Searched refs:model_type (Results 1 – 11 of 11) sorted by relevance
/external/tensorflow/tensorflow/python/keras/ |
D | testing_utils.py | 314 _thread_local_data.model_type = None 332 previous_value = _thread_local_data.model_type 334 _thread_local_data.model_type = value 338 _thread_local_data.model_type = previous_value 442 if _thread_local_data.model_type is None: 447 return _thread_local_data.model_type 524 model_type = get_model_type() 525 if model_type == 'subclass': 527 if model_type == 'subclass_custom_build': 529 if model_type == 'sequential': [all …]
|
D | combinations.py | 61 return combinations.combine(model_type=KERAS_MODEL_TYPES) 93 model_type = kwargs.pop('model_type', None) 94 if model_type in KERAS_MODEL_TYPES: 95 return [testing_utils.model_type_scope(model_type)]
|
D | keras_parameterized.py | 286 def decorated(self, model_type, *args, **kwargs): argument 288 if model_type == 'functional': 290 elif model_type == 'subclass': 292 elif model_type == 'sequential': 295 raise ValueError('Unknown model type: %s' % (model_type,))
|
D | models_test.py | 459 def _clone_and_build_test_helper(self, model, model_type): argument 463 is_subclassed = (model_type == 'subclass')
|
D | callbacks_test.py | 2097 model_type = testing_utils.get_model_type() 2116 self._strip_layer_names(summary_file.histograms, model_type), 2128 model_type = testing_utils.get_model_type() 2147 self._strip_layer_names(summary_file.histograms, model_type), 2166 self._strip_layer_names(summary_file.images, model_type), 2253 def _strip_layer_names(self, summaries, model_type): argument 2271 start_from = 2 if 'subclass' in model_type else 1
|
/external/tensorflow/tensorflow/python/keras/layers/ |
D | cudnn_recurrent_test.py | 275 model_nest_level=[1, 2], model_type=['seq', 'func'])) 280 model_nest_level, model_type): argument 311 model_type) 313 model_nest_level, model_type) 323 def _make_nested_model(self, input_shape, layer, level=1, model_type='func'): argument 343 if model_type == 'func': 345 elif model_type == 'seq':
|
/external/tensorflow/tensorflow/python/keras/utils/ |
D | composite_tensor_support_test.py | 133 model_type = testing_utils.get_model_type() 134 if model_type == "subclass": 137 if model_type == "sequential": 147 if model_type == "functional": 160 raise ValueError("Unknown model type {}".format(model_type))
|
/external/tensorflow/tensorflow/lite/g3doc/performance/ |
D | post_training_integer_quant.ipynb | 547 "def test_model(tflite_file, test_image_index, model_type):\n", 553 " template = model_type + \" Model \\n True:{true}, Predicted:{predict}\"\n", 575 "test_model(tflite_model_file, test_image_index, model_type=\"Float\")" 595 "test_model(tflite_model_quant_file, test_image_index, model_type=\"Quantized\")" 625 "def evaluate_model(tflite_file, model_type):\n", 635 " model_type, accuracy, len(test_images)))" 655 "evaluate_model(tflite_model_file, model_type=\"Float\")" 675 "evaluate_model(tflite_model_quant_file, model_type=\"Quantized\")"
|
/external/tensorflow/tensorflow/python/keras/applications/ |
D | mobilenet_v3.py | 154 model_type='large', argument 329 model = models.Model(inputs, x, name='MobilenetV3' + model_type) 334 model_type, '_minimalistic' if minimalistic else '', str(alpha))
|
/external/tensorflow/tensorflow/lite/micro/examples/micro_speech/train/ |
D | train_micro_speech_model.ipynb | 485 "def run_tflite_inference(tflite_model_path, model_type=\"Float\"):\n", 502 " if model_type == \"Quantized\":\n", 516 " model_type, (correct_predictions * 100) / len(test_data), len(test_data)))" 533 "run_tflite_inference(MODEL_TFLITE, model_type='Quantized')"
|
/external/tensorflow/tensorflow/python/keras/mixed_precision/ |
D | keras_test.py | 473 model_type = testing_utils.get_model_type() 474 if save_format == 'h5' and model_type == 'subclass': 477 if (save_format == 'tf' and model_type == 'subclass' and
|