/external/tensorflow/tensorflow/lite/micro/kernels/arc_mli/ |
D | pooling_slicing_test.cc | 42 float output_min, float output_max, TfLitePadding padding, in TestAveragePoolingQuantized() argument 57 output_min, output_max), in TestAveragePoolingQuantized() 112 float output_min, float output_max, in TestMaxPoolQuantized() argument 128 output_min, output_max), in TestMaxPoolQuantized() 192 const float output_min = -128; in TF_LITE_MICRO_TEST() local 208 output_min, output_max, // output quantization range in TF_LITE_MICRO_TEST() 217 const float output_min = -128; in TF_LITE_MICRO_TEST() local 235 output_min, output_max, // output quantization range in TF_LITE_MICRO_TEST() 245 const float output_min = -128; in TF_LITE_MICRO_TEST() local 266 output_min, output_max, // output quantization range in TF_LITE_MICRO_TEST() [all …]
|
D | fully_connected_slicing_test.cc | 44 const float output_min, const float output_max, in TestFullyConnectedQuantized() argument 62 output_min, output_max), in TestFullyConnectedQuantized() 131 const float output_min = -128.0f; in TF_LITE_MICRO_TEST() local 150 bias_scale, expected_output_data, output_dims_data, output_min, in TF_LITE_MICRO_TEST() 160 const float output_min = -128.0f; in TF_LITE_MICRO_TEST() local 186 output_dims_data_local, output_min, output_max, kTfLiteActNone, in TF_LITE_MICRO_TEST() 197 const float output_min = -128.0f; in TF_LITE_MICRO_TEST() local 222 output_dims_data_2, output_min, output_max, kTfLiteActNone, in TF_LITE_MICRO_TEST() 232 const float output_min = -128.0f; in TF_LITE_MICRO_TEST() local 258 expected_output_data_local_2, output_dims_data_local_2, output_min, in TF_LITE_MICRO_TEST() [all …]
|
/external/tensorflow/tensorflow/core/kernels/ |
D | quantized_add_op.cc | 48 float scalar_input_max, float output_min, float output_max, in ScalarAddition() argument 51 scalar_input, scalar_input_min, scalar_input_max, output_min, output_max); in ScalarAddition() 54 full_input[i], full_input_min, full_input_max, output_min, output_max); in ScalarAddition() 66 float output_min, float output_max, qint32* output) { in ScalarAddition() argument 68 scalar_input, scalar_input_min, scalar_input_max, output_min, output_max); in ScalarAddition() 75 FloatToQuantizedUnclamped<qint32>(input_0_float, output_min, output_max); in ScalarAddition() 77 FloatToQuantizedUnclamped<qint32>(input_1_float, output_min, output_max); in ScalarAddition() 123 float output_min, float output_max, qint32* output) { in ScalarAddition() argument 125 scalar_input, scalar_input_min, scalar_input_max, output_min, output_max); in ScalarAddition() 132 FloatToQuantizedUnclamped<qint32>(input_0_float, output_min, output_max); in ScalarAddition() [all …]
|
D | quantized_batch_norm_op.cc | 38 Tensor* output, float* output_min, float* output_max) { in ReferenceBatchNorm() argument 49 *output_min = std::numeric_limits<float>::max(); in ReferenceBatchNorm() 78 *output_min = std::min(output_value, *output_min); in ReferenceBatchNorm() 82 FloatToQuantized<T2>(output_value, *output_min, *output_max); in ReferenceBatchNorm() 101 Tensor* output, float* output_min, float* output_max) { in FixedPointBatchNorm() argument 115 *output_min = -(1 << 20); in FixedPointBatchNorm() 139 FloatToQuantized<T2>(scale_value, *output_min, *output_max); in FixedPointBatchNorm() 141 FloatToQuantized<T2>(offset_value, *output_min, *output_max); in FixedPointBatchNorm() 145 FloatToQuantized<T2>(1.0f, *output_min, *output_max); in FixedPointBatchNorm() 151 input_max, *output_min, *output_max); in FixedPointBatchNorm() [all …]
|
D | quantized_concat_op.cc | 35 float output_min, float output_max) in RequantizeCopier() 36 : output_min(output_min), in RequantizeCopier() 43 if (input_min == output_min && input_max == output_max) { in Copy() 54 FloatToQuantizedStruct<T> f2q(output_min, output_max); in Copy() 64 float output_min; member 82 float* output_min, float* output_max) { in CalculateInputAndOutputRange() argument 100 *output_min = -largest_value; in CalculateInputAndOutputRange() 103 *output_min = overall_min; in CalculateInputAndOutputRange() 192 float output_min = std::numeric_limits<float>::max(); in Compute() local 196 &input_mins_and_maxes, &output_min, in Compute() [all …]
|
D | quantize_op_test.cc | 123 auto output_min = *GetOutput(1); in TEST_P() local 127 EXPECT_EQ(output_min.flat<float>()(slice_idx), 0); in TEST_P() 203 auto output_min = *GetOutput(1); in TEST_P() local 207 EXPECT_EQ(output_min.flat<float>()(slice_idx), -128.0 * (slice_idx + 1)); in TEST_P() 253 auto output_min = *GetOutput(1); in TEST_P() local 257 EXPECT_EQ(output_min.flat<float>()(slice_idx), -128.0 * (slice_idx + 1)); in TEST_P() 415 const float output_min = GetOutput(1)->flat<float>()(0); in TEST_F() local 417 EXPECT_NEAR(0.0f, output_min, 1e-5f); in TEST_F() 437 const float output_min = GetOutput(1)->flat<float>()(0); in TEST_F() local 439 EXPECT_NEAR(0.0f, output_min, 1e-5f); in TEST_F() [all …]
|
D | quantized_activation_ops.cc | 51 Tensor* output_min = nullptr; in Compute() local 52 OP_REQUIRES_OK(context, context->allocate_output(1, {}, &output_min)); in Compute() 53 output_min->flat<float>()(0) = min_input; in Compute() 89 Tensor* output_min = nullptr; in Compute() local 90 OP_REQUIRES_OK(context, context->allocate_output(1, {}, &output_min)); in Compute() 91 output_min->flat<float>()(0) = min_input; in Compute()
|
D | quantized_pooling_ops.cc | 99 Tensor* output_min = nullptr; in Compute() local 100 OP_REQUIRES_OK(context, context->allocate_output(1, {}, &output_min)); in Compute() 101 output_min->flat<float>()(0) = min_input; in Compute() 123 Tensor* output_min = nullptr; in Compute() local 124 OP_REQUIRES_OK(context, context->allocate_output(1, {}, &output_min)); in Compute() 125 output_min->flat<float>()(0) = min_input; in Compute()
|
/external/XNNPACK/src/xnnpack/ |
D | params-init.h | 34 uint8_t output_min, in xnn_init_scalar_qu8_gemm_params() argument 60 (int32_t) (uint32_t) output_min - (int32_t) (uint32_t) output_zero_point; in xnn_init_scalar_qu8_gemm_params() 71 uint8_t output_min, in xnn_init_qu8_gemm_params() argument 114 params.sse2.output_min[i] = output_min; in xnn_init_qu8_gemm_params() 122 params.neon.output_min = output_min; in xnn_init_qu8_gemm_params() 133 (int32_t) (uint32_t) output_min - (int32_t) (uint32_t) output_zero_point; in xnn_init_qu8_gemm_params() 144 int8_t output_min, in xnn_init_scalar_qs8_gemm_params() argument 168 params.scalar.output_min_less_zero_point = (int32_t) output_min - (int32_t) output_zero_point; in xnn_init_scalar_qs8_gemm_params() 177 int8_t output_min, in xnn_init_qs8_gemm_params() argument 215 params.sse2.output_min[i] = (int16_t) output_min; in xnn_init_qs8_gemm_params() [all …]
|
/external/XNNPACK/src/operators/ |
D | binary-elementwise-nd.c | 68 float output_min, in create_binary_elementwise_nd_f16() argument 75 if (isnan(output_min)) { in create_binary_elementwise_nd_f16() 89 …if (fp16_ieee_to_fp32_value(fp16_ieee_from_fp32_value(output_min)) >= fp16_ieee_to_fp32_value(fp16… in create_binary_elementwise_nd_f16() 93 fp16_ieee_to_fp32_value(fp16_ieee_from_fp32_value(output_min)), in create_binary_elementwise_nd_f16() 99 fp16_ieee_from_fp32_value(output_min), in create_binary_elementwise_nd_f16() 113 float output_min, in create_binary_elementwise_nd_f32() argument 126 if (isnan(output_min)) { in create_binary_elementwise_nd_f32() 140 if (output_min >= output_max) { in create_binary_elementwise_nd_f32() 143 xnn_operator_type_to_string(operator_type), output_min, output_max); in create_binary_elementwise_nd_f32() 147 const bool linear_activation = (output_max == INFINITY) && (output_min == -output_max); in create_binary_elementwise_nd_f32() [all …]
|
D | global-average-pooling-nwc.c | 208 uint8_t output_min, in xnn_create_global_average_pooling_nwc_qu8() argument 227 if (output_min >= output_max) { in xnn_create_global_average_pooling_nwc_qu8() 230 …xnn_operator_type_to_string(xnn_operator_type_global_average_pooling_nwc_qu8), output_min, output_… in xnn_create_global_average_pooling_nwc_qu8() 245 output_zero_point, output_min, output_max); in xnn_create_global_average_pooling_nwc_qu8() 271 int8_t output_min, in xnn_create_global_average_pooling_nwc_qs8() argument 290 if (output_min >= output_max) { in xnn_create_global_average_pooling_nwc_qs8() 293 …xnn_operator_type_to_string(xnn_operator_type_global_average_pooling_nwc_qs8), output_min, output_… in xnn_create_global_average_pooling_nwc_qs8() 308 output_zero_point, output_min, output_max); in xnn_create_global_average_pooling_nwc_qs8() 330 float output_min, in xnn_create_global_average_pooling_nwc_f16() argument 335 if (isnan(output_min)) { in xnn_create_global_average_pooling_nwc_f16() [all …]
|
D | global-average-pooling-ncw.c | 22 float output_min, in xnn_create_global_average_pooling_ncw_f32() argument 45 if (isnan(output_min)) { in xnn_create_global_average_pooling_ncw_f32() 59 if (output_min >= output_max) { in xnn_create_global_average_pooling_ncw_f32() 62 …xnn_operator_type_to_string(xnn_operator_type_global_average_pooling_ncw_f32), output_min, output_… in xnn_create_global_average_pooling_ncw_f32() 77 …ooling_op->params.f32_gavgpool = xnn_init_f32_gavgpool_params(nanf(""), output_min, output_max, 0); in xnn_create_global_average_pooling_ncw_f32()
|
/external/XNNPACK/src/subgraph/ |
D | global-average-pooling-2d.c | 18 float output_min, in xnn_define_global_average_pooling_2d() argument 30 if (isnan(output_min)) { in xnn_define_global_average_pooling_2d() 44 if (output_min >= output_max) { in xnn_define_global_average_pooling_2d() 47 xnn_node_type_to_string(xnn_node_type_global_average_pooling_2d), output_min, output_max); in xnn_define_global_average_pooling_2d() 71 node->activation.output_min = output_min; in xnn_define_global_average_pooling_2d()
|
D | multiply2.c | 18 float output_min, in xnn_define_multiply2() argument 31 if (isnan(output_min)) { in xnn_define_multiply2() 45 if (output_min >= output_max) { in xnn_define_multiply2() 48 xnn_node_type_to_string(xnn_node_type_multiply2), output_min, output_max); in xnn_define_multiply2() 79 node->activation.output_min = output_min; in xnn_define_multiply2()
|
D | divide.c | 18 float output_min, in xnn_define_divide() argument 31 if (isnan(output_min)) { in xnn_define_divide() 45 if (output_min >= output_max) { in xnn_define_divide() 48 xnn_node_type_to_string(xnn_node_type_divide), output_min, output_max); in xnn_define_divide() 79 node->activation.output_min = output_min; in xnn_define_divide()
|
D | subtract.c | 18 float output_min, in xnn_define_subtract() argument 31 if (isnan(output_min)) { in xnn_define_subtract() 45 if (output_min >= output_max) { in xnn_define_subtract() 48 xnn_node_type_to_string(xnn_node_type_subtract), output_min, output_max); in xnn_define_subtract() 79 node->activation.output_min = output_min; in xnn_define_subtract()
|
D | add2.c | 18 float output_min, in xnn_define_add2() argument 31 if (isnan(output_min)) { in xnn_define_add2() 45 if (output_min >= output_max) { in xnn_define_add2() 48 xnn_node_type_to_string(xnn_node_type_add2), output_min, output_max); in xnn_define_add2() 79 node->activation.output_min = output_min; in xnn_define_add2()
|
D | fully-connected.c | 18 float output_min, in xnn_define_fully_connected() argument 32 if (isnan(output_min)) { in xnn_define_fully_connected() 46 if (output_min >= output_max) { in xnn_define_fully_connected() 49 xnn_node_type_to_string(xnn_node_type_fully_connected), output_min, output_max); in xnn_define_fully_connected() 87 node->activation.output_min = output_min; in xnn_define_fully_connected()
|
D | average-pooling-2d.c | 26 float output_min, in xnn_define_average_pooling_2d() argument 62 if (isnan(output_min)) { in xnn_define_average_pooling_2d() 76 if (output_min >= output_max) { in xnn_define_average_pooling_2d() 79 xnn_node_type_to_string(xnn_node_type_average_pooling_2d), output_min, output_max); in xnn_define_average_pooling_2d() 123 node->activation.output_min = output_min; in xnn_define_average_pooling_2d()
|
D | max-pooling-2d.c | 28 float output_min, in xnn_define_max_pooling_2d() argument 70 if (isnan(output_min)) { in xnn_define_max_pooling_2d() 84 if (output_min >= output_max) { in xnn_define_max_pooling_2d() 87 xnn_node_type_to_string(xnn_node_type_max_pooling_2d), output_min, output_max); in xnn_define_max_pooling_2d() 133 node->activation.output_min = output_min; in xnn_define_max_pooling_2d()
|
D | deconvolution-2d.c | 33 float output_min, in xnn_define_deconvolution_2d() argument 89 if (isnan(output_min)) { in xnn_define_deconvolution_2d() 103 if (output_min >= output_max) { in xnn_define_deconvolution_2d() 106 xnn_node_type_to_string(xnn_node_type_deconvolution_2d), output_min, output_max); in xnn_define_deconvolution_2d() 157 node->activation.output_min = output_min; in xnn_define_deconvolution_2d()
|
D | depthwise-convolution-2d.c | 30 float output_min, in xnn_define_depthwise_convolution_2d() argument 79 if (isnan(output_min)) { in xnn_define_depthwise_convolution_2d() 93 if (output_min >= output_max) { in xnn_define_depthwise_convolution_2d() 96 xnn_node_type_to_string(xnn_node_type_depthwise_convolution_2d), output_min, output_max); in xnn_define_depthwise_convolution_2d() 176 node->activation.output_min = output_min; in xnn_define_depthwise_convolution_2d()
|
/external/XNNPACK/include/ |
D | xnnpack.h | 252 float output_min, 307 float output_min, 360 float output_min, 401 float output_min, 442 float output_min, 492 float output_min, float output_max, 536 float output_min, 623 float output_min, 651 float output_min, 679 float output_min, [all …]
|
/external/tensorflow/tensorflow/lite/micro/kernels/ |
D | hard_swish_test.cc | 60 float input_min, float input_max, float output_min, in TestHardSwishQuantized() argument 68 const float output_scale = ScaleFromMinMax<T>(output_min, output_max); in TestHardSwishQuantized() 69 const int output_zero_point = ZeroPointFromMinMax<T>(output_min, output_max); in TestHardSwishQuantized() 76 std::max(input_max - input_min, output_max - output_min) * (1.5f / 256.f); in TestHardSwishQuantized() 90 std::min(output_max, std::max(output_min, val)); in TestHardSwishQuantized() 129 float input_max, float output_min, in TestHardSwishQuantizedBias() argument 134 const float output_scale = ScaleFromMinMax<T>(output_min, output_max); in TestHardSwishQuantizedBias() 137 const int output_zero_point = ZeroPointFromMinMax<T>(output_min, output_max); in TestHardSwishQuantizedBias() 160 std::min(output_max, std::max(output_min, val)); in TestHardSwishQuantizedBias() 286 float output_min = minmax_pairs[y][0]; in TF_LITE_MICRO_TEST() local [all …]
|
/external/tensorflow/tensorflow/lite/delegates/hexagon/builders/tests/ |
D | activations_test.cc | 195 float output_min, float output_max, in TestQuantizedHardSwish() argument 204 val = std::min(output_max, std::max(output_min, val)); in TestQuantizedHardSwish() 209 /*output=*/{Tensor_Type, {1, 1, 1, size}, output_min, output_max}); in TestQuantizedHardSwish() 224 std::max(input_max - input_min, output_max - output_min) * (1.5f / 256.f); in TestQuantizedHardSwish() 238 float output_min = output_minmax.first; in HardSwishTestImpl() local 242 size, input_min, input_max, output_min, output_max, &random_engine); in HardSwishTestImpl() 260 float output_min = -0.3905796f; in HardSwishBiasTestImpl() local 268 const float output_scale = (output_max - output_min) / quantized_type_range; in HardSwishBiasTestImpl() 292 val = std::min(output_max, std::max(output_min, val)); in HardSwishBiasTestImpl() 298 /*output=*/{Tensor_Type, {1, 1, 1, size}, output_min, output_max}); in HardSwishBiasTestImpl()
|