Home
last modified time | relevance | path

Searched refs:node_maxs (Results 1 – 6 of 6) sorted by relevance

/external/tensorflow/tensorflow/compiler/mlir/lite/quantization/
Dquantization_config.cc60 std::vector<llvm::Optional<double>> node_maxs; in ParseInputNodeQuantSpecs() local
69 node_maxs.push_back(value); in ParseInputNodeQuantSpecs()
78 return GetInputNodeQuantSpecs(input_nodes, node_mins, node_maxs, final_type, in ParseInputNodeQuantSpecs()
85 const std::vector<llvm::Optional<double>>& node_maxs, in GetInputNodeQuantSpecs() argument
90 if (node_mins.empty() || node_maxs.empty()) return false; in GetInputNodeQuantSpecs()
96 node_names.size() != node_maxs.size()) { in GetInputNodeQuantSpecs()
100 quant_specs->input_ranges.push_back({node_mins[i], node_maxs[i]}); in GetInputNodeQuantSpecs()
107 if (!node_maxs.empty()) { in GetInputNodeQuantSpecs()
Dquantization_config.h152 const std::vector<llvm::Optional<double>>& node_maxs,
/external/tensorflow/tensorflow/compiler/mlir/lite/python/
Dgraphdef_to_tfl_flatbuffer.cc60 std::vector<llvm::Optional<double>> node_maxs; in ConvertGraphDefToTFLiteFlatBuffer() local
65 &node_shapes, &node_mins, &node_maxs)); in ConvertGraphDefToTFLiteFlatBuffer()
Dtf_tfl_flatbuffer_helpers.cc200 std::vector<llvm::Optional<double>>* node_maxs) { in PopulateQuantizationSpecs() argument
236 node_maxs->push_back(min_max.second); in PopulateQuantizationSpecs()
239 node_maxs->push_back(llvm::None); in PopulateQuantizationSpecs()
244 if (mlir::TFL::GetInputNodeQuantSpecs(*node_names, *node_mins, *node_maxs, in PopulateQuantizationSpecs()
Dsaved_model_to_tfl_flatbuffer.cc133 std::vector<llvm::Optional<double>> node_maxs; in ConvertSavedModelToTFLiteFlatBuffer() local
138 &node_shapes, &node_mins, &node_maxs)); in ConvertSavedModelToTFLiteFlatBuffer()
Dtf_tfl_flatbuffer_helpers.h46 std::vector<llvm::Optional<double>>* node_maxs);