/external/tensorflow/tensorflow/python/keras/ |
D | metrics_confusion_matrix_test.py | 737 0.4, num_thresholds=100, name='sensitivity_at_specificity_1') 741 self.assertEqual(s_obj.num_thresholds, 100) 748 self.assertEqual(s_obj2.num_thresholds, 100) 826 metrics.SensitivityAtSpecificity(0.4, num_thresholds=-1) 834 0.4, num_thresholds=100, name='specificity_at_sensitivity_1') 838 self.assertEqual(s_obj.num_thresholds, 100) 845 self.assertEqual(s_obj2.num_thresholds, 100) 922 metrics.SpecificityAtSensitivity(0.4, num_thresholds=-1) 930 0.4, num_thresholds=100, name='precision_at_recall_1') 934 self.assertEqual(s_obj.num_thresholds, 100) [all …]
|
D | metrics.py | 994 num_thresholds = len(to_list(self.thresholds)) 996 [(v, np.zeros((num_thresholds,))) for v in self.variables]) 1324 num_thresholds = len(to_list(self.thresholds)) 1326 [(v, np.zeros((num_thresholds,))) for v in self.variables]) 1449 num_thresholds = len(to_list(self.thresholds)) 1451 [(v, np.zeros((num_thresholds,))) for v in self.variables]) 1471 def __init__(self, value, num_thresholds=200, name=None, dtype=None): argument 1473 if num_thresholds <= 0: 1478 shape=(num_thresholds,), 1482 shape=(num_thresholds,), [all …]
|
D | metrics_test.py | 2195 s_obj = metrics.SensitivityAtSpecificity(0.5, num_thresholds=1) 2210 s_obj = metrics.SpecificityAtSensitivity(0.5, num_thresholds=1) 2225 s_obj = metrics.PrecisionAtRecall(recall=0.5, num_thresholds=1) 2240 s_obj = metrics.RecallAtPrecision(precision=0.5, num_thresholds=1) 2255 auc_obj = metrics.AUC(num_thresholds=3) 2270 auc_obj = metrics.AUC(num_thresholds=3, from_logits=True)
|
/external/tensorflow/tensorflow/python/ops/ |
D | metrics_impl.py | 531 num_thresholds = len(thresholds) 550 array_ops.tile(array_ops.transpose(predictions_2d), [num_thresholds, 1]), 556 label_is_pos = array_ops.tile(labels_2d, [num_thresholds, 1]) 564 array_ops.reshape(weights, [1, -1]), [num_thresholds, 1]) 575 [num_thresholds], dtypes.float32, name='true_positives') 587 [num_thresholds], dtypes.float32, name='false_negatives') 599 [num_thresholds], dtypes.float32, name='true_negatives') 611 [num_thresholds], dtypes.float32, name='false_positives') 636 num_thresholds=200, argument 733 num_thresholds = len(thresholds) + 2 [all …]
|
/external/tensorflow/tensorflow/python/keras/utils/ |
D | metrics_utils.py | 315 num_thresholds = thresholds.shape[0] 384 thresh_pretile_shape = [num_thresholds, 1, -1] 386 data_tiles = [num_thresholds, 1, 1] 388 thresh_pretile_shape = [num_thresholds, -1] 390 data_tiles = [num_thresholds, 1]
|
/external/tensorflow/tensorflow/tools/api/golden/v1/ |
D | tensorflow.metrics.pbtxt | 9 …argspec: "args=[\'labels\', \'predictions\', \'weights\', \'num_thresholds\', \'metrics_collection… 105 …argspec: "args=[\'labels\', \'predictions\', \'specificity\', \'weights\', \'num_thresholds\', \'m… 117 …argspec: "args=[\'labels\', \'predictions\', \'sensitivity\', \'weights\', \'num_thresholds\', \'m…
|
D | tensorflow.keras.metrics.-sensitivity-at-specificity.pbtxt | 134 …argspec: "args=[\'self\', \'specificity\', \'num_thresholds\', \'name\', \'dtype\'], varargs=None,…
|
D | tensorflow.keras.metrics.-recall-at-precision.pbtxt | 134 …argspec: "args=[\'self\', \'precision\', \'num_thresholds\', \'name\', \'dtype\'], varargs=None, k…
|
D | tensorflow.keras.metrics.-a-u-c.pbtxt | 137 …argspec: "args=[\'self\', \'num_thresholds\', \'curve\', \'summation_method\', \'name\', \'dtype\'…
|
D | tensorflow.keras.metrics.-precision-at-recall.pbtxt | 134 …argspec: "args=[\'self\', \'recall\', \'num_thresholds\', \'name\', \'dtype\'], varargs=None, keyw…
|
D | tensorflow.keras.metrics.-specificity-at-sensitivity.pbtxt | 134 …argspec: "args=[\'self\', \'sensitivity\', \'num_thresholds\', \'name\', \'dtype\'], varargs=None,…
|
/external/tensorflow/tensorflow/python/distribute/ |
D | metrics_v1_test.py | 229 return metrics.auc(labels, predictions, num_thresholds=8, curve="ROC", 243 return metrics.auc(labels, predictions, num_thresholds=8, curve="PR",
|
/external/tensorflow/tensorflow/tools/api/golden/v2/ |
D | tensorflow.keras.metrics.-a-u-c.pbtxt | 137 …argspec: "args=[\'self\', \'num_thresholds\', \'curve\', \'summation_method\', \'name\', \'dtype\'…
|
D | tensorflow.metrics.-recall-at-precision.pbtxt | 134 …argspec: "args=[\'self\', \'precision\', \'num_thresholds\', \'name\', \'dtype\'], varargs=None, k…
|
D | tensorflow.metrics.-specificity-at-sensitivity.pbtxt | 134 …argspec: "args=[\'self\', \'sensitivity\', \'num_thresholds\', \'name\', \'dtype\'], varargs=None,…
|
D | tensorflow.metrics.-sensitivity-at-specificity.pbtxt | 134 …argspec: "args=[\'self\', \'specificity\', \'num_thresholds\', \'name\', \'dtype\'], varargs=None,…
|
D | tensorflow.keras.metrics.-recall-at-precision.pbtxt | 134 …argspec: "args=[\'self\', \'precision\', \'num_thresholds\', \'name\', \'dtype\'], varargs=None, k…
|
D | tensorflow.keras.metrics.-precision-at-recall.pbtxt | 134 …argspec: "args=[\'self\', \'recall\', \'num_thresholds\', \'name\', \'dtype\'], varargs=None, keyw…
|
D | tensorflow.keras.metrics.-sensitivity-at-specificity.pbtxt | 134 …argspec: "args=[\'self\', \'specificity\', \'num_thresholds\', \'name\', \'dtype\'], varargs=None,…
|
D | tensorflow.keras.metrics.-specificity-at-sensitivity.pbtxt | 134 …argspec: "args=[\'self\', \'sensitivity\', \'num_thresholds\', \'name\', \'dtype\'], varargs=None,…
|
D | tensorflow.metrics.-precision-at-recall.pbtxt | 134 …argspec: "args=[\'self\', \'recall\', \'num_thresholds\', \'name\', \'dtype\'], varargs=None, keyw…
|
D | tensorflow.metrics.-a-u-c.pbtxt | 137 …argspec: "args=[\'self\', \'num_thresholds\', \'curve\', \'summation_method\', \'name\', \'dtype\'…
|
/external/rust/crates/grpcio-sys/grpc/src/core/ext/xds/ |
D | xds_api.cc | 1820 size_t num_thresholds; in CdsResponseParse() local 1823 circuit_breakers, &num_thresholds); in CdsResponseParse() 1824 for (size_t i = 0; i < num_thresholds; ++i) { in CdsResponseParse()
|
/external/tensorflow/tensorflow/python/kernel_tests/ |
D | metrics_test.py | 1424 num_thresholds=500,
|
/external/tensorflow/ |
D | RELEASE.md | 3409 streaming precision and recall with `O(num_thresholds + size of predictions)`
|