/external/tensorflow/tensorflow/python/distribute/ |
D | metrics_v1_test.py | 147 def _expected_fn(num_batches): argument 149 return num_batches * 2 - 0.5 160 def _expected_fn(num_batches): argument 161 return [3./4, 3./8, 3./12, 4./16][num_batches - 1] 176 def _expected_fn(num_batches): argument 181 mean([0.5, 1./3, 1./3, 0., 0.])][num_batches - 1] 195 def _expected_fn(num_batches): argument 200 mean([2./8, 1./7, 1./7, 0., 0.])][num_batches - 1] 213 def _expected_fn(num_batches): argument 218 first = 2. * num_batches - 2. [all …]
|
/external/tensorflow/tensorflow/core/kernels/ |
D | eigen_pooling_test.cc | 31 const int num_batches = 13; in TEST() local 37 Tensor<float, 4> input(depth, input_rows, input_cols, num_batches); in TEST() 38 Tensor<float, 4> result(depth, output_rows, output_cols, num_batches); in TEST() 51 EXPECT_EQ(result.dimension(3), num_batches); in TEST() 53 for (int b = 0; b < num_batches; ++b) { in TEST() 79 const int num_batches = 13; in TEST() local 85 Tensor<float, 4, RowMajor> input(num_batches, input_cols, input_rows, depth); in TEST() 86 Tensor<float, 4, RowMajor> result(num_batches, output_cols, output_rows, in TEST() 100 EXPECT_EQ(result.dimension(0), num_batches); in TEST() 102 for (int b = 0; b < num_batches; ++b) { in TEST() [all …]
|
D | parameterized_truncated_normal_op_test.cc | 27 static Graph* PTruncatedNormal(int num_batches, int samples_per_batch) { in PTruncatedNormal() argument 30 shape_t.flat<int32>().setValues({num_batches, samples_per_batch}); in PTruncatedNormal() 33 Tensor means_t(DT_FLOAT, TensorShape({num_batches})); in PTruncatedNormal() 35 Tensor stdevs_t(DT_FLOAT, TensorShape({num_batches})); in PTruncatedNormal() 38 Tensor minvals_t(DT_FLOAT, TensorShape({num_batches})); in PTruncatedNormal() 40 Tensor maxvals_t(DT_FLOAT, TensorShape({num_batches})); in PTruncatedNormal() 56 static Graph* PTruncatedNormal2SD(int num_batches, int samples_per_batch) { in PTruncatedNormal2SD() argument 59 shape_t.flat<int32>().setValues({num_batches, samples_per_batch}); in PTruncatedNormal2SD() 61 Tensor means_t(DT_FLOAT, TensorShape({num_batches})); in PTruncatedNormal2SD() 63 Tensor stdevs_t(DT_FLOAT, TensorShape({num_batches})); in PTruncatedNormal2SD() [all …]
|
D | eigen_backward_spatial_convolutions_test.cc | 231 const int num_batches = 13; in TEST() local 242 num_batches); in TEST() 245 num_batches); in TEST() 257 EXPECT_EQ(input_backward.dimension(3), num_batches); in TEST() 259 for (int b = 0; b < num_batches; ++b) { in TEST() 286 const int num_batches = 13; in TEST() local 296 Tensor<float, 4, RowMajor> input_backward(num_batches, input_cols, input_rows, in TEST() 300 Tensor<float, 4, RowMajor> output_backward(num_batches, output_cols, in TEST() 310 EXPECT_EQ(input_backward.dimension(0), num_batches); in TEST() 315 for (int b = 0; b < num_batches; ++b) { in TEST() [all …]
|
D | random_binomial_op_test.cc | 27 static Graph* RandomBinomialGraph(double count, double prob, int num_batches, in RandomBinomialGraph() argument 31 shape_t.flat<int32>().setValues({num_batches, samples_per_batch}); in RandomBinomialGraph() 33 Tensor counts_t(DT_FLOAT, TensorShape({num_batches})); in RandomBinomialGraph() 35 Tensor probs_t(DT_FLOAT, TensorShape({num_batches})); in RandomBinomialGraph() 48 static Graph* RandomBinomialInv(int num_batches, int samples_per_batch) { in RandomBinomialInv() argument 50 return RandomBinomialGraph(10., 0.3, num_batches, samples_per_batch); in RandomBinomialInv() 53 static Graph* RandomBinomialRej(int num_batches, int samples_per_batch) { in RandomBinomialRej() argument 55 return RandomBinomialGraph(100., 0.3, num_batches, samples_per_batch); in RandomBinomialRej() 58 static Graph* RandomBinomialInvComplement(int num_batches, in RandomBinomialInvComplement() argument 61 return RandomBinomialGraph(10., 0.8, num_batches, samples_per_batch); in RandomBinomialInvComplement() [all …]
|
D | eigen_backward_cuboid_convolutions_test.cc | 299 const int num_batches = 13; in TEST() local 313 input_cols, num_batches); in TEST() 317 output_cols, num_batches); in TEST() 326 EXPECT_EQ(input_backward.dimension(4), num_batches); in TEST() 332 for (int b = 0; b < num_batches; ++b) { in TEST() 366 const int num_batches = 13; in TEST() local 379 Tensor<float, 5, RowMajor> input_backward(num_batches, input_cols, input_rows, in TEST() 384 num_batches, output_cols, output_rows, output_planes, output_depth); in TEST() 393 EXPECT_EQ(input_backward.dimension(0), num_batches); in TEST() 399 for (int b = 0; b < num_batches; ++b) { in TEST() [all …]
|
D | random_binomial_op.cc | 175 void operator()(OpKernelContext* ctx, const CPUDevice& d, int64 num_batches, in operator ()() 186 auto DoWork = [num_batches, samples_per_batch, &bcast, &counts, &probs, in operator ()() 222 output_batch_offset[sample_idx * num_batches] = static_cast<U>(0.0); in operator ()() 228 output_batch_offset[sample_idx * num_batches] = in operator ()() 239 output_batch_offset[sample_idx * num_batches] = in operator ()() 252 output_batch_offset[sample_idx * num_batches] = in operator ()() 265 output_batch_offset[sample_idx * num_batches] = in operator ()() 278 output_batch_offset[sample_idx * num_batches] = static_cast<U>( in operator ()() 289 output_batch_offset[sample_idx * num_batches] = static_cast<U>(NAN); in operator ()() 387 int64 num_batches = 1; in Compute() local [all …]
|
D | parameterized_truncated_normal_op.cc | 53 void operator()(OpKernelContext* ctx, const CPUDevice& d, int64 num_batches, in operator ()() 308 Shard(worker_threads.num_threads, worker_threads.workers, num_batches, in operator ()() 315 void operator()(OpKernelContext* ctx, const CPUDevice& d, int64 num_batches, in operator ()() 334 auto do_work = [num_batches, samples_per_batch, &ctx, &bcast, &means, in operator ()() 441 output_batch_offset[sample_idx * num_batches] = in operator ()() 506 output_batch_offset[sample_idx * num_batches] = in operator ()() 550 output_batch_offset[sample_idx * num_batches] = in operator ()() 630 int32 num_batches = shape_tensor.flat<int32>()(0); in Compute() local 637 const int32 num_elements = num_batches * samples_per_batch; in Compute() 671 int32 size = num_batches * samples_per_batch; in Compute() [all …]
|
D | count_ops.cc | 35 int num_batches = per_batch_counts.size(); in OutputSparse() local 52 for (int b = 0; b < num_batches; ++b) { in OutputSparse() 76 dense_shape->flat<int64>().data()[0] = num_batches; in OutputSparse() 196 int num_batches = is_1d ? 1 : shape.flat<int64>()(0); in Compute() local 209 auto per_batch_counts = BatchedMap<W>(num_batches); in Compute() 270 int num_batches = splits.NumElements() - 1; in Compute() local 274 context, num_batches > 0, in Compute() 280 OP_REQUIRES(context, splits_values(num_batches) == num_values, in Compute() 283 splits_values(num_batches), " instead of ", num_values)); in Compute() 285 auto per_batch_counts = BatchedMap<W>(num_batches); in Compute()
|
D | eigen_spatial_convolutions_test.cc | 197 const int num_batches = 13; in TEST() local 204 Tensor<float, 4> input(input_depth, input_rows, input_cols, num_batches); in TEST() 206 Tensor<float, 4> result(output_depth, output_rows, output_cols, num_batches); in TEST() 219 EXPECT_EQ(result.dimension(3), num_batches); in TEST() 221 for (int b = 0; b < num_batches; ++b) { in TEST() 249 const int num_batches = 13; in TEST() local 259 Tensor<float, 4> input(input_depth, input_rows, input_cols, num_batches); in TEST() 261 Tensor<float, 4> result(output_depth, output_rows, output_cols, num_batches); in TEST() 274 EXPECT_EQ(result.dimension(3), num_batches); in TEST() 277 for (int b = 0; b < num_batches; ++b) { in TEST() [all …]
|
D | parameterized_truncated_normal_op.h | 38 void operator()(OpKernelContext* ctx, const Device& d, int64 num_batches, 52 void operator()(OpKernelContext* ctx, const Device& d, int64 num_batches,
|
/external/tensorflow/tensorflow/python/keras/layers/preprocessing/benchmarks/ |
D | hashing_benchmark.py | 59 num_batches = 5 60 ds = ds.take(num_batches) 61 ds = ds.prefetch(num_batches) 69 avg_time = np.mean(np.array(ends) - np.array(starts)) / num_batches 85 num_batches = 5 86 ds = ds.take(num_batches) 87 ds = ds.prefetch(num_batches) 95 avg_time = np.mean(np.array(ends) - np.array(starts)) / num_batches
|
D | category_crossing_benchmark.py | 58 num_batches = 5 59 ds = ds.take(num_batches) 60 ds = ds.prefetch(num_batches) 68 avg_time = np.mean(np.array(ends) - np.array(starts)) / num_batches 86 num_batches = 5 87 ds = ds.take(num_batches) 88 ds = ds.prefetch(num_batches) 96 avg_time = np.mean(np.array(ends) - np.array(starts)) / num_batches
|
D | category_encoding_benchmark.py | 57 num_batches = 5 58 ds = ds.take(num_batches) 59 ds = ds.prefetch(num_batches) 67 avg_time = np.mean(np.array(ends) - np.array(starts)) / num_batches
|
/external/tensorflow/tensorflow/python/kernel_tests/ |
D | fractional_max_pool_op_test.py | 200 num_batches = 5 206 tensor_shape = (num_batches, num_rows, num_cols, num_channels) 216 num_batches = 5 222 tensor_shape = (num_batches, num_rows, num_cols, num_channels) 235 for num_batches in [1, 3]: 239 tensor_shape = (num_batches, num_rows, num_cols, num_channels) 251 num_batches = 3 255 tensor_shape = (num_batches, num_rows, num_cols, num_channels) 272 num_batches = 3 276 tensor_shape = (num_batches, num_rows, num_cols, num_channels) [all …]
|
D | fractional_avg_pool_op_test.py | 198 num_batches = 5 204 tensor_shape = (num_batches, num_rows, num_cols, num_channels) 238 for num_batches in [1, 3]: 242 tensor_shape = (num_batches, num_rows, num_cols, num_channels) 254 num_batches = 3 258 tensor_shape = (num_batches, num_rows, num_cols, num_channels) 275 num_batches = 3 279 tensor_shape = (num_batches, num_rows, num_cols, num_channels) 353 for num_batches in [1, 3]: 359 input_shape = (num_batches, num_rows, num_cols, num_channels) [all …]
|
D | self_adjoint_eig_op_test.py | 130 num_batches = int(np.prod(x_e.shape[:-1])) 132 x_e = np.reshape(x_e, [num_batches] + [n]) 133 x_v = np.reshape(x_v, [num_batches] + [n, n]) 134 y_e = np.reshape(y_e, [num_batches] + [n]) 135 y_v = np.reshape(y_v, [num_batches] + [n, n]) 136 for i in range(num_batches):
|
D | eig_op_test.py | 134 num_batches = int(np.prod(x_e.shape[:-1])) 136 x_e = np.reshape(x_e, [num_batches] + [n]) 137 x_v = np.reshape(x_v, [num_batches] + [n, n]) 138 y_e = np.reshape(y_e, [num_batches] + [n]) 139 y_v = np.reshape(y_v, [num_batches] + [n, n]) 140 for i in range(num_batches):
|
/external/tensorflow/tensorflow/python/training/ |
D | input_test.py | 454 num_batches = 3 457 counter = examples.count_up_to(num_batches * batch_size) 481 for i in range(num_batches): 536 num_batches = 3 539 counter = examples.count_up_to(num_batches * batch_size) 549 for i in range(num_batches): 567 num_batches = 3 570 counter = examples.count_up_to(num_batches * batch_size) 581 for i in range(num_batches): 602 num_batches = 3 [all …]
|
/external/tensorflow/tensorflow/python/keras/distribute/ |
D | ctl_correctness_test.py | 128 num_batches = 0 138 num_batches += 1 149 num_batches += 1 151 return total_loss / math_ops.cast(num_batches, dtype=dtypes.float32) 200 num_batches = 0 205 num_batches += 1 211 num_batches += 1 214 total_loss / math_ops.cast(num_batches, dtype=dtypes.float32),
|
D | keras_metrics_test.py | 122 def _expected_fn(num_batches): argument 124 return num_batches * 2 - 0.5
|
/external/tensorflow/tensorflow/lite/delegates/gpu/cl/kernels/ |
D | lstm_full_test.cc | 183 int num_batches() { return n_batch_; } in num_batches() function in tflite::__anonb664ae370111::LSTMOpModel 233 const int num_batches = lstm->num_batches(); in VerifyGoldens() local 239 ASSERT_EQ(num_batches, lstm_input_[i].size()); in VerifyGoldens() 240 for (int b = 0; b < num_batches; ++b) { in VerifyGoldens() 250 ASSERT_EQ(num_batches, lstm_golden_output_[i].size()); in VerifyGoldens() 251 for (int b = 0; b < num_batches; ++b) { in VerifyGoldens()
|
/external/tensorflow/tensorflow/lite/kernels/ |
D | basic_rnn_test.cc | 217 int num_batches() { return batches_; } in num_batches() function in tflite::__anon3123f5fe0111::RNNOpModel 266 (rnn.input_size() * rnn.num_batches()); in TEST() 295 (rnn.input_size() * rnn.num_batches()); in TEST_P() 323 (rnn.input_size() * rnn.num_batches()); in TEST_P()
|
/external/tensorflow/tensorflow/lite/delegates/gpu/gl/ |
D | api.cc | 106 int num_batches = 0; in Execute() local 120 if (num_batches == 0) { in Execute() 121 num_batches = b; in Execute() 122 } else if (num_batches != b) { in Execute() 125 " vs ", num_batches)); in Execute() 129 for (size_t b = 0; b < num_batches; ++b) { in Execute()
|
/external/tensorflow/tensorflow/core/kernels/image/ |
D | non_max_suppression_op.cc | 446 const int num_batches = inp_boxes.dim_size(0); in BatchedNonMaxSuppressionOp() local 458 num_batches, in BatchedNonMaxSuppressionOp() 463 std::vector<std::vector<float>> nmsed_boxes(num_batches); in BatchedNonMaxSuppressionOp() 465 std::vector<std::vector<float>> nmsed_scores(num_batches); in BatchedNonMaxSuppressionOp() 467 std::vector<std::vector<float>> nmsed_classes(num_batches); in BatchedNonMaxSuppressionOp() 469 std::vector<int> final_valid_detections(num_batches); in BatchedNonMaxSuppressionOp() 483 int length = num_batches * num_classes; in BatchedNonMaxSuppressionOp() 504 TensorShape valid_detections_shape({num_batches}); in BatchedNonMaxSuppressionOp() 520 length = num_batches; in BatchedNonMaxSuppressionOp() 535 TensorShape boxes_shape({num_batches, per_batch_size, 4}); in BatchedNonMaxSuppressionOp() [all …]
|