/external/libvpx/libvpx/vp9/common/ |
D | vp9_scale.c | 82 sf->predict[0][0][0] = vpx_convolve_copy; 83 sf->predict[0][0][1] = vpx_convolve_avg; 84 sf->predict[0][1][0] = vpx_convolve8_vert; 85 sf->predict[0][1][1] = vpx_convolve8_avg_vert; 86 sf->predict[1][0][0] = vpx_convolve8_horiz; 87 sf->predict[1][0][1] = vpx_convolve8_avg_horiz; 90 sf->predict[0][0][0] = vpx_scaled_vert; 91 sf->predict[0][0][1] = vpx_scaled_avg_vert; 92 sf->predict[0][1][0] = vpx_scaled_vert; 93 sf->predict[0][1][1] = vpx_scaled_avg_vert; [all …]
|
/external/libvpx/libvpx/test/ |
D | idct_test.cc | 36 predict = new Buffer<uint8_t>(4, 4, 3); in SetUp() 37 ASSERT_TRUE(predict != NULL); in SetUp() 38 ASSERT_TRUE(predict->Init()); in SetUp() 46 delete predict; in TearDown() 53 Buffer<uint8_t> *predict; member in __anon795731860111::IDCTTest 60 predict->Set(0); in TEST_P() 63 ASM_REGISTER_STATE_CHECK(UUT(input->TopLeftPixel(), predict->TopLeftPixel(), in TEST_P() 64 predict->stride(), output->TopLeftPixel(), in TEST_P() 78 predict->Set(0); in TEST_P() 81 ASM_REGISTER_STATE_CHECK(UUT(input->TopLeftPixel(), predict->TopLeftPixel(), in TEST_P() [all …]
|
/external/tensorflow/tensorflow/python/keras/engine/ |
D | base_preprocessing_layer_test.py | 185 self.assertAllEqual([[16], [17], [18]], model.predict([1., 2., 3.])) 199 self.assertAllEqual([[16], [17], [18]], model.predict([1., 2., 3.])) 213 self.assertAllEqual([[16], [17], [18]], model.predict([1., 2., 3.])) 231 self.assertAllEqual([[16], [17], [18]], model.predict([1., 2., 3.])) 246 self.assertAllEqual([[16], [17], [18]], model.predict([1., 2., 3.])) 261 self.assertAllEqual([[16], [17], [18]], model.predict([1., 2., 3.])) 276 self.assertAllEqual([[16], [17], [18]], model.predict([1., 2., 3.])) 291 self.assertAllEqual([[16], [17], [18]], model.predict([1., 2., 3.])) 294 self.assertAllEqual([[19], [20], [21]], model.predict([1., 2., 3.])) 311 self.assertAllEqual([[16], [17], [18]], model.predict([1., 2., 3.])) [all …]
|
/external/tensorflow/tensorflow/python/keras/layers/preprocessing/ |
D | category_encoding_test.py | 67 sp_output_dataset = model.predict(input_array, steps=1) 78 output_dataset = model.predict(input_array, steps=1) 102 output_dataset = model.predict(sparse_tensor_data, steps=1) 127 output_dataset = model.predict([sparse_tensor_data, sparse_weight_data], 152 sp_output_dataset = model.predict(sp_inp, steps=1) 163 output_dataset = model.predict(sp_inp, steps=1) 191 sp_output_dataset = model.predict([sp_inp, sp_weight], steps=1) 214 output_dataset = model.predict(input_array, steps=1) 233 sp_output_dataset = model.predict(input_array, steps=1) 244 output_dataset = model.predict(input_array, steps=1) [all …]
|
D | text_vectorization_test.py | 476 output_dataset = model.predict(input_array) 494 output_dataset = model.predict(input_array) 514 output_dataset = model.predict(input_array) 532 output_dataset = model.predict(input_array) 551 output_dataset = model.predict(input_array) 575 output_dataset = model.predict(input_array) 599 output_dataset = model.predict(input_array) 621 output_dataset = model.predict(input_array) 655 output_dataset = model.predict(input_array) 712 output_dataset = model.predict(input_array) [all …]
|
D | integer_lookup_test.py | 156 output_data = model.predict(input_array, steps=1) 172 output_dataset = model.predict(input_array) 202 output_data = model.predict(input_array, steps=1) 218 output_dataset = model.predict(input_array) 264 output_data = model.predict(input_array, steps=1) 280 output_dataset = model.predict(input_array) 313 output_dataset = model.predict(input_array) 332 output_dataset = model.predict(input_array) 347 output_dataset = model.predict(input_array) 362 output_dataset = model.predict(input_array) [all …]
|
D | reduction_test.py | 65 output = model.predict(data) 108 output = model.predict([data, weights]) 123 output = model.predict([data, weights]) 157 output = model.predict(data) 200 output = model.predict([data, weights]) 216 output = model.predict([data, weights])
|
D | discretization_test.py | 63 output_dataset = model.predict(input_array) 78 output_dataset = model.predict(input_array) 91 output_dataset = model.predict(input_array, steps=1) 108 output_dataset = model.predict(input_array) 123 output_dataset = model.predict(input_array) 136 output_dataset = model.predict(input_array, steps=1) 213 output_data = model.predict(test_data)
|
D | string_lookup_test.py | 153 output_data = model.predict(input_array) 166 output_data = model.predict(input_array) 185 output_data = model.predict(input_array) 198 output_data = model.predict(input_array) 236 output_data = model.predict(input_array) 252 output_data = model.predict(input_array) 276 output_data = model.predict(input_array) 293 output_data = model.predict(input_array) 308 output_data = model.predict(input_array)
|
D | index_lookup_test.py | 398 output_data = model.predict(input_array, steps=1) 424 output_data = model.predict(input_array, steps=1) 445 output_dataset = model.predict(input_array) 464 output_dataset = model.predict(input_array) 483 output_dataset = model.predict(input_array) 513 output_data = model.predict(input_array, steps=1) 539 output_data = model.predict(input_array, steps=1) 560 output_dataset = model.predict(input_array) 579 output_dataset = model.predict(input_array) 641 output_data = model.predict(input_array, steps=1) [all …]
|
/external/tensorflow/tensorflow/python/keras/layers/ |
D | convolutional_recurrent_test.py | 70 state = model.predict(inputs) 112 out1 = model.predict(np.ones_like(inputs)) 117 out2 = model.predict(np.ones_like(inputs)) 125 out3 = model.predict(np.ones_like(inputs)) 130 out4 = model.predict(np.ones_like(inputs)) 134 out5 = model.predict(np.ones_like(inputs)) 193 reference_outputs = model.predict(test_inputs) 201 outputs = clone.predict(test_inputs) 231 model.predict([x_1, x_2])
|
D | gru_v2_test.py | 119 model.predict(x_train) 185 y_1 = gru_model.predict(x_train) 188 y_2 = gru_model.predict(x_train) 196 y_3 = cudnn_model.predict(x_train) 199 y_4 = cudnn_model.predict(x_train) 233 y_ref = model.predict(x) 238 y = cloned_model.predict(x) 258 y_1 = cpu_model.predict(x_train) 265 y_2 = gpu_model.predict(x_train) 277 y_3 = canonical_model.predict(x_train) [all …]
|
D | multi_head_attention_test.py | 105 masked_output_data = model.predict([from_data, to_data, mask_data]) 109 unmasked_output_data = model.predict([from_data, to_data, null_mask_data]) 120 masked_output_data = model.predict([from_data, to_data, to_data, mask_data]) 121 unmasked_output_data = model.predict( 166 masked_output_data = model.predict([from_data, to_data, mask_data]) 170 unmasked_output_data = model.predict([from_data, to_data, null_mask_data]) 181 masked_output_data_score, masked_score = model.predict( 183 unmasked_output_data_score, unmasked_score = model.predict( 225 model.predict([query, value, mask_data]), 226 model.predict([query, value, null_mask_data]))
|
D | gru_test.py | 134 gru_model.predict(x_train) 176 out1 = model.predict(np.ones((num_samples, timesteps))) 182 out2 = model.predict(np.ones((num_samples, timesteps))) 190 out3 = model.predict(np.ones((num_samples, timesteps))) 195 out4 = model.predict(np.ones((num_samples, timesteps))) 199 out5 = model.predict(np.ones((num_samples, timesteps))) 208 out6 = model.predict(left_padded_input) 215 out7 = model.predict(right_padded_input)
|
D | simplernn_test.py | 186 out1 = model.predict(np.ones((num_samples, timesteps))) 192 out2 = model.predict(np.ones((num_samples, timesteps))) 200 out3 = model.predict(np.ones((num_samples, timesteps))) 205 out4 = model.predict(np.ones((num_samples, timesteps))) 209 out5 = model.predict(np.ones((num_samples, timesteps))) 218 out6 = model.predict(left_padded_input) 225 out7 = model.predict(right_padded_input)
|
D | lstm_v2_test.py | 276 state = model.predict(inputs) 294 model.predict(inputs) 357 y_1 = lstm_model.predict(x_train) 360 y_2 = lstm_model.predict(x_train) 366 y_3 = cudnn_model.predict(x_train) 369 y_4 = cudnn_model.predict(x_train) 470 y_ref = lstm_model.predict(x_train) 475 y = lstm_v2_model.predict(x_train) 503 model.predict(x_train) 534 y_ref = model.predict(x) [all …]
|
D | pooling_test.py | 58 output = model.predict(model_input) 70 output_ragged = model.predict(ragged_data, steps=1) 76 output_dense = model.predict(dense_data, steps=1) 90 output_ragged = model.predict(ragged_data, steps=1) 95 output_dense = model.predict(dense_data, steps=1) 108 output_ragged = model.predict(ragged_data, steps=1)
|
D | recurrent_test.py | 192 y_np = model.predict(x_np) 200 y_np_2 = model.predict(x_np) 218 y_np = model.predict(x_np) 226 y_np_2 = model.predict(x_np) 367 y_np_1 = model.predict(x_np) 380 y_np_2 = model_2.predict(x_np) 404 y_np = model.predict([x_np, c_np]) 413 y_np_2 = model.predict([x_np, c_np]) 422 y_np_3 = model.predict([x_np, c_np]) 460 y_np = model.predict([x_np, c_np]) [all …]
|
D | cudnn_recurrent_test.py | 95 state = model.predict(inputs) 122 out = model.predict(np.ones((num_samples, timesteps, input_size))) 221 out1 = model.predict(np.ones((num_samples, timesteps))) 227 out2 = model.predict(np.ones((num_samples, timesteps))) 235 out3 = model.predict(np.ones((num_samples, timesteps))) 240 out4 = model.predict(np.ones((num_samples, timesteps))) 244 out5 = model.predict(np.ones((num_samples, timesteps))) 320 self.assertAllClose(model.predict(inputs), cudnn_model.predict(inputs), 398 self.assertAllClose(model.predict(inputs), cudnn_model.predict(inputs),
|
/external/tensorflow/tensorflow/python/keras/integration_test/ |
D | legacy_rnn_test.py | 70 predict = tf.placeholder( 77 loss = tf.losses.softmax_cross_entropy(predict, state) 82 [train_op, outputs, state], {inputs: x_train, predict: y_train}) 103 predict = tf.placeholder( 110 loss = tf.losses.softmax_cross_entropy(predict, state) 115 [train_op, outputs, state], {inputs: x_train, predict: y_train}) 136 predict = tf.placeholder( 145 loss = tf.losses.softmax_cross_entropy(predict, state[0]) 150 [train_op, outputs, state], {inputs: x_train, predict: y_train}) 175 predict = tf.placeholder( [all …]
|
/external/webp/src/enc/ |
D | predictor_enc.c | 150 static uint8_t NearLosslessComponent(uint8_t value, uint8_t predict, in NearLosslessComponent() argument 152 const int residual = (value - predict) & 0xff; in NearLosslessComponent() 153 const int boundary_residual = (boundary - predict) & 0xff; in NearLosslessComponent() 189 static uint32_t NearLossless(uint32_t value, uint32_t predict, in NearLossless() argument 197 return VP8LSubPixels(value, predict); in NearLossless() 205 a = NearLosslessDiff((value >> 24) & 0xff, (predict >> 24) & 0xff); in NearLossless() 207 a = NearLosslessComponent(value >> 24, predict >> 24, 0xff, quantization); in NearLossless() 209 g = NearLosslessComponent((value >> 8) & 0xff, (predict >> 8) & 0xff, 0xff, in NearLossless() 214 new_green = ((predict >> 8) + g) & 0xff; in NearLossless() 221 (predict >> 16) & 0xff, 0xff - new_green, in NearLossless() [all …]
|
/external/tensorflow/tensorflow/python/keras/utils/ |
D | composite_tensor_support_test.py | 183 output = model.predict(input_data) 195 output = model.predict(input_data) 230 output = model.predict(input_data) 244 output = model.predict(input_data, batch_size=2) 258 output = model.predict(input_data) 277 output = model.predict(input_data, batch_size=2) 363 result = model.predict(input_data, **kwargs) 389 output = model.predict(input_data, steps=1) 395 output_2 = model.predict(input_data_2, steps=1) 442 output = model.predict(input_data, steps=1) [all …]
|
/external/tensorflow/tensorflow/python/keras/saving/ |
D | saved_model_experimental_test.py | 70 ref_y = model.predict(x) 76 y = loaded_model.predict(x) 87 ref_y = model.predict(x) 93 y = loaded_model.predict(x) 111 ref_y = model.predict(x) 117 y = loaded_model.predict(x) 131 ref_y = model.predict(x) 137 y = loaded_model.predict(x) 152 ref_y = model.predict(x) 161 y = loaded_model.predict(x) [all …]
|
/external/tensorflow/tensorflow/python/keras/wrappers/ |
D | scikit_learn.py | 89 Sequential.fit, Sequential.predict, Sequential.predict_classes, 225 def predict(self, x, **kwargs): member in KerasClassifier 264 probs = self.model.predict(x, **kwargs) 318 def predict(self, x, **kwargs): member in KerasRegressor 332 kwargs = self.filter_sk_params(Sequential.predict, kwargs) 333 return np.squeeze(self.model.predict(x, **kwargs))
|
/external/tensorflow/tensorflow/python/keras/applications/ |
D | imagenet_utils_test.py | 91 self.assertEqual(model.predict(x).shape, x.shape) 98 out1 = model1.predict(x) 106 out2 = model2.predict(x2) 116 self.assertEqual(model.predict(x[np.newaxis])[0].shape, x.shape) 123 out1 = model1.predict(x[np.newaxis])[0] 131 out2 = model2.predict(x2[np.newaxis])[0]
|