Searched refs:newshape (Results 1 – 9 of 9) sorted by relevance
/external/tensorflow/tensorflow/python/ops/numpy_ops/ |
D | np_array_ops.py | 748 def reshape(a, newshape, order='C'): argument 754 if isinstance(newshape, int): 755 newshape = [newshape] 759 array_ops.reshape(array_ops.transpose(a), newshape[::-1])) 761 r = array_ops.reshape(a, newshape) 766 def _reshape_method_wrapper(a, *newshape, **kwargs): argument 771 if len(newshape) == 1 and not isinstance(newshape[0], int): 772 newshape = newshape[0] 774 return reshape(a, newshape, order=order)
|
D | np_array_ops_test.py | 909 def run_test(arr, newshape, *args, **kwargs): argument 913 newshape_arg = fn2(newshape) 916 np.reshape(arr_arg, newshape, *args, **kwargs))
|
/external/tensorflow/tensorflow/python/kernel_tests/ |
D | confusion_matrix_test.py | 341 expected_label_values = np.reshape(label_values, newshape=(2, 3)) 368 expected_label_values = np.reshape(label_values, newshape=(2, 3)) 395 expected_prediction_values = np.reshape(prediction_values, newshape=(2, 3)) 424 expected_prediction_values = np.reshape(prediction_values, newshape=(2, 3))
|
D | weights_broadcast_test.py | 33 return np.reshape(np.cumsum(np.ones(shape), dtype=np.int32), newshape=shape)
|
D | array_ops_test.py | 487 newshape=(outer_size, middle_size, 3)) 504 newshape=(outer_size, middle_size, 4)) 521 newshape=(outer_size, middle_size, 3))
|
D | metrics_test.py | 171 return np.reshape(np.cumsum(np.ones(shape)), newshape=shape)
|
/external/tensorflow/tensorflow/python/ops/ |
D | image_ops_test.py | 2674 resized, newshape = self.evaluate([y, yshape]) 2675 self.assertAllEqual(img_shape, newshape) 2686 newshape = self.evaluate(yshape) 2687 self.assertAllEqual(single_shape, newshape) 2710 resized, newshape = self.evaluate([y, yshape]) 2711 self.assertAllEqual(img_shape, newshape) 2721 resized, newshape = self.evaluate([y, yshape]) 2722 self.assertAllEqual(single_shape, newshape) 2820 resized, newshape = self.evaluate([y, yshape]) 2821 self.assertAllEqual(img_shape, newshape) [all …]
|
/external/tensorflow/tensorflow/python/keras/layers/preprocessing/ |
D | discretization.py | 297 flattened_input = np.reshape(values, newshape=(-1, 1))
|
/external/tensorflow/third_party/py/numpy/tf_numpy_api/ |
D | tensorflow.experimental.numpy.pbtxt | 741 … argspec: "args=[\'a\', \'newshape\', \'order\'], varargs=None, keywords=None, defaults=[\'C\'], "
|