPECT_THAT(model.GetOutput(), ElementsAre(0, 1, 2, 3)); in TEST() 66 RangeOpModel<int32_t> model(TensorType_INT32); in TEST() local 67 model.PopulateTensor<int32_t>(model.start(), {2}); in TEST() 68 model.PopulateTensor<int32_t>(model.limit(), {9}); in TEST() [all …]
|
D | segment_sum_test.cc | 51 SegmentSumOpModel<int32_t> model({TensorType_INT32, {3, 4}}, in TEST() local 53 model.PopulateTensor<int32_t>(model.data(), in TEST() 55 model.PopulateTensor<int32_t>(model.segment_ids(), {0, 0, 1}); in TEST() 56 model.Invoke(); in TEST() 57 EXPECT_THAT(model.GetOutput(), ElementsAreArray({5, 5, 5, 5, 5, 6, 7, 8})); in TEST() 58 EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({2, 4})); in TEST() 62 SegmentSumOpModel<int32_t> model({TensorType_INT32, {3}}, in TEST() local 64 model.PopulateTensor<int32_t>(model.data(), {1, 2, 3}); in TEST() 65 model.PopulateTensor<int32_t>(model.segment_ids(), {0, 0, 1}); in TEST() 66 model.Invoke(); in TEST() [all …]
|
D | floor_mod_test.cc | 55 FloorModModel<int32_t> model({TensorType_INT32, {1, 2, 2, 1}}, in TEST() local 58 model.PopulateTensor<int32_t>(model.input1(), {10, 9, 11, 3}); in TEST() 59 model.PopulateTensor<int32_t>(model.input2(), {2, 2, 3, 4}); in TEST() 60 model.Invoke(); in TEST() 61 EXPECT_THAT(model.GetOutputShape(), ElementsAre(1, 2, 2, 1)); in TEST() 62 EXPECT_THAT(model.GetOutput(), ElementsAre(0, 1, 2, 3)); in TEST() 66 FloorModModel<int32_t> model({TensorType_INT32, {1, 2, 2, 1}}, in TEST() local 69 model.PopulateTensor<int32_t>(model.input1(), {10, -9, -11, 7}); in TEST() 70 model.PopulateTensor<int32_t>(model.input2(), {2, 2, -3, -4}); in TEST() 71 model.Invoke(); in TEST() [all …]
|
D | arg_min_max_test.cc | 126 void ValidateOutput(const ArgBaseOpModel& model, in ValidateOutput() argument 129 EXPECT_THAT(model.GetInt32Output(), ElementsAreArray(expected_output)); in ValidateOutput() 131 EXPECT_THAT(model.GetInt64Output(), ElementsAreArray(expected_output)); in ValidateOutput() 143 ArgMaxOpModel model({1, 1, 1, 4}, TensorType_FLOAT32, 3, AxisType(), in TEST_P() local 145 model.PopulateTensor<float>(model.input(), {0.1, 0.9, 0.7, 0.3}); in TEST_P() 146 model.Invoke(); in TEST_P() 148 ValidateOutput(model, {1}); in TEST_P() 149 EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({1, 1, 1})); in TEST_P() 153 ArgMaxOpModel model({1, 1, 1, 4}, TensorType_UINT8, 3, AxisType(), in TEST_P() local 155 model.PopulateTensor<uint8_t>(model.input(), {1, 9, 7, 3}); in TEST_P() [all …]
|
D | pow_test.cc | 58 PowOpModel<int32_t> model({TensorType_INT32, {1, 2, 2, 1}}, in TEST() local 61 model.PopulateTensor<int32_t>(model.input1(), {12, 2, 7, 8}); in TEST() 62 model.PopulateTensor<int32_t>(model.input2(), {1, 2, 3, 1}); in TEST() 63 model.Invoke(); in TEST() 64 EXPECT_THAT(model.GetOutputShape(), ElementsAre(1, 2, 2, 1)); in TEST() 65 EXPECT_THAT(model.GetOutput(), ElementsAre(12, 4, 343, 8)); in TEST() 69 PowOpModel<int32_t> model({TensorType_INT32, {1, 2, 2, 1}}, in TEST() local 72 model.PopulateTensor<int32_t>(model.input1(), {0, 2, -7, 8}); in TEST() 73 model.PopulateTensor<int32_t>(model.input2(), {1, 2, 3, 0}); in TEST() 74 model.Invoke(); in TEST() [all …]
|
D | floor_div_test.cc | 55 FloorDivModel<int32_t> model({TensorType_INT32, {1, 2, 2, 1}}, in TEST() local 58 model.PopulateTensor<int32_t>(model.input1(), {10, 9, 11, 3}); in TEST() 59 model.PopulateTensor<int32_t>(model.input2(), {2, 2, 3, 4}); in TEST() 60 model.Invoke(); in TEST() 61 EXPECT_THAT(model.GetOutputShape(), ElementsAre(1, 2, 2, 1)); in TEST() 62 EXPECT_THAT(model.GetOutput(), ElementsAre(5, 4, 3, 0)); in TEST() 66 FloorDivModel<int32_t> model({TensorType_INT32, {1, 2, 2, 1}}, in TEST() local 69 model.PopulateTensor<int32_t>(model.input1(), {10, -9, -11, 7}); in TEST() 70 model.PopulateTensor<int32_t>(model.input2(), {2, 2, -3, -4}); in TEST() 71 model.Invoke(); in TEST() [all …]
|
D | one_hot_test.cc | 70 OneHotOpModel<float> model({3}, depth, TensorType_FLOAT32); in TEST() local 71 model.SetIndices({0, 1, 2}); in TEST() 72 model.Invoke(); in TEST() 74 EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({3, 3})); in TEST() 75 EXPECT_THAT(model.GetOutput(), in TEST() 81 OneHotOpModel<int> model({3}, depth, TensorType_INT32); in TEST() local 82 model.SetIndices({0, 1, 2}); in TEST() 83 model.Invoke(); in TEST() 85 EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({3, 3})); in TEST() 86 EXPECT_THAT(model.GetOutput(), ElementsAreArray({1, 0, 0, 0, 1, 0, 0, 0, 1})); in TEST() [all …]
|
/external/tensorflow/tensorflow/python/keras/engine/ |
D | sequential_test.py | 45 model = keras.models.Sequential() 46 model.add(keras.layers.Dense(1, input_dim=2)) 47 model.add(keras.layers.Dropout(0.3, name='dp')) 48 model.add(keras.layers.Dense(2, kernel_regularizer='l2', 50 self.assertEqual(len(model.layers), 3) 51 self.assertEqual(len(model.weights), 2 * 2) 52 self.assertEqual(model.get_layer(name='dp').name, 'dp') 56 model = keras.models.Sequential() 57 model.add(keras.Input(shape=(2,), name='input_layer')) 58 model.add(keras.layers.Dense(1)) [all …]
|
D | deferred_sequential_test.py | 43 model = get_model() 44 model(np.random.random((2, 6))) 45 self.assertLen(model.weights, 4) 46 self.assertTrue(model._is_graph_network) 47 self.assertLen(model.inputs, 1) 48 self.assertLen(model.outputs, 1) 49 self.assertEqual(model.inputs[0].shape.as_list(), [2, 6]) 50 self.assertEqual(model.outputs[0].shape.as_list(), [2, 2]) 53 model(np.random.random((3, 6))) 54 self.assertLen(model.inputs, 1) [all …]
|
/external/tensorflow/tensorflow/lite/micro/kernels/ |
D | floor_mod_test.cc | 32 FloorMod<int32_t> model({TensorType_INT32, {1, 2, 2, 1}}, in TF_LITE_MICRO_TEST() local 35 model.PopulateTensor<int32_t>(model.input1(), {10, 9, 11, 3}); in TF_LITE_MICRO_TEST() 36 model.PopulateTensor<int32_t>(model.input2(), {2, 2, 3, 4}); in TF_LITE_MICRO_TEST() 37 EXPECT_THAT(model.GetOutput(), ElementsAre(0, 1, 2, 3)); in TF_LITE_MICRO_TEST() 43 FloorMod<int32_t> model({TensorType_INT32, {1, 2, 2, 1}}, in TF_LITE_MICRO_TEST() local 46 model.PopulateTensor<int32_t>(model.input1(), {10, -9, -11, 7}); in TF_LITE_MICRO_TEST() 47 model.PopulateTensor<int32_t>(model.input2(), {2, 2, -3, -4}); in TF_LITE_MICRO_TEST() 48 EXPECT_THAT(model.GetOutput(), ElementsAre(0, 1, -2, -1)); in TF_LITE_MICRO_TEST() 54 FloorMod<int32_t> model({TensorType_INT32, {1, 2, 2, 1}}, in TF_LITE_MICRO_TEST() local 56 model.PopulateTensor<int32_t>(model.input1(), {10, -9, -11, 7}); in TF_LITE_MICRO_TEST() [all …]
|
D | floor_div_test.cc | 32 FloorDivModel<int32_t> model({TensorType_INT32, {1, 2, 2, 1}}, in TF_LITE_MICRO_TEST() local 35 model.PopulateTensor<int32_t>(model.input1(), {10, 9, 11, 3}); in TF_LITE_MICRO_TEST() 36 model.PopulateTensor<int32_t>(model.input2(), {2, 2, 3, 4}); in TF_LITE_MICRO_TEST() 37 EXPECT_THAT(model.GetOutput(), ElementsAre(5, 4, 3, 0)); in TF_LITE_MICRO_TEST() 43 FloorDivModel<int32_t> model({TensorType_INT32, {1, 2, 2, 1}}, in TF_LITE_MICRO_TEST() local 46 model.PopulateTensor<int32_t>(model.input1(), {10, -9, -11, 7}); in TF_LITE_MICRO_TEST() 47 model.PopulateTensor<int32_t>(model.input2(), {2, 2, -3, -4}); in TF_LITE_MICRO_TEST() 48 EXPECT_THAT(model.GetOutput(), ElementsAre(5, -5, 3, -2)); in TF_LITE_MICRO_TEST() 54 FloorDivModel<int32_t> model({TensorType_INT32, {1, 2, 2, 1}}, in TF_LITE_MICRO_TEST() local 56 model.PopulateTensor<int32_t>(model.input1(), {10, -9, -11, 7}); in TF_LITE_MICRO_TEST() [all …]
|
/external/tensorflow/tensorflow/lite/delegates/gpu/gl/kernels/ |
D | elementwise_test.cc | 43 SingleOpModel model({/*type=*/ToString(op_type), /*attributes=*/{}}, in TEST() local 46 ASSERT_TRUE(model.PopulateTensor(0, {0.0, -6.2, 2.0, 4.0})); in TEST() 47 ASSERT_OK(model.Invoke(*NewElementwiseNodeShader(op_type))); in TEST() 48 EXPECT_THAT(model.GetOutput(0), in TEST() 55 SingleOpModel model({/*type=*/ToString(op_type), /*attributes=*/{}}, in TEST() local 58 ASSERT_TRUE(model.PopulateTensor(0, {0.0, 3.1415926, -3.1415926, 1})); in TEST() 59 ASSERT_OK(model.Invoke(*NewElementwiseNodeShader(op_type))); in TEST() 60 EXPECT_THAT(model.GetOutput(0), in TEST() 67 SingleOpModel model({/*type=*/ToString(op_type), /*attributes=*/{}}, in TEST() local 70 ASSERT_TRUE(model.PopulateTensor(0, {0.0, -6.2, 2.0, 4.0})); in TEST() [all …]
|
/external/XNNPACK/bench/ |
D | f32-gemm-e2e.cc | 76 …emm_4x12__aarch64_neonfma_cortex_a53(benchmark::State& state, models::ExecutionPlanFactory model) { in f32_gemm_4x12__aarch64_neonfma_cortex_a53() argument 77 GEMMEnd2EndBenchmark(state, model, in f32_gemm_4x12__aarch64_neonfma_cortex_a53() 85 …gemm_4x8__aarch64_neonfma_cortex_a53(benchmark::State& state, models::ExecutionPlanFactory model) { in f32_gemm_4x8__aarch64_neonfma_cortex_a53() argument 86 GEMMEnd2EndBenchmark(state, model, in f32_gemm_4x8__aarch64_neonfma_cortex_a53() 94 …gemm_4x8__aarch64_neonfma_cortex_a55(benchmark::State& state, models::ExecutionPlanFactory model) { in f32_gemm_4x8__aarch64_neonfma_cortex_a55() argument 95 GEMMEnd2EndBenchmark(state, model, in f32_gemm_4x8__aarch64_neonfma_cortex_a55() 103 …gemm_4x8__aarch64_neonfma_cortex_a57(benchmark::State& state, models::ExecutionPlanFactory model) { in f32_gemm_4x8__aarch64_neonfma_cortex_a57() argument 104 GEMMEnd2EndBenchmark(state, model, in f32_gemm_4x8__aarch64_neonfma_cortex_a57() 112 …gemm_4x8__aarch64_neonfma_cortex_a75(benchmark::State& state, models::ExecutionPlanFactory model) { in f32_gemm_4x8__aarch64_neonfma_cortex_a75() argument 113 GEMMEnd2EndBenchmark(state, model, in f32_gemm_4x8__aarch64_neonfma_cortex_a75() [all …]
|
D | qs8-gemm-e2e.cc | 79 …ukernel_1x16c4__aarch64_neondot_ld32(benchmark::State& state, models::ExecutionPlanFactory model) { in qs8_gemm_minmax_ukernel_1x16c4__aarch64_neondot_ld32() argument 80 GEMMEnd2EndBenchmark(state, model, in qs8_gemm_minmax_ukernel_1x16c4__aarch64_neondot_ld32() 88 …ukernel_1x16c4__aarch64_neondot_ld64(benchmark::State& state, models::ExecutionPlanFactory model) { in qs8_gemm_minmax_ukernel_1x16c4__aarch64_neondot_ld64() argument 89 GEMMEnd2EndBenchmark(state, model, in qs8_gemm_minmax_ukernel_1x16c4__aarch64_neondot_ld64() 99 …l_4x16c4__aarch64_neondot_cortex_a55(benchmark::State& state, models::ExecutionPlanFactory model) { in qs8_gemm_minmax_ukernel_4x16c4__aarch64_neondot_cortex_a55() argument 100 GEMMEnd2EndBenchmark(state, model, in qs8_gemm_minmax_ukernel_4x16c4__aarch64_neondot_cortex_a55() 108 …ukernel_4x16c4__aarch64_neondot_ld32(benchmark::State& state, models::ExecutionPlanFactory model) { in qs8_gemm_minmax_ukernel_4x16c4__aarch64_neondot_ld32() argument 109 GEMMEnd2EndBenchmark(state, model, in qs8_gemm_minmax_ukernel_4x16c4__aarch64_neondot_ld32() 117 …ukernel_4x16c4__aarch64_neondot_ld64(benchmark::State& state, models::ExecutionPlanFactory model) { in qs8_gemm_minmax_ukernel_4x16c4__aarch64_neondot_ld64() argument 118 GEMMEnd2EndBenchmark(state, model, in qs8_gemm_minmax_ukernel_4x16c4__aarch64_neondot_ld64() [all …]
|
D | f32-dwconv-e2e.cc | 74 …id f32_dwconv_up4x9__aarch64_neonfma(benchmark::State& state, models::ExecutionPlanFactory model) { in f32_dwconv_up4x9__aarch64_neonfma() argument 75 DWConvEnd2EndBenchmark(state, model, in f32_dwconv_up4x9__aarch64_neonfma() 80 …nv_up4x9__aarch64_neonfma_cortex_a55(benchmark::State& state, models::ExecutionPlanFactory model) { in f32_dwconv_up4x9__aarch64_neonfma_cortex_a55() argument 81 DWConvEnd2EndBenchmark(state, model, in f32_dwconv_up4x9__aarch64_neonfma_cortex_a55() 91 static void f32_dwconv_up4x9__neon(benchmark::State& state, models::ExecutionPlanFactory model) { in f32_dwconv_up4x9__neon() argument 92 DWConvEnd2EndBenchmark(state, model, in f32_dwconv_up4x9__neon() 97 …tic void f32_dwconv_up4x9__neon_acc2(benchmark::State& state, models::ExecutionPlanFactory model) { in f32_dwconv_up4x9__neon_acc2() argument 98 DWConvEnd2EndBenchmark(state, model, in f32_dwconv_up4x9__neon_acc2() 103 static void f32_dwconv_up8x9__neon(benchmark::State& state, models::ExecutionPlanFactory model) { in f32_dwconv_up8x9__neon() argument 104 DWConvEnd2EndBenchmark(state, model, in f32_dwconv_up8x9__neon() [all …]
|
/external/cpuinfo/src/arm/linux/ |
D | chipset.c | 152 uint32_t model = 0; in match_msm_apq() local 159 model = model * 10 + digit; in match_msm_apq() 166 .model = model, in match_msm_apq() 218 uint32_t model = 0; in match_sdm() local 225 model = model * 10 + digit; in match_sdm() 232 .model = model, in match_sdm() 265 uint32_t model = 0; in match_sm() local 272 model = model * 10 + digit; in match_sm() 279 .model = model, in match_sm() 346 uint32_t model = 0; in match_samsung_exynos() local [all …]
|
/external/tensorflow/tensorflow/lite/tools/optimize/ |
D | quantization_wrapper_utils_custom_test.cc | 31 auto model = absl::make_unique<ModelT>(); in TEST() local 46 model->subgraphs.push_back(std::move(subgraph)); in TEST() 56 model->subgraphs[0]->tensors.push_back(std::move(tensor)); in TEST() 58 model->subgraphs[0]->operators.push_back(std::move(lstm_op)); in TEST() 59 model->operator_codes.push_back(std::move(lstm_op_code)); in TEST() 60 model->buffers.push_back(std::move(buffer)); in TEST() 64 tflite::optimize::AddIntermediateTensorsToFusedOp(&builder, model.get()); in TEST() 67 EXPECT_EQ(model->operator_codes.size(), 1); in TEST() 68 EXPECT_EQ(model->subgraphs.size(), 1); in TEST() 69 EXPECT_EQ(model->subgraphs[0]->operators.size(), 1); in TEST() [all …]
|
D | modify_model_interface_test.cc | 33 auto model = absl::make_unique<ModelT>(); in CreateQuantizedModelSingleInputOutput() local 43 model->subgraphs.push_back(std::move(subgraph)); in CreateQuantizedModelSingleInputOutput() 74 model->subgraphs[0]->operators.push_back(std::move(quant_op)); in CreateQuantizedModelSingleInputOutput() 75 model->subgraphs[0]->operators.push_back(std::move(fc_op)); in CreateQuantizedModelSingleInputOutput() 76 model->subgraphs[0]->operators.push_back(std::move(dequant_op)); in CreateQuantizedModelSingleInputOutput() 78 model->operator_codes.push_back(std::move(quant_op_code)); in CreateQuantizedModelSingleInputOutput() 79 model->operator_codes.push_back(std::move(fc_op_code)); in CreateQuantizedModelSingleInputOutput() 80 model->operator_codes.push_back(std::move(dequant_op_code)); in CreateQuantizedModelSingleInputOutput() 83 model->subgraphs[0]->inputs = {0}; in CreateQuantizedModelSingleInputOutput() 84 model->subgraphs[0]->outputs = {3}; in CreateQuantizedModelSingleInputOutput() [all …]
|
/external/tensorflow/tensorflow/lite/kernels/perception/ |
D | max_pool_with_argmax_test.cc | 102 EXPECT_DEATH_IF_SUPPORTED(MaxpoolingWithArgMaxOpModel model( in TEST() 113 MaxpoolingWithArgMaxOpModel model( in TEST() local 120 model.SetInput({0, 13, 2, 0, 0, 1, 4, 0}); in TEST() 121 model.Invoke(); in TEST() 123 EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({1, 1, 2, 1})); in TEST() 124 EXPECT_THAT(model.GetOutput(), ElementsAreArray({13, 4})); in TEST() 125 EXPECT_THAT(model.GetIndicesShape(), ElementsAreArray({1, 1, 2, 1})); in TEST() 126 EXPECT_THAT(model.GetIndices(), ElementsAreArray({1, 6})); in TEST() 130 MaxpoolingWithArgMaxOpModel model( in TEST() local 138 model.SetInput({1, 0, 0, 2, 3, 0, 0, 4, 5, 0, 0, 6, 7, 0, 0, 8}); in TEST() [all …]
|